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The Impact of Corporate Social Performance on Financial 

Risk and Utility: A Longitudinal Analysis 

 

ABSTRACT 

 
This study focuses on the wealth–protective effects of socially responsible firm behavior by 

examining the association between corporate social performance (CSP) and financial risk for 

an extensive panel data sample of S&P 500 companies between the years 1992 and 2009. In 

addition, the link between CSP and investor utility is investigated. The main findings are that 

corporate social responsibility is negatively but weakly related to systematic firm risk and 

that corporate social irresponsibility is positively and strongly related to financial risk. The 

fact that both conventional and downside risk measures lead to the same conclusions adds 

convergent validity to the analysis. However, the risk–return trade–off appears to be such that 

no clear utility gain or loss can be realized by investing in firms characterized by different 

levels of social and environmental performance. Overall volatility conditions of the financial 

markets are shown to play a moderating role in the nature and strength of the CSP–risk 

relationship. 
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 Within the rapidly evolving research area of Corporate Social Responsibility (CSR), a 

significant portion of the relevant theoretical and empirical literature has concentrated on 

studying the specificities of the relationship between the corporate social performance (CSP) 

and measures of the corporate financial performance (CFP) of the firm.  For many 

researchers, managers, and investors, the question of whether there is a business case for CSR 

is of key importance.  Perceptions of a positive (or negative) direct or indirect relationship 

between a corporation’s social responsibility and its bottom line promote (or deter) the 

implementation of CSR principles in both corporate and investment strategies. The academic 

debate concerning the nature of the link between CSP and CFP is a persistent and 

controversial one. Due to a variety of definitional, measurement, and methodological issues, 

there is no consensus in the relevant literature, either at the firm or portfolio level of analysis, 

with results often in sharp conflict (Griffin and Mahon, 1997; Margolis and Walsh, 2003) – 

some studies indicate a positive CSP–CFP relationship (Hillman and Keim, 2001), others 

point to a negative link (Brammer, Brooks, and Pavelin, 2006) or to no significant association 

between the two (Renneboog, Ter Horst, and Zhang, 2008a; Bauer, Koedijk, and Otten, 

2005). Among these studies, the common denominator is the use of measures of financial 

performance that focus on firm profitability (accounting measures) or on stock returns 

(market measures), sometimes using risk (either accounting or market risk, respectively) only 

as an adjustment factor. 

 The inherent assumption in these papers is that CSP can influence CFP solely through 

a front door mechanism. Under the stakeholder management perspective, CSP is expected to 

contribute to the creation of sustainable comparative advantages that will enhance firm 

profitability and lead to an overall positive CSP–CFP relationship (Jones, 1995). In 

contradiction to this, there are those who view CSR practices as a misappropriation and 

misallocation of valuable corporate resources which are detrimental to firm performance 
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(Friedman, 1970). The final possibility is that there are so many intervening variables 

between CSP and CFP that identifying a consistent, statically significant relationship between 

the two is prohibitively difficult (Ullmann, 1985).  

 In this study, we attempt to offer an alternative empirical pathway in relation to the 

CSP–CFP connection by investigating the possibility of the existence of a back door 

mechanism between the two so that CSP has wealth–protective instead of wealth–enhancing 

effects that are captured in the corporations’ stock market valuations. To investigate such 

effects, we will focus our analysis upon the relationship between CSP and financial risk 

(rather than profitability or returns on share ownership) at the firm level. Thus, in a 

substantive departure from previous studies of the CSP–CFP link, risk will be employed as a 

key dependent variable. 

 The relationship between CSP and financial risk carries considerable potential 

importance for managers and investors alike. Managers seeking to reduce the uncertainty to 

which their businesses fortunes are subject would find it useful to know whether improved 

CSP is likely to increase or decrease the variability of future firm performance. This is 

especially true if one accepts that the claim of Cox, Brammer, and Millington, (2004, p.29) 

that “there is a broad consensus in the conceptual literature that many financial gains from 

improved social performance accrue in the long run” also applies to the effects of CSP on 

financial risk. It may be the case that companies which have invested in environmental 

programs that utilize renewable energy and clean fuels or other firms that make great efforts 

to ensure the optimal quality and safety characteristics of their products and services might be 

better equipped to cope with adverse systematic economic shocks than their competitors who 

are not involved in such practices. Secondly, because of the alleged long-term, risk reductive 

effects of socially responsible corporate activity, the stocks of firms with high levels of CSP 

might be attractive to specific types of institutional investors such as pension funds that “tend 
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to have significantly predictable, long-term outflows to beneficiaries”  (Ryan and Schneider, 

2002, p.560). This reasoning is empirically supported by Cox et al. (2004) who find a 

positive and significant relationship between the proportion of company ownership by 

pension funds/life assurance companies and CSP. 

 Lastly, given the turmoil in financial markets during the 2000-2002 (caused by the 

bursting of the dot-com bubble) and 2008-2009 periods (real estate downturn and systemic 

crisis), with most stock indices around the globe losing a significant part of their values 

within a few months, the issue becomes even more pivotal.
1
 In times such as these, the 

stylized fact is that the average investor’s risk aversion increases and more attention is 

directed towards the avoidance of high risk rather than the reaping of great returns. The 

hypothesized wealth-protective effects of CSP would make the respective firm stocks highly 

desirable investment assets. 

 The remainder of this study is structured as follows. Section I discusses the existing 

evidence in the relation between CSP and financial risk per se. Section II provides the 

theoretical framework upon which this empirical work is based. The characteristics of the 

data that are utilized and the construction of the CSP and financial risk/utility measures 

employed are introduced in Section III. Section IV contains the details of the methodological 

process that is implemented. Section V presents the results of the various analyses that have 

been performed whereas Section VI draws conclusions and makes suggestions for future 

research. 

 

                                                           
1
 Some academics have compared the latter situation with the stock market crash during the 

Great Depression (Eichengreen and O’ Rourke, 2009). 
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I. CSP and Financial Risk: The Existing Evidence 

 Empirical testing of the hypothesis of the wealth-protective consequences of corporate 

social and environmental behavior through an examination of the link between CSP and 

financial risk is a route that a relatively small number of researchers have taken.
2
 Given the 

existence of a significant number of conceptual links between CSP and financial risk, this 

observation is especially startling.  Spicer (1978) was amongst the first to conduct such a 

study. He uses the Controls for Environmental Pollution (CEP) reports as a CSP measure and 

finds negative Spearman rank order correlations between it and measures of total and 

systematic risk, thus providing some early empirical support for a risk-reducing effect of 

strong CSP. Aupperle, Carroll, and Hatfield, (1985) report a correlation analysis in which 

CSP constructs created from the results of a forced-choice survey of corporate Chief 

Executive Officers (CEOs) are used along with accounting measures of CFP (return on assets 

(ROA)) and risk (beta, Value Line’s safety index). No measure of financial performance is 

significantly related to factors like the employment of social forecasting or having a social 

responsibility committee, but all of the latter are significantly and negatively related to total 

financial risk and insignificantly negatively associated with long-term beta. Building on this 

paper, Aupperle and Pham (1989) aggregate the non-economic components of CSP and use a 

variety of accounting (ROA, return on equity (ROE), and return on stock (ROS)) and market 

(stock price growth, total return to investor) measures of CFP. They find no significant 

relationship between CSP and any measure of financial performance or even financial risk. 

                                                           
2
 From this point onwards, unless otherwise mentioned, the term “financial risk” will be used 

to mean “market risk”. 
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Somewhat similarly, McGuire, Sungren, and Schneeweis, (1988) use a sample of large US 

firms rated in Fortune’s ‘America’s Most Admired Companies’ reputation index (one 

attribute of which is environmental and social responsibility). They use multiple CFP 

measures (total return, asset growth, alpha, and others) and risk measures (operating leverage 

and beta) and run regressions for different time windows. They find that CSP is positively 

(and strongly) related to CFP and negatively (and less strongly) related to both prior and 

subsequent systematic risk.  

 Orlitzky and Benjamin’s (2001) meta-analysis summarizes the characteristics of the 

datasets, methodologies and conclusions of the previously presented research papers along 

with those of many other studies that were published between 1976 and 1997. Their summary 

of previous research is indicative of the limitations of the empirical work in this area. For 

example, they demonstrate (Table I, pp. 380-382) that the entire set of the meta-analyzed 

studies, consists of very narrow data samples, which contain between less than a dozen 

(Baldwin, Tower, Litvak, Karpen, Jackson, and McTigue, 1986) to a maximum of 469 

observations (Waddock and Graves, 1997). Furthermore, as observations are most commonly 

taken from the same year, making the respective studies cross-sectional in nature, the time 

sensitivity of the conclusions is not investigated.   

 There are also discrepancies in the CSP measures that are used (reputational ratings, 

CEP reports or rankings, mention of CSR in annual reports, charitable contributions, Kinder, 

Lydenberg and Domini database (KLD) ratings, etc.) as well as in the financial risk measures. 

The latter can be further subdivided into market risk measures (standard deviation of firms’ 

stock returns, stock return beta) and accounting risk measures (e.g. long term debt to assets, 

debt to equity ratio, volatility of ROA, etc.).  Such variation in the operationalization of CSP 

and CFP greatly diminishes the comparability of results. In response, Orlitzky and Benjamin 
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(2001) perform a statistical meta-analysis of these studies using an integrated sample of 6,186 

observations and conclude that the true score correlation coefficient (ρ) between CSP and risk 

is negative. The association appears to be stronger for market risk (ρ = –0.21) than for 

accounting risk (ρ = -0.09). Furthermore, by testing the temporal sequence, the authors are 

able to conclude that “the negative correlation between prior CSP and subsequent risk is 

about twice as large as the correlation between prior risk and subsequent CSP” (p.387).   

 More recently, the study of Salama, Anderson, and Toms, (2009) provides some 

evidence on the nature of the link between Community and Environmental Responsibility 

(CER) rankings and systematic firm risk in the British context. Using cross-industrial UK 

panel data between 1994 and 2006, leading to a total sample size of 1,625 observations, the 

authors find a negative and statistically significant relationship between the two variables, 

with CER being an antecedent of financial risk. However, the sensitivity of the coefficient of 

this association, as estimated by random-effects GLS regression, is just -0.028, significant at 

the 5% level. This is one of the very few studies of the field where a significantly large set of 

longitudinal data is employed. However, the authors do not further investigate the dynamics 

of the CER–firm risk association by attempting to identify possible moderators in the CSP–

risk link, such as the possible impact of market volatility conditions. Sharfman and Fernando 

(2008) strictly focus on the environmental dimension of CSP and show that environmental 

risk management can effectively lead to a lower cost of equity capital through different 

pathways, including a lowering of systematic risk and increased tax benefits. The authors 

only use data from 2001 which makes their analysis cross-sectional.  

 In addition, Godfrey, Merrill, and Hansen, (2009) build on Godfrey’s previous 

theoretical contribution (Godfrey, 2005) to investigate whether CSP carries insurance-like 

properties regarding the effect on stock market value of negative firm-specific, rather than 
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industry or economy wide, events (p.426). Thus, they conduct an event study analysis upon 

the negative legal and regulatory actions taken against firms and find evidence that risks are 

mitigated by CSP but that wealth-protective effects are associated with activities that target a 

firm’s secondary stakeholders, i.e. those who can affect the firm’s primary stakeholders, but 

are not directly essential to the operation of the business. The fine-grained approach of this 

study, which employs detailed information about events that carry the potential for 

catastrophic reputational harm for individual companies, is appropriate in the context of the 

discrete, idiosyncratic type of association between CSP and firm risk hypothesized (Godfrey, 

2005).  However, the focus upon very specific types of negative events hinders more 

generalized inferences regarding the wealth-protective effects of CSP activities as 

total/systematic market risk is generated by not only negative legal and regulatory events but 

also a host of other sources of uncertainty in the business environment. Similarly, Luo and 

Bhattacharya (2009) also predominantly look at the effect of CSP on idiosyncratic risk and 

find the two to be negative related. They do, however, perform some additional analysis 

which also indicates the existence of a negative association between CSP and systematic firm 

risk. 

 In summary, the extant literature on the effect of CSP on financial risk is sparse and 

problematic, and our study seeks to address a number of the substantive limitations of 

previous work concerning both the data and methodology employed. We use longitudinal 

data from the KLD database for S&P 500 companies between the years 1992 and 2009. This 

provides a large sample of approximately 7,000 firm–year observations (more than the 

integrated sample of 6,186 observations pooled by Orlitzky and Benjamin (2001) for their 

meta-analysis). The great heterogeneity of the sample in both cross-section (more than 760 

corporate entities) and time period (18 years of data) facilitates investigation of the variability 

of the CSP–risk relationship across both industries and time. In the words of Ullman (1985): 
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“Longitudinal studies could provide insights into how strategies change as a function of 

shifting stakeholder power or economic performance.” To the knowledge of the authors, this 

constitutes one of the largest samples ever to be used in the context of the CSP–risk link, as 

well as in CSP–CFP research as a whole. 

 In our study, we will employ a wide spectrum of risk metrics that may capture the 

wealth-protective effects of strong CSP. While standard measures are used for the sake of 

comparability with previous studies, we also make novel use of downside risk metrics. 

Furthermore, the addition of utility measures further extends the analysis to incorporate risk, 

return and higher moments. 

 

II. Theoretical Background and Development of 

Hypotheses 

 
 A number of conceptual arguments, mostly emanating from instrumental stakeholder 

theory (Donaldson and Preston, 1995; Jones, 1995), support a view in favor of the existence 

of a negative relationship between CSP and financial risk. It could be argued that a company 

which is consistently socially and environmentally responsible should, in the course of time, 

obtain the fruits of this strategic posture by experiencing fewer downward adjustments and 

less volatility in its share price (compared to less socially responsible firms) or, equivalently, 

that firms having been shown to be involved in controversial, socially and/or environmentally 

irresponsible activities would be exposed to a higher degree of stock market risk. 

 High levels of CSP can be associated with low financial risk through, inter alia, lower 

probabilities of suffering legal prosecutions and fines, less stringent regulatory controls, more 

stable relations with the government and the financial community (McGuire et al., 1988), 
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customer loyalty and a supportive environment on the parts of employees and communities 

during times of crisis. All of these beneficial implications can lead to reductions of the 

various operational risks that a company faces in terms of its profitability and overall 

viability. Also, high firm social performance may be considered to be a sign of superior 

management skills – the so called “good management hypothesis” (Waddock and Graves, 

1997, p.306), thus indicating a firm which is likely to be characterized by more effective 

business and financial planning and consequently, by improved financial stability. Lastly, 

there is Godfrey’s (2005) rationale, according to which better protection of corporate 

reputational and relational wealth is achieved by higher degrees of CSP through the 

generation of mens rea value and positive moral capital that mitigate negative assessments of 

corporate actions. The first two arguments describe wealth-protective CSP effects of a more 

generic nature that are likely to shield the firm from the negative impacts of wide ranging, 

systemic economic shocks while the last one illustrates the risk-reductive effects of CSP in 

the presence of negative firm related events. We will concentrate on the former types of 

arguments, recognizing that, as Godfrey et al. (2009) correctly point out “The role of firm-

specific characteristics in the face of common events clearly yields illumination” (p.426). 

Given all of the above, this study is based on the instrumental stakeholder theory framework 

and as such will attempt to test whether in fact a company that engages in socially responsible 

(irresponsible) behavior will decrease (increase) its financial risk through that behavior. So 

ultimately, what is tested is summarized in the following hypotheses.  

Hypothesis 1: CSP negatively affects market risk at the firm level. 

 Due to the complexity in defining and assessing CSP, it is necessary to further clarify 

what is meant by the term CSP for the purpose of this study. In particular, it is imperative to 

differentiate between socially responsible and irresponsible corporate activities. The 
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multidimensionality of the notion of CSP makes it possible for a company to do well with 

regards to the societal demands of a particular set of stakeholders (e.g. having good 

relationships with employees) and less well with regards to others (e.g. being on bad terms 

with local communities). To rephrase, if CSP is seen as a measure of the moral character of a 

particular firm then it seems plausible that this company may not be deemed to be purely 

good or purely bad, but both, according to the focus on particular social issues. 

 In addition, as McGuire, Dow, and Argheyd (2003) have noted, a firm may be both 

socially responsible and socially irresponsible even along a single dimension of social 

performance. For example, according to the KLD STATS dataset, in the year 2000, Exxon 

Mobil appeared to be a company that had very strong retirement benefits programs for its 

employees (thus being socially responsible with regards to employee relations) but at the 

same time had been involved in major controversies concerning workforce health and safety 

issues (thus being socially irresponsible in the dimension of employee relations).
3
 It is 

therefore evident that an assessment of the social performance of this firm is not a 

straightforward task even with a sole focus that is upon a relatively narrowly defined 

dimension of CSP. 

 To address this complexity in social performance, we follow the findings of Mattingly 

and Berman (2006) on the distinction between corporate socially responsible actions and 

corporate socially irresponsible actions and their conclusion that “positive and negative 

social actions are both empirically and conceptually distinct constructs and should not be 

combined in future research” (p. 20). They argue that it is unreasonable to assume that 

stakeholders will react to responsible and irresponsible behavior in opposite yet symmetrical 

manners. To make no such assumption, we will refine Hypothesis 1 as follows:  

                                                           
3
 The details of this database are discussed in Section III of the study. 
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Hypothesis 1a: Corporate socially responsible actions and practices lead to reduced levels of 

firm financial risk 

Hypothesis 1b: Corporate socially irresponsible actions and practices lead to increased 

levels of firm financial risk   

 Furthermore, there is empirical evidence that corporate social responsibility and 

corporate social irresponsibility affect a firm’s bottom line to differing magnitudes. Wood 

and Jones (1995) noted in their review that event studies employing market-based measures 

of CFP show a tendency for poor social performance to inflict financial harm but do not show 

evidence of a financial boon from strong social performance. Similarly, Meijer and Schuyt 

(2005) find that while consumers expect a firm’s CSP not to fall below some minimum 

threshold (or else they will boycott), high levels of social responsibility do not bring 

significantly increased product sales. More recently, it has been shown that “the economic 

impacts [of CSP] are more positive for issues reducing negative externalities than for issues 

generating positive externalities” (Lankoski, 2009, p.218). For the KLD rating framework, 

this means that, ceteris paribus, a firm is likely to improve its economic performance (and 

decrease the associated firm risk) more if it manages to decrease its social/environmental 

concerns rather than increasing its respective strengths. Thus: 

Hypothesis 2: Social/Environmental strengths are less negatively related to financial risk 

than social/environmental concerns are positively related to financial risk. 

 There has also been some debate in the empirical CSP–CFP literature about the 

appropriate way to handle social performance data, i.e., whether they should be amalgamated 

into an aggregate, multidimensional measure (Aupperle and Pham, 1989) or if they should be 

treated as a heterogenous set of corporate actions (Hillman and Keim, 2001). In order to 

reflect the qualitative variation across the dimensions of CSP – from charitable community 
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projects to the adoption of pollution-reduction technology and equal opportunity employment 

practices, and so on – we will separately analyze each of a number of disparate components 

of CSP as well as an aggregate measure of performance. 

 Our use of longitudinal data provides an opportunity to investigate dynamics in the 

CSP–market risk link, and in particular, examine how this link is moderated in the context of 

high overall market volatility. In this connection, it is worth noting that Orlitzky and 

Benjamin (2001) argue that after the burst of the dot.com stock market bubble, investors were 

more keenly focused upon the underlying risk associated with equity investments and less 

mindful of capital gains and dividends. More generally, finance and economics literature also 

suggests a stylized fact that aggregate risk aversion and risk premia change counter-cyclically 

across time.
4
 If so, one would expect the relationship between CSP and financial risk to be 

more pronounced during the times of ‘lean cows’. In addition, Chen, Guo, and Tay, (2010) 

suggest that corporations are more likely to implement practices that may reduce firm risk 

during periods of economic hardship. Thus: 

Hypothesis 3a: In the presence of conditions of high market volatility, the association 

between CSP and financial risk is expected to be stronger than otherwise. 

 The same line of reasoning also implies that the CSP–risk link should be stronger for 

investors with higher risk aversion than for more risk tolerant investors. This should be 

depicted when utility measures are used, since, as risk aversion increases, risk effects tend to 

prevail over mean return effects. So a more general form of Hypothesis 3a would be: 

                                                           
4
 This is supported by habit formation models for example like those proposed by Abel 

(1990), Constantinides (1990), Campbell and Cochrane (1999). 



 

 

 

15 

Hypothesis 3b:  The relationship between corporate social behavior and financial risk will be 

more pronounced as average investor risk aversion increases. 

Having outlined the theoretical background and stated the hypotheses of this study, we 

proceed to discuss the intuition behind the selection and construction of the variables that are 

used in the specification of the econometric models. 

 

III. Independent, Dependent and Control Variables 

A. Independent variables: The KLD database and CSP measures  

 Amidst all CSP measures, the ones that stand out are those that are based on what has, 

with the course of time, become “the best-researched and most comprehensive” (Wood and 

Jones, 1995) database for social performance: the Kinder, Lydenberg, and Domini (KLD) 

database. KLD is a rating service which assesses a great number of firms with regard to their 

strengths and concerns on a series of dimensions of CSP that are considered to be of interest.
5
 

To be more specific, companies are rated on multiple indicators within seven “qualitative 

issue areas” (these being community relations, diversity issues, employee programs, 

environment issues, product safety and quality, corporate governance, and human rights) as 

well as six controversial business issues (which examine the extent to which a firm is 

involved with military contracting, nuclear power, firearms, alcohol, tobacco, or gambling). 

The rating is done separately on strengths and concerns of the same qualitative issue area 

while controversial business issues by definition are only rated on concerns. All the ratings 

are binary, with 1 representing the presence of a particular strength/concern and 0 

                                                           
5
 KLD became part of MSCI as from June 2010. 
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representing its absence. KLD uses sources both internal to the firm (e.g. annual reports) and 

external (e.g. articles in the business press) to conduct year-by-year assessments of the social 

performance of 650 firms, including all the firms listed in the S&P 500 Composite Index and 

the ones listed in the Domini 400 Social Index. Since 2001, KLD has expanded its coverage 

universe to incorporate the largest 1000 US companies in terms of market value, an 

expansion which advanced further in 2003 with the inclusion of the 3000 largest US firms. 

Independent researchers consistently apply the aforementioned criteria and discuss 

ambiguous judgments to minimize the subjectivity of the whole process. Given all these 

advantageous attributes, it constitutes no great surprise that scholars of the field have 

characterized the KLD dataset as being “the de facto research standard at the moment” for 

measuring CSP (Waddock, 2003, p. 369). Thus, we elect to use the KLD database and, 

specifically, KLD STATS (standing for Kinder, Lydenberg, and Domini Statistical Tool for 

Analyzing Trends in Social & Environmental Performance) for this study. The core part of 

our work is centered on the companies listed in the S&P 500 composite index. The focus of 

the study on such a widely used benchmark index helps to increase the coverage of firm–year 

observations by making use of nearly the entire relevant dataset, starting in 1991 and ending 

in 2008.  

 Following Hillman and Keim (2001), we concentrate on those qualitative business 

issues that can be directly associated with specific, primary stakeholder groups and as such 

may be considered focal for the implementation of successful stakeholder management. In 

this sense, we disregard the entire set of controversial business issues as being representative 

of corporate action that Hillman and Keim (2001) deem as “social issues participation”. 

Furthermore, to fully capitalize on the length of the dataset, as well as for the sake of 

consistency and comparability to previous studies, we only use the omnipresent indicators of 

each qualitative business issue. This process leads to the selection and utilization of the 
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indicators that are depicted in Figure 1. In accordance with the results of Mattingly and 

Berman (2006) on the taxonomy within the KLD data, we do not combine strengths and 

concerns of the same issue areas since they appear to be distinct constructs.
6
  

 We implement the above principles and follow two different ways of combining the 

KLD data in order to make the most of the information contained in it. Firstly, we attempt to 

use the individual components of the KLD database. Doing so adds to both the exactness and 

variability of our conclusions, as it allows us to investigate the relationships between many 

different facets of the wide spectrum of corporate social action and financial risk.  

Consequently, we add all the ratings of the indicators for the strength/concerns of a particular 

qualitative business issue and then divide the sum of those ratings by the number of 

indicators of the specific issue area. The general formula for calculating any individual 

component for a particular firm is: 

                         

1

Respective Indicators' ratings

COMP= ,   (1)
n

n

i



 

                                                           
6
 However, we elect not to use the Mattingly and Berman (2006) classification of CSP actions 

underlying the KLD social ratings data. We do this due to the fact that this classification is 

tailored to the manner in which CSP outcomes are determined – for example, relatively 

discretionary behavior influenced by broader institutional positioning on CSR, or operational 

matters driven by the nature of the core business activities. So, we believe that these 

categories are not an appropriate fit for our paper because we are focused upon the manner in 

which CSP is perceived by investors. Given this, there is an imperative to instead employ 

categories that reflect the way in which different parts of CSP might be differently perceived 

by external audiences, hence, we split CSP according to the type of corporate social action. 
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where n is the number of indicators that are relevant to the particular issue area.  

 Although the information that can be gained by following the above procedure is 

valuable, it would be interesting to seek an aggregation of the individual components of 

social activity that maintains the dichotomy between strengths and concerns. The comparison 

of the results of a model using an aggregate KLD measure with those of the individual 

components model would help conclude whether in fact combining various features of social 

performance to create “a single, monolithic construct” (Godfrey et al., 2009, p.426) dilutes 

the finer-grained effects of one-dimensional CSP.  

 In order to create the “Aggregate Strengths” and “Aggregate Concerns” measures, we 

simply add the respective individual strengths/concerns components which we previously 

constructed and then divide the sum by five in order for the slope coefficients that will be 

estimated to be comparable with those of the individual components. The implied assumption 

is that each type of social action is given equal weighting so that employee programs, for 

example, are considered just as important as product safety and quality. This is done in 

accordance with the work of Hillman and Keim (2001) and is due to the lack of conceptual 

work that would shed light on the effort to quantify the relative importance among the 

various facets of CSP. Ruf et al. (2001) have tried to address this issue by implementing the 

Analytical Hierarchy Process (AHP), but the alleged time sensitivity in the assessment of 

various CSP dimensions – which would require a periodic update of the survey and the 

implementation of AHP – makes their results unfit for use in this study. Thus, equal 

importance across CSP dimensions in the construction of the aggregate measure is an 

unavoidable yet practical compromise. The same logic applies for the equal importance 

weighting of the various indicators in the construction of each of the individual strengths and 

concerns components. So the formula for calculating the “Aggregate Strengths” measure is: 
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1
AGGS= (COMS + DIVS + EMPS +ENVS +PSQS),  (2) 

5
  

where COMS stands for the Community strengths component, DIVS stands for Diversity 

strengths, EMPS stands for Employment strengths, ENVS stands for Environment strengths 

and PSQS for Product Safety and Quality strengths. Analogously for “Aggregate Concerns”:                               

          

1
AGGC= (COMC + DIVC + EMPC +ENVC +PSQC),  (3)

5
  

with the notation being completely equivalent to that of Equation (2).         

B. Dependent variables: Financial risk and utility measures 

 Picking one measure that captures market risk is not a straightforward task. Financial 

economists, mathematicians, and risk managers have struggled for decades in order to create 

new risk metrics with different properties and characteristics. So, to improve the robustness 

of this study, an array of financial risk measures with different qualities will be utilized. 

Similarities in results across risk measures will buttress one another while any differences in 

the conclusions drawn from the use of each measure are likely to shed more light on the 

strength of the alleged wealth-protective effects of CSP.   

 Firstly, for the sake of simplicity, comparability with previous research and renewal 

of the relevant literature with updated information, a classical financial risk measure will be 

employed, namely the beta of the returns of the firms’ shares. It is the most widely used 

measure of systematic risk and as such is often used instead of standard deviation.
7
  Its 

calculation is given by: 

                                                           
7
 Under traditional portfolio theory (Markowitz, 1991), the total risk that a security bears can be divided into 

systematic risk arising from broad factors that affect the entire universe of securities and idiosyncratic risk 

which arises from industry/firm-specific factors. Through diversification, portfolios bearing no idiosyncratic risk 
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it i mt m

im 2

mt m

E[(R -μ )(R -μ )]
β =  (4)

E[(R -μ )]
,

 

where βim is the beta of firm i when the market proxy is m, μi is the average value of the  

returns of firm i, Rmt is the observed return of the market proxy (S&P 500) at time t and μm is 

the average value of those returns.  

 In addition to the use of the aforementioned metric, this study makes an original 

contribution to the CSP–CFP literature with the introduction of downside risk measures.
8
 The 

motivation for the use of these measures arises from several factors. Firstly, conventional risk 

measures like beta are appropriate when the distributions of the returns of the assets under 

consideration are symmetric (such as in the case of a normal distribution). In this situation, 

standard risk measures (SRMs) and downside risk measures (DRMs) will produce the same 

results. However, when the distributions of returns are asymmetric (DeFusco, Karels, and 

Muralidhar, 1996) then either the downside price fluctuations will have a dominating effect 

over the upside or the other way around. Specifically, if the distribution of returns is 

negatively skewed or “skewed to the left” (so that skewness is smaller than 0), SRMs 

underestimate risk because they underestimate the proportion of extreme negative deviations 

from expectation, which are the true source of anxiety for the investor. Since SRMs and 

DRMs will generate different measurements of financial risk and since it seems more 

intuitive to think of financial risk as the probability of a downward movement (rather that a 

                                                                                                                                                                                     
can be constructed so that the investor is only compensated for the market risk of his investments. That is why it 

is argued that only the systematic risk of a security matters and, hence, this study employs beta as a measure of 

financial risk rather than standard deviation. 

 
8
 Luo and Bhattacharya (2009) mention the existence of models that use downside equity 

betas but do not use such a model in their study. 
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general price instability), DRMs are more appropriate. Secondly, it has been argued that 

“losses and disadvantages have greater impact on preferences than gains and advantages” 

(Tversky and Kahneman, 1991 p.1039), a sort of loss aversion utility theory, with the 

implication being that investors are more sensitive towards downside risk and are thus likely 

to require a significant premium for their exposures in assets with downside risk.  

 These first two arguments are valid whether we refer to the context of the financial 

effects of CSP or not. A more well-focussed argument in favor of the use of DRMs is that 

they are especially compatible with Godfrey’s (2005) arguments about the insurance effects 

that CSP will have on CFP. Following this line of reasoning, financial risk should be depicted 

as the likelihood of a downward adjustment in the stock prices of socially irresponsible firms 

instead of a general instability and variability of those prices. 

 The measure of downside risk that will be applied is downside beta. It must be noted 

that there is no consensus in the financial literature about what is the most appropriate 

definition, and subsequently method for estimation, of the downside beta. The main issue in 

question is the minimum threshold that a market participant should use to evaluate the returns 

of the asset he has invested in. Risk will then be characterized by the downside deviations 

from this target. We consider two of the downside betas proposed in the literature. 

 The first comes from the work of Bawa and Lindenberg (1977), who use the risk free 

rate as the target return and the second is that introduced by Harlow and Rao (1989) who 

instead use the mean market return as a threshold. The respective formulae are: 
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where  Ri and Rm are the returns on security i and the market portfolio, respectively, μi  and 

μm are the mean returns of security i and the market portfolio, respectively and Rf is the risk 

free rate (3 month T-Bill rate). 

 Until this point, we have focused solely on the risk connected to the second moment 

of returns (although the DRMs that we mentioned correct the biases in the measurement of 

risk that may be incurred due to high negative values of the third moment). An examination 

of the higher moments of the distribution of asset returns would significantly enrich the 

analysis by allowing a more in-depth assessment of the nature of the effects of CSP on 

financial risk. For example, it may be that specific types of social and environmental firm 

actions that produce positive (negative) externalities affect the skewness of the distribution of 

its stock returns and tilt the distribution to the right (left). Or that a firm that is characterized 

by particularly mixed social performance (e.g. scoring high on both strengths and concerns 

on various business issues) may have a more leptokurtic distribution of stock returns, as there 

is an increased probability of extreme results occurring, either positive or negative. 

Additionally, the inclusion of the mean return in a utility measure may provide hints 

regarding the extent to which the magnitude of the alleged risk-reduction effects of CSP is 

offset by a proportionate reduction in asset returns.  

 To test the effect that CSP has on investors’ utility, we apply the extension of the 

mean–variance criterion to higher moments. This criterion has many advantageous 

characteristics. It can be applied when an investor’s utility is described by the negative 

exponential utility function, one of the most widely used such functions. Furthermore, and in 

contrast to the mean–variance criterion, one does not need to additionally assume 

distributional normality of returns in order to use the criterion’s extension to higher moments. 

In fact, it is not even necessary for the distribution of returns to be symmetric or mesokurtic 
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since the criterion explicitly incorporates the third and fourth moments of the distribution, a 

highly desirable property which allows for non-parametric empirical applications. The fourth 

order approximation of the certainty equivalent
9
 that is associated with the negative 

exponential utility function is given by the formula: 

         
2 2 3 3 41

, (7)
2 6 24

CE
 

        

 

 where μ is the mean, σ is the standard deviation, τ is the skewness, κ  is the kurtosis of the 

asset returns and γ is the investor’s absolute risk aversion. We will interchange between using 

γ values of 2, 5, and 20 in order to capture a very wide range of investor preferences. It 

should also be noted that this measure does not incorporate the non-financial utility that some 

investors may derive from investing in firms with high CSR standards (Renneboo, Ter Horst, 

and Zhang 2008b) since this study is restricted to examining the effects of CSP on financial 

risk and economic utility. 

 

C. Control variables 

 This subsection describes the series of variables that are used in the model 

specifications in an effort to remove the impact of non-CSP factors and, accordingly, to zoom 

in on the effects of CSP variables on financial risk per se. Furthermore, this set of variables is 

employed in order to ensure as far as possible that the effect of CSP on firm financial risk is 

not spurious and merely the artifact of an omitted variable bias. 

                                                           
9
 The monetary amount that has the same utility as the expected utility of an uncertain 

investment. 
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 i) Size: Ln(Market Value). Larger firms are generally thought of as being less risky 

than smaller firms. This seems to be a sensible statement especially if one considers the 

firms’ probabilities of default. Large firms are inherently more competent in enduring 

adverse economic shocks.  Furthermore, it has been argued that firm size is proportionally 

negatively related to asset return variance (Beaver, Ketter, and Scholes, 1970, p.662) and that 

reputational effects are higher for larger firms, thus making banks view them as less risky and 

reduce the yields that they charge them (Diamond, 1991). Following the norm, the logarithm 

of firm size, as captured by stock market capitalization, is used to correct for the skewness of 

the measure.  

 ii) Market to Book Value (MTBV) ratio. Due to a significant number of missing 

values in the Datastream database, we construct a proxy for this ratio by dividing firm market 

value by the respective book value of common equity. As Fama and French (1992) note in 

their seminal work on the cross-sections of expected stock returns, it is possible that the 

reciprocal of MTBV captures risk which is associated with the distress factor of Chan and 

Chen (1991). Specifically, it is argued that companies the market deems to have poor 

prospects are characterized by lower stock prices and higher book to market ratios (lower 

MTBV ratios) than companies with stronger prospects (p.428).  However, these stronger 

prospects may lead to greater variability in profitability and capital market performance. This 

“growth vs. value” differentiation of firms may explain why analysts often consider the stock 

of a company with low MTBV to be a less risky investment, with book value seen as the 

minimum threshold of firm equity. 

 iii) Gearing: Total Debt to Common Equity (TDCE) ratio. Again, instead of directly 

using a gearing measure, we prefer to construct this proxy in order to avoid having a 

multitude of missing observations for this variable. An excessively high ratio of financial 
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leverage indicates significant indebtedness which may lead to a firm’s difficulty in meeting 

the demands of its creditors and as such, worsen its viability. In addition, the classic study of 

Modigliani and Miller (1958) shows that the higher a firm’s debt, the higher the volatility of 

the earnings stream towards its stockholders which is why “the expected rate of return … on 

the stock of any company… is a linear function of [its] leverage” (p.271). 

 iv) Dividend Yield. Dividend yield on a company stock is the ratio of the dividend per 

share to the price per share of that stock. Although there is no consensus in the relevant 

literature, there is evidence which suggests that stocks having higher dividend yields are also 

characterized by higher risk adjusted total returns than stocks paying no or low dividends 

(Blume,1980). Arguably, a constant, high expected flow of dividends is likely to reduce the 

volatility and systematic risk of stock prices due to duration and information effects.
10

 Also, 

dividend yield can be thought to have a signaling effect regarding management’s perception 

of the uncertainty of future earnings (Beaver et al., 1970, p.660)  i.e. the higher the dividend 

yield the less the uncertainty and vice versa.  

 v) Research and Development (R&D) intensity:  R&D Expenditure to Total Sales 

ratio. McWilliams and Siegel (2000) present evidence which supports the position that a 

significant part of the CSP–CFP literature is based on mis-specified models, since the R&D 

expenditure is not included. This variable has been found to be an important determinant of 

firm performance, and is argued to also be positively correlated with CSP, as CSP is thought 

of as a stream of product and process innovations which are generated by R&D expenditures. 

The attempt to create such innovations constitutes an inherently risky project. Because of 

                                                           
10

 The term “duration effect” is used to imply that high dividend yield provides more cash 

flow in the short term. If dividend policy is assumed to remain stable then high dividend 

stocks will have a shorter duration. 
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this, the exclusion of this variable may lead to an omitted variable bias as discussed above, 

which results in biased and inconsistent coefficient estimates. 

 vi) Liquidity:
11

 Current ratio. The current ratio is calculated by dividing a firm’s book 

value of current assets by that of its current liabilities. It is indicative of the firm’s ability to 

remain solvent in the short run. The current ratio is one of the ratios most widely used to 

assess a firm’s liquidity risk. Obviously, the lower the current ratio, the higher the liquidity 

risk for a company, a feature which may be depicted by increased stock price fluctuations for 

that firm.  

 vii) Industry classification. We use the Industry Classification Benchmark (ICB) at its 

second level of analysis, i.e., a taxonomy of companies according to supersectors. This results 

in the construction of a total of 19 industry dummy variables. These are: Oil & Gas, 

Chemicals, Basic Resources, Construction & Materials, Industrial Goods & Services, 

Automobiles & Parts, Food & Beverage, Personal & Household Goods, Health Care, Retail, 

Media, Travel & Leisure, Telecommunications, Utilities, Banks, Insurance, Real Estate, 

Financial Services, and Technology.  The inclusion of these dummy variables seems 

appropriate given the inherent variability in the risk attributes across supersectors. However, 

as the analysis is restricted to US firms, there is no need to include control variables for 

country effects. 

 
                                                           
11

 Note that during this discussion we have used the term “liquidity” to refer to a firm’s funding liquidity and not 

to the liquidity of the market where the firm’s stock is traded, the latter being an irrelevant issue in the case of 

the very actively traded, highly liquid S&P 500 stocks of this sample. Funding liquidity is defined as a firm’s 

ability to settle obligations with immediacy and the respective risk is driven by the possibility that over a 

specific horizon a firm will become unable to settle obligations with immediacy (Drehmann and Nikolaou, 

2009, pp.10-11). Market liquidity is defined as the ability to trade large size quickly, at low cost, when you want 

to trade (Harris, 2003, p.394).  
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IV. Methodology  

A. Sample construction 

 As has been already stated, our initial sample consists of all the companies listed in 

the S&P 500 Composite Index and rated by KLD on their corporate social performance at 

some point(s) during the period between 1991 and 2008. This translates to an unbalanced 

panel dataset of 9,000 firm–year observations. KLD STATS provides the names and tickers 

of the companies it rates and since 1995 also uses their respective CUSIPs but unfortunately 

has never used Datastream codes. There are several roundabout ways to match the year by 

year list of S&P 500 companies with their Datastream identifying codes but all of them lead 

to a great loss of firm–year observations and they bear the additional risk of including the 

wrong type of stock for those companies that are listed on several exchanges. To avoid such 

hazards, a methodical, manual scrutinization and subsequent matching of each firm to its 

respective Datastream code was conducted on a one-by-one basis. When a firm’s stock was 

traded on several exchanges, the code of the stock being traded at the main stock exchange 

was used, when such an indication was available, or else the firm was dropped from the 

sample. Preferred stocks were also dropped from the sample.  

 Overall, for the estimation of our basic models, a series of variables that have been 

mentioned in Section III had to be used. For the construction of the various financial risk and 

utility measures, we calculated the weekly log–returns of the prices of the Total Return Index 

(TRI, Datastream code: RI) for each share.
12

 For the calculation of the beta factor and the 

downside beta metrics, a market proxy had to be used. The obvious choice, given the dataset, 

                                                           
12

 The TRI assumes the reinvestment of distributed dividends so that both pure capital gains 

and dividend payouts are included in the calculation of stock returns. 
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was the S&P 500 itself (Datastream code: S&PCOMP). We also gathered data for all the 

control variables that we employed.
13

 After dropping all firm–year observations for which at 

least one of the variables needed is missing, our sample consists of 6,986 firm–year 

observations (a total of N=769 different firms over a period of T=18 years).
14

  

 

B. Model specification 

 As has been thoroughly explained in the previous section of the study, we estimate 

three types of models, each offering a different piece of information regarding the 

relationship between CSP and financial risk. The first one is the “individual components” 

model:  

      

10

,it i j jit-1 11 it-1 12 it-1 13 it-1 14 it-1 it
j=1

RM =α + β COMP +β MV +β MTBV +β DY +β TDCE +ε (8)

 

where RMit is the risk or utility measure for firm i in year t, αi is the time invariant intercept 

for firm i, βs are the slope coefficients of the respective factors, COMPjit-1 is the individual 

component j (strengths and concerns of the five qualitative issue areas of interest: community 

relations, diversity issues, employee programs, environment issues, product safety and 

quality), MVit-1  is the market capitalization, MTBVit-1 is the market to book value ratio, DYit-

                                                           
13 Note that the core models do not include R&D intensity and liquidity as control variables. 

These factors are added later as robustness checks.  As a result, the filtering process 

mentioned here does not concern these two variables. 

14
 We choose to use this unbalanced panel of data rather than extracting a balanced subpanel from it, by either 

maximizing the number of firms observed (restricted maximization in the cross-sectional dimension) or by 

maximizing the average number of observations per firm (restricted maximization in the time series dimension) 

because either of these methods would lead to a huge loss in efficiency (Baltagi and Chang, 1994).  
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1 is the dividend yield, TDCEit-1 is the total debt to common equity ratio, all referring to  firm 

i in year t-1, and εit is the respective disturbance term.
15

                 

 The second model is the “aggregate strengths/concerns” model: 

      
,it i 1 it-1 2 it-1 3 it-1 4 it-1 5 it-1 6 it-1 itRM =α +β AGGS +β AGGC +β MV +β MTBV +β DY +β TDCE +ε (9)  

where the notation for most terms is identical to that of equation (8), AGGSit-1 is the measure 

of aggregate CSP strengths (Equation (2)) and AGGCit-1 the measure of aggregate CSP 

concerns (Equation (3)) for firm i in year t-1.  

 For every model, a variety of risk/utility measures will be used (beta, downside risk 

metrics plus the extension of the certainty equivalent to higher moments for different values 

of absolute risk aversion), resulting in multiple estimations. In all models, the independent 

variables are lagged. This is done for several reasons. Firstly, it has been clearly stated that 

this study is oriented towards the examination of a relationship between CSP and market risk 

where CSP is the cause and subsequent levels of firm risk are the effect. Furthermore, lagging 

the CSP measures and control variables helps this study escape the alleged endogeneity 

problems and simultaneity bias that may arise due to a contemporaneous bidirectional 

causality of CSP and risk. Also, as the manual of KLD STATS reveals, although the data 

collection process and appraisal of firm social performance is an ongoing, continuous 

process, KLD actually assembles the data at the end of each calendar year, and compiles the 

data into the spreadsheets at the beginning of the next year (pp. 4-5). So, following the 

rationale of Godfrey et al. (2009), lagging our social/environmental variables by one year 

helps to “ensure that the ratings for each firm were public knowledge” (p.434) and so had 

                                                           
15

 The fixed effects estimation model is applied and its details will be discussed in subsection 

C.  
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already started to become incorporated by the markets in the form of informative prices. 

Hence, when we use CSP measures from year t-1, we start collecting stock price data from 

the second week of year t to calculate the respective risk/utility metrics. 

 In addition, in order to avoid including in the analysis outliers that may heavily 

influence the results, all the risk and utility measures along with the financial control 

variables are winsorized at the 1% level.
16

 This is important since firm–year observations that 

are characterized by extremely high volatility are likely to sway the goodness of fit of the 

model towards their direction.  

C. Panel data econometrics 

Choosing the correct panel data regression model is crucial in empirical analysis. The 

efficiency and consistency of the estimated intercepts and slope coefficients is dependent on 

the choice of the appropriate estimator, each having characteristic properties. The first choice 

the researcher has to make concerns the selection of a fixed or random effects model. Given 

the fact that this study is restricted to large, American, publicly traded firms that have been 

included in the S&P 500 Composite Index, the fixed effects model appears to be the most 

intuitive option because as Baltagi (2005) notes: “The fixed effects model is an appropriate 

specification if we are focussing on a specific set of N firms … and our inference is restricted 

to the behavior of this set of firms” (p. 12). The random effects model on the other hand is 

                                                           
16

 Winsorization is a transformation process in which the values of outliers are replaced by a 

specific threshold value (in this case, the bottom and top 1% of the observations are replaced 

by the 1st and 99th percentile of the relevant empirical distribution respectively). In addition, 

pooled quantile regressions are also estimated and verify the robustness of the analysis to 

outliers. 
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preferred when the firms of the dataset are assumed to represent random draws from a larger 

population (Baltagi, 2005, p.14), which is not the case in this instance. In addition, estimating 

models (8) and (9) using random effects and performing Hausman tests produces results that 

strongly support the use of fixed effects in the estimation.
17

 Another possible method to use is 

pooled ordinary least squares (OLS). This approach is the most restrictive of the methods as it 

specifies constant coefficients for both intercepts and slopes (whereas fixed effects, for 

example, specifies constant slope coefficients but allows the intercepts to be different 

between firms). The pooled OLS estimator is inconsistent when the fixed effects estimator is 

appropriate (Cameron and Trivedi, 2005, p.699).  Performing likelihood ratio redundant fixed 

effects tests results in a strong rejection of the null hypothesis that these effects are redundant. 

So the pooled OLS method is inappropriate. 

 Given the above discussion, it appears that the fixed effects estimators are the most 

appropriate to use in this study. The notation of Equations (8) and (9) has taken this factor 

into account, which is why the intercept term is αi , indicating that it varies across firms but is 

time invariant. Notice that in all equations, the set of industry dummy variables is not 

explicitly used in the specification because this piece of cross-sectional heterogeneity is 

constant over time (assuming that a company does not significantly alter its business 

orientation) and as such is captured by the intercepts.      

 Another issue of importance when dealing with panel data sets is the estimation of 

robust standard errors. If the residuals of the model for a given firm are correlated across 

years (time-series dependence) or the residuals for a given year are correlated across firms 

(cross-sectional dependence) then the standard errors of the estimated coefficients will be 

upward or downward biased. In the latter case, the statistical significance of the results of the 

                                                           
17 Results are not reported but are available by the authors upon request. 
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study will be overestimated and the conclusions drawn may be invalid. Indeed, a lot of 

studies in the finance literature have either completely ignored this issue or have addressed it 

in an inappropriate manner (Petersen, 2009, pp.435-436). Recognizing the implications of 

this matter, a significant effort is made to effectively tackle it.   

 There is reason to expect that time-series dependence may arise in the residuals of the 

models since CSP is usually relatively constant for the same firms and social/environmental 

dimensions across time. Persistence in the application of CSR principles appears the most 

reasonable way to ensure the accruement of its long-run beneficial economic impacts. Taking 

a look at the bar schematics of the various CSP components (both strengths and concerns) for 

the individual cross-sections (firms) reinforces this expectation: The vast majority of firms 

have ratings that are persistently high or persistently low throughout the years. The inclusion 

of fixed effects (dummy variables) in the specified models deals with this issue and leads to 

unbiased standard errors, as long as this time-series dependence is fixed and not time-

decreasing (Petersen, 2009, p.464). On the other hand, there are no particular grounds to 

anticipate that cross-sectional dependence will arise in the residuals of the fixed effects 

model. Furthermore, the detection of such dependence is not a straightforward process 

considering both the two-dimensional nature of the residuals and the fact that the cross-

sections are randomly (alphabetically) stacked. As a rule of the thumb, Breusch–Godfrey 

serial correlation LM tests on the cross-sectional samples (year by year) are performed and do 

not, on the whole, provide significant indications of the existence of cross-sectional 

dependence.
18

 Following the same rationale, performing White’s heteroskedasticity tests in 
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 With three different models, many different dependent variables that are alternatively used 

for each model and 18 different years, there are several hundreds of such tests that are 
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the cross-sectional, year-by-year samples provides evidence of cross-sectional 

heteroskedasticity in the residuals. To account for this, the diagonal White cross-sectional 

heteroskedasticity robust coefficient covariance estimator (adjusted for panel data) is applied. 

Henceforth, and unless otherwise noted, all the t-statistics reported will be the outcome of the 

implementation of the above processes which should lead to the estimation of robust standard 

errors.  

V. Results 

A. Descriptive statistics and correlations 

Tables I, Panels A, B, and C present the descriptive statistics of the various independent and 

dependent variables that are specified in the core models of the study. The statistics refer to 

the winsorized financial variables that are used to remove significant outliers from the 

distributions of the risk and utility measures and the control variables. According to the 

statistics provided in Table I Panel A, the mean values for each of the individual component 

CSP measures are small, ranging between 0.0371 (Community concerns) and 0.1253 

(Product concerns).  The low mean values, combined with the zero median values of all 

measures, indicate that for the majority of firm–year observations, the most frequent score in 

each CSP dimension is zero (indicative of the absence of the respective strength or concern). 

It should also be noted that, by construction, each component can only take specific discrete 

values within the [0,1] range. For example, Community strengths can take a value of 0, 0.25, 

0.50, 0.75, or 1 depending on how many of the four respective indicators are present for a 

particular firm in a specific year according to KLD. Standard deviations of KLD scores are 

                                                                                                                                                                                     

performed. The vast majority of them result in very high p-values (much above 0.10), 

indicating high levels of support for the null hypothesis of no correlation of the residuals. 
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also similar amongst individual components. It is worth noting that Community strengths has 

both the smallest mean and the smallest standard deviation (0.0970) while Product concerns 

has both the highest mean and the highest standard deviation (0.1999). Aggregating across 

CSP dimensions, one can see in Table I Panel B that the mean and median scores are very 

similar, a bit higher for strengths (mean of 0.0786) than for concerns (mean of 0.0743) but 

with the variability of concerns scores being higher than that of strengths (0.0926 against 

0.0775).  

 The average winsorized value of the logarithm of firm market value is 8.91.
19

 The 

average firm–year observation also has a MTBV ratio of 3.70, a dividend yield of 1.89% and 

a leverage ratio of 1.38. As for the dependent variables, one can notice in Table I Panel C that 

the average values of all beta measures are very close to unity, as they ought to be. They do 

not exactly equal one, for the simple reason that this is an unbalanced panel of data. Lastly, 

the mean utility measures are negative and algebraically lower as risk aversion increases, 

with the interpretation being that, on average, any positive utility effects coming from reaping 

positive returns are increasingly offset by the respective values of the volatility of returns.
20

   

 The first two panels of Table II provide some additional interesting statistics. Table II 

Panel A contains Pearson product-moment correlations between the various individual 

social/environmental components as well as the aggregate measures. By construction, 

aggregate strengths (concerns) are highly positively correlated to uni-dimensional strengths 

(concerns). What is interesting is the fact that, overall, there are small but positive 

correlations amongst social strengths and concerns, thus reinforcing the opinion that strengths 

and concerns are distinct constructs that should not be mixed in empirical research as they do 

                                                           
19

  Market value is reported in thousands of dollars. 

20 Assuming that the negative exponential utility function is appropriate.   
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not constitute the flip sides of the same coin. Also, the correlations between individual 

components are small in absolute value, so near multicollinearity issues are not expected to 

arise in the estimation of model (8). Furthermore, as was expected, there are high but not 

perfect positive correlations between the conventional risk metrics and their downside risk 

analogues (Table II Panel B). This indicates that they capture slightly different characteristics 

of market risk. Also intuitive is the fact that the utility measures are moderately negatively 

related to the risk metrics (which should be the case according to Equation (7)) and highly 

positively correlated for different levels of risk aversion. 

 Table II Panel C displays the mean values of the individual component measures for 

each super-sector, and shows cross-sector variation that is broadly consistent with expected 

tendencies for certain social/environmental issues to be more salient in some industries and 

less so in others. In particular, in industries where employees are subject to relatively 

intensive and hazardous workplaces and working practices (such as Automobiles, Basic 

Resources, Construction materials, Oil & Gas, Telecoms, Industrial goods) we observe high 

scores either in terms of KLD strengths or concerns or both. Environmental issues, on the 

other hand, have higher mean values in sectors for which pollution and other environmental 

impacts are relatively focal issues: Automobiles, Basic resources, Chemicals, Construction 

Materials, Utilities, Oil & Gas, and Industrial goods. The Product safety/quality and 

Community dimensions appear to be most prominent in those supersectors where it is 

beneficial for the firm to establish long-term relationships with customers built upon a 

corporate image and brand name that speaks of commitment, security and stability (such as 

Banking (Turnbull and Gibbs, 1987), Financial Services, Insurance, and Telecoms). 

 In this connection, it is also worth noting the tendency for relatively high mean values 

for both strengths and concerns to be found in a single sector at the same time. For example, 
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the Automobiles, Basic Resources, and Chemicals industries have scores that surpass the 

cross-industrial sample averages in both Environmental strengths and concerns. The same 

applies for the Telecoms, Travel & Leisure, and Automobiles supersectors regarding 

Diversity issues. The simultaneous prevalence among a given set of firms of strengths and 

concerns in a single dimension of CSP raises the possibility that firms commonly act from an 

imperative to reduce social harm that results from their business activities – motivated by a 

genuine sense of social responsibility or by a desire to ingratiate the firm with stakeholders 

that might otherwise view the firm as irresponsible and react accordingly. Moreover, the 

observation that CSP is not reflected in the presence of strengths or concerns but rather in a 

mixture of positive and negative indicators, ensures that a single, aggregate measure of CSP 

would overlook this considerable complexity. As we employ separate measures of strengths 

and concerns, we avoid this loss of information.  

B. Main results 

  The estimated values of the averaged fixed effects and slope coefficients of the 

“individual components model” are provided in Table III. Each column of Table III 

represents a different estimation of model (8) with the dependent variable (alternative risk or 

utility measure) listed at the top of each column.  Overall, there appears to be a negative but 

insignificant relationship between the various corporate social strengths and systematic 

financial risk. Not a single slope coefficient between any of the five strength components and 

any of the betas has a t-statistic with an absolute value greater than 1.6449 (the approximate 

critical value at the 10% level of significance for a two-tailed test). The results are very 

similar when certainty equivalents of stock returns are used as dependent variables, with the 

findings being largely insignificant, the exception being employment strengths which are 

negatively associated with investor utility for average and high levels of risk aversion. This 
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last finding could be rationalized by observing that some of the indicators of employment 

strengths have a financially ambiguous nature since they lead to immediate costs for the 

company with the expectation of medium- to long-term economic benefits. For example, 

significant cash profit sharing and strong retirement benefits are characteristically supportive 

of this line of reasoning (and both are used by KLD, as can be seen in Figure 1). Such 

practices are obviously costly for the firm but are expected to cause an easier attraction of 

superior quality employees, higher personnel retention ratios, decreased costs of staff training 

and improved employee loyalty. This result is also in contrast to the conclusions of Edmans 

(2011), who found a positive relationship between employee satisfaction and risk adjusted 

returns. However, Edmans (2011) uses the “100 Best Companies to Work for in America” as 

his CSP measure (which does not escape the criticism of halo effects) and risk adjusted 

returns as a performance metric which makes the results of the two studies somewhat 

incomparable.
 21

  

 When looking at the lower half of Table III, it is noticeable that the link between the 

individual concerns components and risk is stronger than the respective link between their 

strength counterparts and market risk. Community, Employment, and Environment concerns 

are all significantly positively related to systematic risk (slope coefficients of 0.1622, 0.1906, 

and 0.1680, respectively). Not only that, but these coefficients are much greater than most of 

the estimated coefficients between the array of risk metrics and social/environmental 

strengths. This observation provides strong support for Hypothesis 2, which stated that the 

effect of CSP concerns on financial risk would have a greater impact than that of CSP 

strengths and is in accordance with Lankoski’s (2009) findings that the economic impacts 
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 Meaning that it is possible that this type of measure captures financial success rather than 

CSP, to some extent, thus it is expected that the study will reveal a positive CSP-CFP link. 



 

 

 

38 

were more positive for CSP issues that reduce negative externalities (KLD concerns in this 

case) than for those that generate positive externalities (KLD strengths in this study). This 

weak negative (moderate positive) association between the individual KLD strength 

(concern) components and financial risk verify the findings of the Salama et al. (2009) study 

that focuses on a longitudinal data sample of firms from the UK. The results are also 

consistent with those of previous research with the same purpose but very different datasets 

and methodologies, such as Spicer (1978), Aupperle et al. (1985), McGuire et al. (1988), 

Orlitzky and Benjamin (2001). Focusing on utility measures, most of the results are 

statistically insignificant, but Employment concerns are significantly negatively associated 

with certainty equivalents, indicating that while implementing socially responsible practices 

towards employees may be excessively costly, being socially irresponsible in the same 

respect may lead to decreased levels of investor utility. 

 Moving on to Table IV, which presents the output of the estimation of model (9), 

there appears to be a statistically significant negative association between the aggregate 

measure of social strengths and firm beta (equal to –0.2938, significant at the 5% level) and a 

positive relationship between aggregate concerns and all risk metrics applied (slope of 0.3629 

for beta and 0.3760 for the Harlow and Rao downside beta, both significant at the 1% level). 

The fact that an array of risk metrics verifies the positive relationship between risk and 

aggregate CSP concerns, but the same does not happen for aggregate strengths further 

reinforces hypotheses 1b and 2. Also, since the statistically significant estimated slope 

coefficients are of either similar or greater absolute value than those of the individual 

component models, it appears that the effect of CSP on market risk is not necessarily better 

captured when disaggregated measures of social performance are used.  However, all the 

results of the “aggregate models” that use utility measures as dependent variables are 

statistically insignificant, a finding that enhances the idea that disaggregate data may prove to 
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be more useful in relevant research, as “various aspects may have differential impacts 

depending on the nature of the firm’s business”  (Brammer, Brooks and Pavelin, 2006, p. 

103). Overall, the financial risk impact of corporate social performance is not masked when 

the aggregate measures replace the individual components, so the rationale of Godfrey et al. 

(2009) that a multidimensional measure of social performance will likely conceal the wealth-

enhancing effects of disaggregated CSP aspects is not verified in this case.
22

 

 In both models, the goodness of fit statistics are very similar for the same dependent 

variables. The adjusted R–squares of the models using risk measures range from 

approximately 27% (for the Bawa and Lindeberg beta) up to approximately 35% (for beta) 

and all compare favorably to the Salama et al. (2009) estimations of  R–squares equal to 

11.5% for the fixed effects regression and 24.3% for the random effects regression as well as 

to the McGuire et al. (1988) results that are characterized by R–squares of 13.1% for the total 

market risk model and 17.5% for the systematic risk model. The adjusted R–squares are 

smaller when utility measures are applied, as these models appear to explain, at a maximum, 

approximately 26% of the variability of investor utility (for a moderate level of absolute risk 

aversion equal to 5). 

 

C. Moderating effects of volatility conditions 

 During the development of the hypotheses that this study examines, it was stated that 

the overall volatility of the stock market may be an important moderating factor in the 
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 Tables III and IV do not include slopes for the R&D intensity or liquidity measures. These control variables 

are later added to test the robustness of the models. Many firms in the Datastream database have missing values 

for R&D. We set R&D expenditures equal to zero when the value is missing, following Benson, Davidson, 

Wang, and Worrell, (2011). In addition, because of the different capital structures between firms operating in 

sectors with fundamentally dissimilar characteristics, alternative measures of financial leverage are used in the 

specifications of the basic models. Specifically, the total debt to common equity ratio is interchanged with the 

total debt to total sales and total debt to total assets ratios. Overall, the signs, values and statistical significance 

of the estimated coefficients as well as the goodness of fit statistics are remarkably close to those of the original 

specifications. Results are not reported but are available from the authors. 
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relationship between CSP and financial risk. To test this assertion, the panel data sample was 

split into two smaller subsamples according to the average level of stock returns volatility for 

a yearly period. Figure 2 clearly shows that average annualized weekly volatility remains 

within a range between 24% and a little more than 37% for most years of the sample but 

spikes up to a range between 44% and approximately 56% for the periods 2000–2002, 

attributable to the burst of the “dot.com” bubble, and 2008–2009, when the downturn in the 

US real estate market lead to a global economic crisis. So firm–year observations from these 

two periods are stacked together and then structured appropriately in the same way that the 

original sample was.    

 Table V presents the estimation of Equation (8) for the “high volatility” sample. The 

statistically significant results are once more very similar to those produced by the core 

analysis of the initial sample, revealing a positive relationship between 

Employment/Environment concerns and financial risk. The slope coefficients between these 

concerns components and the various risk measures are often two times, or more, greater than 

those estimated when the entire longitudinal sample was used. For example, when beta is 

treated as the dependent variable, the slope coefficients estimated in the initial analysis are 

0.1906 for Employment concerns and 0.1680 for Environment concerns while the respective 

values for the “high volatility sample” are 0.3395 and 0.3174, respectively. No significant 

results are found when utility metrics are used as dependent variables and as such the relevant 

estimates are not reported. The results of the estimation of model (8) when the “low 

volatility” sample is used are provided in Table VI. The picture is now very different. It is the 

strengths components that produce more pronounced results, with Diversity and Employment 

being significantly negatively related to risk (across both conventional and downside risk 

measures), while concerns produce results that are less significant and more randomly 
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distributed across the various risk metrics models. Community and Environment concerns 

show some signs of significant positive association with the various betas. 

 When these results are jointly taken into account, it appears as if, especially in times 

of financial distress, social and environmental corporate concerns are priced by the market 

and lead to higher levels of stock price volatility for companies that ‘do wrong’, while in 

times of economic euphoria, or at least times of no significant general economic hazards, the 

importance of CSP strengths becomes more pronounced and is able to decrease the levels of a 

firm’s stock market risk. To put it differently, these results seem to provide evidence that the 

market encourages a “slack resources” type of firm behavior (Waddock and Graves, 1997) 

during good times as CSP strengths have stronger wealth-protective effects then. On the other 

hand, the market appears to concentrate more on CSP concerns during bad times, when it 

penalizes the companies that are being socially irresponsible more severely through higher 

financial risk. 

 It should also be noted that the adjusted R–squares of the estimated models for the 

high volatility periods are all considerably higher compared to those of the regressions of the 

original sample with a range between 40.9% and 50.6% when risk is used as a dependent 

variable. The fact that the usual winsorization process is applied to the dataset before the 

model estimations are made helps to ensure that this observation is not likely to be an artifact 

of the volatility outliers that are bound to exist in these circumstances. A more intuitive 

explanation is that the importance of CSP (and the set of control variables) as a determinant 

of market risk increases in times of economic turbulence. 

 It could be argued that because both market crises happened in the latter half our 

entire sample (2000 to 2002 for the dot-com bubble and 2008–2009 for the credit crisis), the 

results coming from the sample splits into high and low volatility periods might in fact reflect 
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a changing external environment with respect to societal expectations of firms. In order to 

examine this assertion we choose to split our sample in the middle of each time series 

dimension and create two subsamples: one from 1992 to 2000 and one from 2001 to 2009 

(the dates refer to the financial data, the CSP variables being lagged by a year). We then 

repeat our original analysis and compare the earlier period results with the ones coming from 

the low volatility sample and the later period results with those of the high volatility sample. 

Despite the fact that these pairs of samples have many firm–year observations in common 

they do not really lead to similar conclusions. The coefficient estimates coming from the 

1990s and 2000s subsamples are generally insignificant, small in size, and often take 

different signs from the ones estimated when the entire dataset is split according to the levels 

of overall volatility. So it appears that the inferences that are drawn based on the splitting of 

our panel into high and low volatility periods are not influenced by a changing external 

environment in regards to CSP.  

 The general issue of endogeneity becomes more topical when discussing the results of 

the analyses of the volatility subsamples. It has been stated that in order to account for the 

potential existence of a contemporaneous, bidirectional association between CSP and firm 

risk, we lagged the independent variables that are used in our models. However, in an attempt 

to address the possibility that there is a two–way lead–lag effect between the two variables of 

concern, we estimate alternative models in which systematic risk is the lagged independent 

variable and the various individual components of social strengths and concerns are the 

regressands. We do so for our entire panel dataset as well as for the high volatility and low 

volatility periods subsamples. The results of this robustness test strongly indicate that there is 

no economically significant evidence of a relationship running between systematic risk and 

subsequent CSP. The algebraic values of the estimated slope coefficients are particularly low 
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and their statistical significance lower (or at most comparable in size) with that of the results 

of the main analysis. The same applies when aggregate strengths and aggregate concerns are 

used as dependent variables. 

VI. Conclusions 

 This study investigates the relationship between corporate social performance and 

financial risk for an extensive panel data sample of US companies between the years 1992 

and 2009. In addition, the association between CSP and investor utility is examined.  The 

main finding is that most of the individual social strength components (Community, 

Diversity, Employment, Product safety and quality) are negatively but insignificantly 

associated with systematic firm risk while most of the individual social concern components 

(Community, Employment, Environment) are significantly positively related to measures of 

systematic risk. The fact that the use of both conventional and downside risk measures leads 

to the same conclusions adds convergent validity to the analysis. Utility measures lead to 

results of great variability and small statistical significance in accordance with the fact that 

there is no clear consensus in the literature that researches the “wealth-enhancing” effects of 

CSP. Even with the additional inclusion of higher moments (skewness and kurtosis), it 

appears that the risk/return trade-off is such that no clear utility gain or loss can be realized 

by investing in firms characterized by different levels of social and environmental 

performance. 

 The results of aggregate strength and concern measures are aligned with those of the 

individual components and their impacts on risk are actually more pronounced. Interesting 

conclusions are also drawn when we try to investigate how generalized conditions of market 

volatility moderate the CSP–risk relation. In comparison with the results of the main part of 

this study, it becomes more visible that, in times of small or moderate levels of volatility, 
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firms that engage in socially responsible behavior are characterized by lower levels of market 

risk, while during times of high volatility, firms that are socially irresponsible are associated 

with higher levels of financial risk.   

 By concentrating on an under-researched question, this study manages to uncover new 

pieces of the CSP–CFP puzzle. The finding that corporate social performance affects the 

ability of a company to cope with adverse systemic economic shocks should be considered by 

firm managers when they make strategic business decisions and private or institutional 

investors when they are trying to identify the optimal asset allocation of their wealth. The 

latter is especially true for those institutional investors (pension funds, life assurance 

companies) that have significantly predictable outflows to beneficiaries and want to invest in 

shares that are not very volatile. Future research may use this study as a starting point to 

examine the mediating and moderating effects of other factors in the CSP–risk relation, such 

as the interactions between social/environmental strengths and concerns and their potential 

impact on financial risk and returns, or concentrate on revealing the nature of the 

idiosyncratic elements of risk that are affected by socially/environmentally responsible and 

irresponsible behavior.  
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Figure 1. Omnipresent Indicators of Qualitative Issue Areas of 

Interest 
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Figure 2. Annualised Weekly Standard Deviation of Returns for Year by Year S&P 500 Samples, 1992-2009 
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Table I. Descriptive Statistics of Key Variables 

Table contains mean, median, maximum and minimum values and standard deviations for all variables of interest. Log(mv) is the logarithm of market 

capitalization, mtbv is market-to-book value, dy is dividend yield, tdce is the total debt to common equity ratio; HR Beta and BL Beta refer to the Harlow-

Rao and Bawa and Lindenberg betas; CE refers to certainty equivalents with absolute risk aversion (γ) in parenthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Panel A. Descriptive Statistics of Independent Variables       

  Community 

Strengths 

Diversity 

Strengths 

Employment 

Strengths 

Environment 

Strengths 

Product 

Strengths 

Community 

Concerns 

Diversity 

Concerns 

Employment 

Concerns 

Environment 

Concerns 

Product 

Concerns 

 Mean 0.0755 0.1187 0.1040 0.0517 0.0433 0.0371 0.0563 0.0725 0.0809 0.1253 

 Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 Maximum 1.0000 0.8571 0.8000 0.8000 0.7500 0.7500 1.0000 0.7500 1.0000 1.0000 

 Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 Std. Dev. 0.1459 0.1585 0.1489 0.1078 0.1020 0.0970 0.1649 0.1387 0.1521 0.1999 

 Observations 6986 6986 6986 6986 6986 6986 6986 6986 6986 6986 

Panel B. Descriptive Statistics of Independent Variables 

  Aggregate 

Strengths 

Aggregate 

Concerns 

LOG(MV) MTBV DY TDCE 

 Mean      0.0786 0.0743 8.91 3.70 1.89 1.38 

 Median 0.0571 0.0500 8.84 2.56 1.63 0.62 

 Maximum 0.5614 0.6833 12.16 24.05 7.44 20.97 

 Minimum 0.0000 0.0000 6.11 0.01 0.00 0.00 

 Std. Dev. 0.0775 0.0926 1.22 3.67 1.68 2.76 

 Observations 6986 6986 6986 6986 6986 6986 
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Panel C. Descriptive Statistics of Dependent Variables  

  Beta HR Beta BL Beta CE (γ=2) CE (γ=5) CE (γ=20) 

Mean 1.016 1.024 1.031 -0.001 -0.006 -0.046 

Median 0.955 0.967 0.955 0.000 -0.002 -0.015 

Maximum 2.967 2.876 3.181 0.013 0.009 0.002 

Minimum -0.139 -0.187 -0.312 -0.038 -0.078 -0.899 

Std. Dev. 0.565 0.576 0.641 0.008 0.013 0.116 

Skewness 0.804 0.683 0.752 -1.786 -2.882 -5.611 

Sum 7094.29 7150.18 7204.33 -10.22 -41.64 -320.07 

Observations 6986 6986 6986 6986 6986 6986 
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Table II. Correlation Coefficients Between Key Variables and CSP Values by Industry 

COMS and COMC are community strengths(s) and community concerns(c), respectively,  DIV is used for the diversity indicator, ENV for the environment 

indicator, EMP for the employment indicator, PSQ for the product safety and quality indicator; HR Beta and BL Beta refer to the Harlow-Rao and Bawa and 

Lindenberg betas; CE refers to certainty equivalents with absolute risk aversion (γ).  COMS and COMC are community strengths(s) and community 

concerns(c), respectively, DIV is used for the diversity indicator, ENV for the environment indicator, EMP for the employment indicator, PSQ for the product 

safety and quality indicator. 

 

 

 

 

 

 

 

 

 

Panel A.  Pearson Product-moment Correlations  

 AGGS COMS DIVS EMPS ENVS PRODS AGGC COMC DIVC EMPC ENVC PRODC 

AGGS 1.000            

COMS 0.576 1.000           

DIVS 0.705 0.308 1.000          

EMPS 0.595 0.074 0.205 1.000         

ENVS 0.477 0.083 0.177 0.139 1.000        

PSQS 0.508 0.085 0.198 0.230 0.158 1.000       

AGGC 0.245 0.070 0.286 0.076 0.208 0.057 1.000      

COMC 0.155 0.035 0.154 0.101 0.123 0.021 0.523 1.000     

DIVC 0.164 0.098 0.221 0.038 0.028 0.053 0.609 0.160 1.000    

EMPC 0.096 -0.024 0.145 0.016 0.088 0.058 0.595 0.204 0.264 1.000   

ENVC 0.134 -0.039 0.047 0.103 0.305 0.017 0.588 0.306 0.086 0.229 1.000  

PSQC 0.190 0.109 0.270 0.006 0.105 0.026 0.701 0.220 0.260 0.194 0.223 1.000 

Panel B. Pearson Product-moment Correlations 

  Beta HR Beta BL Beta CE (γ=2)  CE (γ=5)  CE (γ=20) 

Beta 1.000      

HR Beta 0.943 1.000         

BL Beta 0.888 0.926 1.000    

CE (γ=2)  -0.185 -0.157 -0.225 1.000     

CE (γ=5)  -0.087 -0.078 -0.058 0.882 1.000  
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CE (γ=20) -0.071 -0.063 -0.037 0.858 0.999 1.000 

   Panel C. Mean Values of KLD Scores by Industry    

 Automobiles Banks Basic 

Resources 

Chemicals Construction 

Materials 

Finance Food & 

Beverage 

Healthcare Industrial 

Goods 

Insurance 

COMS 0.0426 0.2107 0.0581 0.0613 0.0315 0.1813 0.1057 0.0768 0.0368 0.0945 

DIVS 0.1534 0.1673 0.0316 0.0756 0.0204 0.1758 0.1742 0.1447 0.0690 0.1098 

EMPS 0.1911 0.1113 0.0157 0.0879 0.0857 0.0974 0.0859 0.0967 0.0898 0.0847 

ENVS 0.1052 0.0066 0.1107 0.1144 0.0588 0.0029 0.0446 0.0507 0.0650 0.0046 

PSQS 0.0500 0.0282 0.0258 0.0632 0.0063 0.0742 0.0148 0.0564 0.0637 0.0106 

COMC 0.0500 0.0813 0.0526 0.0302 0.0231 0.0385 0.0336 0.0163 0.0409 0.0122 

DIVC 0.1407 0.0579 0.0332 0.0253 0.0252 0.0989 0.0607 0.0359 0.0635 0.1026 

EMPC 0.1296 0.0310 0.1301 0.0788 0.0819 0.0266 0.0852 0.0290 0.0897 0.0285 

ENVC 0.1988 0.0000 0.2724 0.2685 0.1653 0.0006 0.0951 0.0621 0.1119 0.0049 

PSQC 0.1630 0.1226 0.0470 0.1265 0.1597 0.2115 0.1336 0.2823 0.1082 0.1604 

Observations 185 363 271 257 119 273 305 612 1040 307 

       Panel C. Mean Values of KLD Scores by Industry (Continued)  

 Media Oil & 

Gas 

Personal &  

Household 

Goods 

Real 

Estate 

Retail Technology Telecoms Travel & 

Leisure 

Utilities 

COMS 0.0661 0.0303 0.1173 0.0069 0.0742 0.0366 0.1205 0.0303 0.0756 

DIVS 0.1518 0.0402 0.1393 0.0298 0.1188 0.1581 0.2282 0.1817 0.0996 

EMPS 0.0233 0.1403 0.0889 0.0167 0.0739 0.1842 0.0993 0.1225 0.0494 

ENVS 0.0314 0.0806 0.0457 0.0028 0.0182 0.0478 0.0029 0.0382 0.1155 
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PSQS 0.0886 0.0148 0.0290 0.0000 0.0337 0.0684 0.0360 0.0361 0.0104 

COMC 0.0123 0.1310 0.0290 0.0000 0.0160 0.0180 0.0468 0.0116 0.0652 

DIVC 0.0291 0.0507 0.0264 0.0208 0.1290 0.0132 0.1511 0.1214 0.0312 

EMPC 0.0852 0.1289 0.0492 0.0347 0.1079 0.0645 0.1025 0.0809 0.0687 

ENVC 0.0082 0.2089 0.0401 0.0231 0.0098 0.0166 0.0228 0.0154 0.1674 

PSQC 0.0628 0.0944 0.1011 0.0486 0.1155 0.0522 0.2194 0.0780 0.1403 

Observations 223 355 569 72 593 833 139 173 433 
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Table III. Fixed Effects Regressions of the Individual Components Model 

Cell entries are parameter estimates; each column corresponds to the output of a different fixed effects regression; all dependent variables have been winsorized at 

the 1% level; α is the average of the firm-specific fixed effects; βcoms and βcomc are the slope coefficients for the community strengths(s) and community 

concerns(c) indicators, respectively,  div is used for the diversity indicator, env for the environment indicator, emp for the employment indicator, psq for the 

product indicator, log(mv) is the logarithm of market capitalization, mtbv is market-to-book value, dy is dividend yield ,  tdce is the total debt to common equity 

ratio; HR Beta and BL Beta refer to the Harlow-Rao and Bawa and Lindenberg betas; CE refers to certainty equivalents with absolute risk aversion (γ) in 

parenthesis; entries of the last row are adjusted R
2 
values for each regression. t-statistics in parentheses. 

 

 Beta HR Beta BL Beta CE (γ=2)  CE (γ=5)  CE (γ=20) 

α 1.1901*** 1.4963*** 0.8264*** 0.0429*** 0.0537*** 0.2270*** 

 (10.7609) (12.9393) (6.2061) (24.0130) (19.0429) (8.8585) 

βcoms -0.0429 -0.0569 -0.0014 -0.0001 0.0012 0.0168 

 (-0.6916) (-0.8777) (-0.0190) (-0.0850) (0.7654) (1.1727) 

βdivs -0.0873 -0.0538 -0.0714 0.0011 0.0001 -0.0181 

 (-1.3359) (-0.7872) (-0.9071) (1.0405) (0.0589) (-1.1928) 

βemps -0.0860 -0.0837 -0.0892 -0.0008 -0.0035** -0.0485*** 

 (-1.4044) (-1.3080) (-1.2097) (-0.8234) (-2.2584) (-3.4214) 

βenvs 0.0272 0.0342 0.1095 -0.0014 -0.0013 0.0084 

 (0.3482) (0.4194) (1.1653) (-1.0733) (-0.6536) (0.4648) 

βpsqs -0.1452 -0.1164 -0.0931 0.0001 0.0003 0.0187 

 (-1.4742) (-1.1295) (-0.7851) (0.0495) (0.1246) (0.8184) 

βcomc 0.1622** 0.1755** 0.1327 -0.0003 -0.0011 0.0023 

 (2.0722) (2.1448) (1.4076) (-0.2088) (-0.5465) (0.1259) 

βdivc 0.0342 0.0303 0.0104 0.0001 0.0004 0.0045 

 (0.7397) (0.6264) (0.1872) (0.0853) (0.3266) (0.4163) 

βempc 0.1906*** 0.1271** 0.1307* -0.0010 -0.0035** -0.0312** 

 (3.415) (2.1781) (1.9447) (-1.1319) (-2.4826) (-2.4150) 

βenvc 0.1680** 0.2416*** 0.1046 0.0037*** 0.0055*** 0.0366* 
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 (2.036) (2.8007) (1.0534) (2.7883) (2.6029) (1.9142) 

βpsqc -0.0456 -0.0181 -0.0848 0.0005 0.0000 -0.0156 

 (-0.9652) (-0.3675) (-1.4919) (0.5923) (0.0054) (-1.4303) 

βlog(mv) -0.0275** -0.0623*** 0.0146 -0.0048*** -0.0061*** -0.0247*** 

 (-2.2117) (-4.7953) (0.9728) (-23.8808) (-19.2004) (-8.5736) 

βmtbv 3.6967 3.9516 7.3366** -0.3689*** -0.6776*** -2.3554*** 

 (1.2928) (1.3216) (2.131) (-7.9944) (-9.2982) (-3.5554) 

βdy 0.0176** 0.0196*** 0.0224*** -0.0004*** -0.0015*** -0.0182*** 

 (2.526) (2.6879) (2.6732) (-3.1156) (-8.4567) (-11.2653) 

βtdce 0.0154*** 0.0135*** 0.0068 0.0001 0.0000 -0.0031*** 

 (3.2949) (2.7474) (1.2093) (0.9871) (0.0459) (-2.8625) 

Adj.R
2
 0.3504 0.3162 0.2684 0.2179 0.2577 0.1750 

***Significant at the 0.01 level. 

  **Significant at the 0.05 level. 

    *Significant at the 0.10 level. 
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Table IV. Fixed Effects Regressions of the Aggregated Components Model 

Cell entries are parameter estimates; each column corresponds to the output of a different fixed effects regression; all dependent variables have been winsorized at 

the 1% level; α is the average of the firm specific fixed effects; βaggs and βaggc are the slope coefficients for the aggregate  strengths(s) and aggregate concerns(c) 

indicators, respectively, log(mv) is the logarithm of market capitalization, mtbv is market-to-book value, dy is dividend yield, and tdce is the total debt to common 

equity ratio; entries of last row are adjusted R
2
 values for each regression..  t-statistics in parentheses. 

 

 Beta HR Beta BL Beta CE (γ=2) CE (γ=5) CE (γ=20) 

α 1.1981*** 1.4931*** 0.8426*** 0.0427*** 0.0542*** 0.2395*** 

 (11.0700) (13.1966) (6.4681) (24.4356) (19.6473) (9.5460) 

βaggs -0.2938** -0.2402 -0.1319 -0.0008 -0.0038 -0.0439 

 (-2.0145) (-1.5757) (-0.7518) (-0.3588) (-1.0263) (-1.2993) 

βaggc 0.3629*** 0.3760*** 0.1589 0.0013 -0.0018 -0.0392 

 (3.4165) (3.3857) (1.2426) (0.7777) (-0.6581) (-1.5922) 

βlog(mv) -0.0288** -0.0618*** 0.0120 -0.0047*** -0.0061*** -0.0260*** 

 (-2.3737) (-4.8684) (0.8226) (-24.2233) (-19.7399) (-9.2350) 

βmtbv 3.6470 3.7993 7.2500** -0.3705*** -0.6795*** -2.3489*** 

 (1.2795) (1.2751) (2.1134) (-8.0595) (-9.3534) (-3.5551) 

βdy 0.0188*** 0.0206*** 0.0234*** -0.0004*** -0.0015*** -0.0183*** 

 (2.7122) (2.8294) (2.8029) (-3.1331) (-8.5150) (-11.3474) 

βtdce 0.0153*** 0.0134*** 0.0068 0.0001 0.0000 -0.0032*** 

 (3.2789) (2.7542) (1.2115) (0.9570) (0.0157) (-2.9292) 

Adj.R
2
 0.3495 0.3157 0.2680 0.2176 0.2567 0.1731 

***Significant at the 0.01 level. 

  **Significant at the 0.05 level. 

    *Significant at the 0.10 level. 
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Table V. The Effects of CSP on Risk During Periods of High Quality Volatility 

Cell entries are parameter estimates; t-statistics in parentheses; each column corresponds to the output of a different fixed effects regression 

using data from the periods 2000 to 2002 and 2008 to 2009; all dependent variables have been winsorized at the 1% level; α is the average of the 

firm specific fixed effects; βcoms and βcomc are the slope coefficients for the community strengths(s) and community concerns(c) indicators 

respectively,  div is used for the diversity indicator, env for the environment indicator, emp for the employment indicator, psq for the product 

indicator, log(mv) is the logarithm of market capitalisation, mtbv is market-to-book value, dy is dividend yield ,  tdce is the total debt to common 

equity ratio; HR Beta and BL Beta refer to the Harlow-Row and Bawa and Lindenberg betas; entries of last row are adjusted R
2 

values for each 

regression. 

 

 Beta HR Beta BL Beta 

α -0.2735 0.2446 -0.6215** 

 (-0.9501) (0.8126) (-2.0387) 

βcoms -0.1462 -0.2265 -0.2393 

 (-0.8146) (-1.2018) (-1.2465) 

βdivs 0.3778*** 0.2845* 0.2485 

 (2.6900) (1.8594) (1.5645) 

βemps 0.0666 0.1428 0.1244 

 (0.4727) (0.9560) (0.7959) 

βenvs -0.0092 -0.0104 -0.0205 

 (-0.0591) (-0.0612) (-0.1201) 

βpsqs 0.2295 0.1050 0.0933 

 (1.0938) (0.4674) (0.3936) 

βcomc -0.0766 -0.0506 -0.0473 

 (-0.4904) (-0.2960) (-0.2734) 

βdivc 0.0836 0.0709 0.0799 

 (0.8396) (0.6569) (0.7268) 
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βempc 0.3395*** 0.2352** 0.2488** 

 (3.0710) (1.9987) (2.1067) 

βenvc 0.3174* 0.4966*** 0.4767** 

 (1.9409) (2.7003) (2.5446) 

βpsqc 0.1644 0.1223 0.1826 

 (1.604) (1.0931) (1.5801) 

βlog(mv) 0.0971*** 0.0441 0.1319*** 

 (3.1186) (1.3606) (4.0148) 

βmtbv 19.3738*** 17.8449*** 18.5876*** 

 (3.7557) (3.2407) (3.2838) 

βdy 0.0967*** 0.0929*** 0.1108*** 

 (6.6284) (6.0011) (6.9493) 

βtdce 0.0165 0.0195* 0.0201* 

 (1.4878) (1.6681) (1.7418) 

Adj.R
2
 0.5056 0.4481 0.4496 

***Significant at the 0.01 level. 

  **Significant at the 0.05 level. 

    *Significant at the 0.10 level. 
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Table VI. The Effects of CSP on Risk During Periods of Low Volatility  

 

Cell entries are parameter estimates; t-statistics in parentheses; each column corresponds to the output of a different fixed effects regression 

using data from the periods 1992 to 1999 and 2003 to 2007; all dependent variables have been winsorized at the 1% level; α is the average of the 

firm specific fixed effects; βcoms and βcomc are the slope coefficients for the community strengths(s) and community concerns(c) indicators 

respectively,  div is used for the diversity indicator, env for the environment indicator, emp for the employment indicator, psq for the product 

indicator, log(mv) is the logarithm of market capitalisation, mtbv is market-to-book value, dy is dividend yield ,  tdce is the total debt to common 

equity ratio; HR Beta and BL Beta refer to the Harlow-Row and Bawa and Lindenberg betas; entries of last row are adjusted R
2
 values for each 

regression 

 

 

 Beta HR Beta BL Beta 

α 1.5515*** 1.8693*** 1.0936*** 

 (10.8895) (12.4621) (6.1438) 

βcoms -0.0258 -0.0385 0.0415 

 (-0.3853) (-0.5436) (0.4643) 

βdivs -0.2336*** -0.1777** -0.2098** 

 (-3.0756) (-2.2188) (-2.1373) 

βemps -0.1664** -0.2017** -0.1758* 

 (-2.1985) (-2.5021) (-1.8429) 

βenvs 0.1065 0.1203 0.1650 

 (1.1928) (1.2912) (1.4483) 

βpsqs -0.2909** -0.2041 -0.1378 
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 (-2.2748) (-1.5941) (-0.8734) 

βcomc 0.2305** 0.2293** 0.1442 

 (2.3058) (2.1221) (1.1681) 

βdivc -0.0055 -0.0087 -0.0388 

 (-0.0997) (-0.1533) (-0.5787) 

βempc 0.1099 0.084 0.1345 

 (1.437) (1.0342) (1.4193) 

βenvc 0.1770* 0.2215** 0.0722 

 (1.7407) (2.0558) (0.5938) 

βpsqc -0.0830 -0.0286 -0.1290* 

 (-1.4914) (-0.4904) (-1.8487) 

βlog(mv) -0.0496*** -0.0884*** 0.0022 

 (-3.073) (-5.1971) (0.1081) 

βmtbv -0.7391 -1.1290 6.5707 

 (-0.2087) (-0.3048) (1.444) 

βdy -0.0482*** -0.0383*** -0.0396*** 

 (-4.9058) (-3.7061) (-3.2095) 

βtdce 0.0125* 0.0116* 0.0044 

 (1.9415) (1.7824) (0.5382) 

Adj.R
2
 0.3163 0.2779 0.2244 

***Significant at the 0.01 level. 

  **Significant at the 0.05 level. 

    *Significant at the 0.10 level. 
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