Accessibility navigation

Regulation of NF-κB activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

Spilsbury, A., Vauzour, D., Spencer, J. P. and Rattray, M. (2012) Regulation of NF-κB activity in astrocytes: effects of flavonoids at dietary-relevant concentrations. Biochemical and Biophysical Research Communications, 418. pp. 578-583. ISSN 0006-291X

Full text not archived in this repository.

To link to this item DOI: 10.1016/j.bbrc.2012.01.081


Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. Sustained activation of nuclear transcription factor κB (NF-κB) is thought to play an important role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-κB signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNFα, 150 ng/ml) increased NF-κB-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative IκBα construct. In addition, TNFα increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-κB activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((−)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1–1 μM) for 18 h. None of the flavonoids modulated constitutive or TNFα-induced NF-κB activity. Therefore, we conclude that NF-κB signalling in astrocytes is not a major target for flavonoids.

Item Type:Article
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Division of Pharmacology
Interdisciplinary centres and themes > Centre for Integrative Neuroscience and Neurodynamics (CINN)
ID Code:26260

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation