The Dirichlet-to-Neumann map for the elliptic sine-Gordon equation

A.S. Fokas* and B. Pelloni**

*Department of Applied Mathematics and Theoretical Physics
Cambridge University
Cambridge CB3 0WA, UK.
t.fokas@damtp.cam.ac.uk

**Department of Mathematics
University of Reading
Reading RG6 6AX, UK
b.pelloni@reading.ac.uk

February 3, 2012

Abstract

We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution \(q(x, y) \) in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function \(b(\lambda) \), \(\lambda \in \mathbb{R} \), explicitly expressed in terms of the given Dirichlet data \(g_0(x) = q(x, 0) \) and the unknown Neumann boundary value \(g_1(x) = q_y(x, 0) \), where \(g_0(x) \) and \(g_1(x) \) are related via the global relation \{\(b(\lambda) = 0, \lambda \geq 0 \)\}. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express \(g_1(x) \) in terms of \(g_0(x) \). It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable elliptic PDE, as opposed to an evolution PDE.

1 Introduction

A new method for analysing boundary value problems, extending ideas of the so-called inverse scattering transform method, was introduced in [17], see also [18, 23]. This method has already been applied to linear evolution PDEs on the half-line and on the finite interval [8, 12, 14, 24, 29, 46, 47, 48], to integrable nonlinear evolution PDEs on the half-line and on the finite interval [4, 5, 20, 22, 28, 35, 37, 39, 40, 41, 42], to linear and integrable nonlinear evolution PDEs in two space variables [36, 44], to linear elliptic PDEs in the interior of a convex polygon [1, 2, 7, 9, 10, 11, 13, 32, 38, 53, 54] and to the two prototypical integrable nonlinear elliptic PDEs in two dimensions, namely the elliptic sine-Gordon [45, 49] and the Ernst equation [43].

The new method has the following advantages: (a) For linear PDEs, it yields an explicit integral representation involving appropriate transforms of boundary values. Similarly, for integrable nonlinear PDEs in two or three dimensions, it expresses the solution in terms of either a Riemann-Hilbert or a d-bar problem; these problems are uniquely defined in terms of appropriate nonlinear transforms of boundary values, called spectral functions. These functions are defined in the Fourier space, i.e. they do not involve the independent variables.
of the PDE. This crucial feature of the new method makes it possible to obtain useful asymptotic information about the solution even before characterising the spectral functions in terms of the given boundary conditions [27].

(b) For a large class of linear boundary value problems, it is possible to eliminate the transforms of the unknown boundary values and to obtain an effective integral representation defined only in terms of the given boundary conditions [23]. This is achieved by analysing a certain equation, called the global relation, which couples the transforms of all relevant boundary values. Similarly, for certain nonlinear boundary value problems, called linearisable [20, 22], it is possible, by analysing the global relation, to express the spectral functions in terms of the given boundary conditions. Thus, for linearisable boundary conditions, the new method yields a representation which is as effective as the classical representation for the Cauchy problem obtained by the inverse scattering transform method.

(c) For general linear boundary value problems, the global relation provides a novel approach for characterising the unknown boundary values in terms of the given boundary conditions, i.e. for characterising the generalised Dirichlet to Neumann map. Novel numerical techniques for computing this map are presented in [16, 31, 33, 50, 52]. Similarly, for integrable nonlinear evolution PDEs, the global relation yields an effective characterisation of the generalised Dirichlet to Neumann map. This important development was first achieved in [6] by employing the so-called Gelfand-Levitan-Marchenko (GLM) representation, and was implemented numerically in [56]. It was later realised that this approach also provides a direct characterisation of the spectral functions in terms of the given boundary conditions, avoiding the GLM representation [21, 55]. However, it must be noted that for non-linearisable boundary value problems, the above characterisation involves a nonlinear equation.

In this paper we implement step (c) above for the elliptic sine-Gordon equation formulated in the half plane. To our knowledge, this is the first instance that the Dirichlet to Neumann map is characterised for an integrable elliptic (as opposed to evolution) PDE. Actually, although the relevant characterisation shares conceptual similarities with the method used for evolution PDEs, it does involve novel elements. In particular, while for evolution PDEs it suffices to analyse a single eigenfunction, in the case of the elliptic sine Gordon equation formulated in the upper half plane it is necessary to analyse two different eigenfunctions and to combine the resulting expressions.

The sine Gordon equation posed in the upper half plane was considered in [49], but the Dirichlet to Neumann map (Theorem 5.1) was not derived. Furthermore, Theorem 3.1, which proves that a formula based on the solution of a certain Riemann-Hilbert problem solves the given problem provided that the global relation, namely \(b(\lambda) = 0, \lambda \geq 0 \), is valid, was not derived in [49].

2 Preliminaries

The elliptic sine-Gordon

\[
q_{xx} + q_{yy} = \sin q, \quad x, y \in \mathbb{R},
\]

is the compatibility condition of the following Lax pair:

\[
\Psi_x(x, y, \lambda) + \omega(\lambda)[\sigma_3, \Psi](x, y, \lambda) = Q(x, y, \lambda)\Psi(x, y, \lambda),
\]

\[
\Psi_y(x, y, \lambda) + \Omega(\lambda)[\sigma_3, \Psi](x, y, \lambda) = iQ(x, y, -\lambda)\Psi(x, y, \lambda),
\]

\(2.1\)

\(2.2\)

\(2.3\)
where \(\lambda \in \mathbb{C} \) and

\[
\sigma_3 = \text{diag}(1, -1), \quad \omega(\lambda) = \frac{1}{4i} \left(\lambda - \frac{1}{\lambda} \right), \quad \Omega(\lambda) = \frac{1}{4} \left(\lambda + \frac{1}{\lambda} \right), \quad (2.4)
\]

\[
Q(x, y, \lambda) = \frac{1}{4} \begin{pmatrix}
\frac{1}{\lambda}(1 - \cos q(x, y)) & -\frac{1}{\lambda} \sin q(x, y) + iq_x(x, y) + q_y(x, y) \\
\frac{1}{\lambda} \sin q(x, y) - 1 & \frac{1}{\lambda}(\cos q(x, y) - 1)
\end{pmatrix}.
\]

Equations (2.2 and 2.3) can be written in the form

\[
d \left[e^{\omega(\lambda)x + \Omega(\lambda)y}\hat{\sigma}_3 \Psi(x, y, \lambda) \right] = e^{\omega(\lambda)x + \Omega(\lambda)y}\hat{\sigma}_3 W(x, y, \lambda),
\]

where the differential form \(W \) is given by

\[
W(x, y, \lambda) = (Q(x, y, \lambda)dx + iQ(x, y, -\lambda)dy) \Psi(x, y, \lambda)
\]

and the action of \(\hat{\sigma}_3 \) on a matrix \(A \) is defined by

\[
\hat{\sigma}_3 A = [\sigma_3, A],
\]

hence

\[
e^{\hat{\sigma}_3 x} A = e^{\sigma_3 x} A e^{-\sigma_3 x} = \begin{pmatrix}
A_{11} & e^{2x} A_{12} \\
e^{-2x} A_{21} & A_{22}
\end{pmatrix}.
\]

The definitions of \(\Omega(\lambda) \) and \(\omega(\lambda) \) yield

\[
\text{Re}(\omega(\lambda)) > 0, \quad \text{for Im}\lambda > 0; \quad \text{Re}(\Omega(\lambda)) > 0, \quad \text{for Re}\lambda > 0. \quad (2.8)
\]

Equation (2.6) implies that if \(Q(x, y) \) is a solution of equation (2.1) in a given simply connected domain \(D \), then the following equation characterises a function \(\Psi_j(x, y, \lambda) \) which solves both equations (2.2) and (2.3):

\[
\Psi_j(x, y, \lambda) = I + \int_{(x_j, y_j)}^{(x, y)} e^{-(\omega(\lambda)(x-\xi)+\Omega(\lambda)(y-\eta))}\hat{\sigma}_3 W_j(\xi, \eta, \lambda), \quad (x, y), (x_j, y_j) \in D, \quad (2.9)
\]

where \((x_j, y_j) \) is a fixed point in \(D \) and \(W_j \) is the differential form defined by (2.7) with \(\Psi \) replaced by \(\Psi_j \) and \((x, y) \) replaced by \((\xi, \eta) \). It is shown in [19] that if \(D \) is the interior of a convex polygon, then the proper choice for \((x_j, y_j) \) is the collection of all the vertices of the polygon.

3 The elliptic sine-Gordon equation on the half plane

We consider equation (2.1) posed in the upper half plane, i.e. in the domain \(\{ -\infty < x < \infty, 0 < y < \infty \} \). We first review the results of [49].

In this case, the simply connected domain \(D \) consist of a degenerate polygon with two corners, \((-\infty, y) \) and \((\infty, y) \), namely it is the half plane \(y \geq 0 \).
Figure 1: The functions Ψ_1, Ψ_2.

Let Ψ_1, Ψ_2 denote the solutions of (2.6) associated with these two corners, see figure 1. Then

$$
\Psi_1(x, y, \lambda) = I + \int_{-\infty}^{x} e^{-\omega(\lambda)(x-\xi)}\hat{\sigma}_3 (Q\Psi_1)(\xi, y, \lambda) d\xi, \quad (3.1)
$$

$$
\Psi_2(x, y, \lambda) = I - \int_{x}^{\infty} e^{-\omega(\lambda)(x-\xi)}\hat{\sigma}_3 (Q\Psi_2)(\xi, y, \lambda) d\xi, \quad (3.2)
$$

$x \in \mathbb{R}, \quad 0 \leq y < \infty, \quad \lambda \in \mathbb{R}.$

The first of equations (2.8) implies that the first and the second column vectors of Ψ_1 are analytic in λ for $\text{Im}\lambda < 0$ and $\text{Im}\lambda > 0$ respectively. The function Ψ_2 has the opposite analyticity. This remark justifies the following notations:

$$
\Psi_1 = (\Psi_1^-, \Psi_1^+), \quad \lambda \in (\mathbb{C}^-, \mathbb{C}^+), \quad \Psi_2 = (\Psi_2^+, \Psi_2^-), \quad \lambda \in (\mathbb{C}^+, \mathbb{C}^-). \quad (3.3)
$$

Using the fact that Ψ_1^+ and Ψ_2^+ are analytic functions of λ for $\text{Im}\lambda > 0$, whereas Ψ_1^- and Ψ_2^- are analytic functions of λ for $\text{Im}\lambda < 0$, it is possible to formulate a Riemann-Hilbert (RH) problem with a jump along the real axis of the complex λ plane. In order to compute the jump matrix of the RH problem, we use the fact that any two solutions of the Lax pair (2.2)-(2.3) are related by a matrix of the form $\exp(-\omega(\lambda)x + \Omega(\lambda)y)\hat{\sigma}_3 R(\lambda)$. Hence

$$
\Psi_2(x, y, \lambda) = \Psi_1(x, y, \lambda)e^{-(\omega(\lambda)x + \Omega(\lambda)y)\hat{\sigma}_3} R(\lambda), \quad \lambda \in \mathbb{R}, \quad x \in \mathbb{R}, \quad 0 \leq y < \infty. \quad (3.4)
$$

Evaluating this equation at the point $\{y = 0, x \to -\infty\}$, we find

$$
R(\lambda) = I - \int_{-\infty}^{\infty} e^{\omega(\lambda)\xi\hat{\sigma}_3} (Q\Psi_2)(\xi, 0, \lambda) d\xi, \quad \lambda \in \mathbb{R}. \quad (3.5)
$$

Introducing the notation

$$
m(x, \lambda) = \Psi_2(x, 0, \lambda), \quad \lambda \in (\mathbb{C}^+, \mathbb{C}^-), \quad x \in \mathbb{R},
$$

it follows that the spectral function $R(\lambda)$ is uniquely determined in terms of the solution of the linear Volterra integral equation

$$
m(x, \lambda) = I - \int_{x}^{\infty} e^{-\omega(\lambda)(x-\xi)\hat{\sigma}_3} Q_0(\xi, \lambda) m(\xi, \lambda) d\xi, \quad \lambda \in (\mathbb{C}^+, \mathbb{C}^-), \quad x \in \mathbb{R}, \quad (3.6)
$$
where \(Q_0 \) is defined in terms of the boundary values \(q(x,0) \) and \(q_y(x,0) \) by

\[
Q_0(x, \lambda) = \frac{1}{4} \begin{pmatrix}
\frac{1}{\lambda} (1 - \cos q(x, 0)) & -\frac{1}{\lambda} \sin q(x, 0) + iq_x(x, 0) + q_y(x, 0) \\
\frac{4}{\lambda} \sin q(x, 0) + iq_x(x, 0) + q_y(x, 0) & \frac{1}{\lambda} (\cos q(x, 0) - 1)
\end{pmatrix},
\]

\(x \in \mathbb{R}, \lambda \in \mathbb{C} \). (3.7)

The symmetry properties of \(Q_0 \) imply certain symmetry relations for \(m(x, \lambda) \) and hence for \(R(\lambda) \). This implies that \(R(\lambda) \) has the following form:

\[
R(\lambda) = \begin{pmatrix}
a(\lambda) & b(-\lambda) \\
b(\lambda) & a(-\lambda)
\end{pmatrix}, \quad \lambda \in \mathbb{R},
\]

where \(a(\lambda) \) has an analytic continuation for \(\text{Im}\lambda > 0 \) and \(b(\lambda) \) is defined for \(\lambda \in \mathbb{R} \).

The global relation

The global relation yields the following important equations:

\[
a(\lambda) = 1, \quad \text{Im}\lambda \geq 0; \quad b(\lambda) = 0, \quad \text{Re}\lambda \geq 0.
\]

(3.9)

These relations were derived in [49]. We give here an alternative derivation by introducing an additional solution of equation (2.6) associated with the vertex \((x, \infty)\), namely we consider the function \(\Psi_3 \) defined by

\[
\Psi_3(x, y, \lambda) = I - i \int_y^\infty e^{-\Omega(\lambda)(y-\eta)} \hat{\sigma}_3 Q(x, \eta, -\lambda) \Psi_3(x, \eta, \lambda) d\eta, \quad x \in \mathbb{R}, \quad 0 < y < \infty, \quad \lambda \in \mathbb{R}.
\]

(3.10)

The second of equation (2.8) implies that the first and the second column vectors of \(\Psi_3 \) are analytic in \(\lambda \) for \(\text{Re}\lambda \geq 0 \) and \(\text{Re}\lambda \leq 0 \) respectively. This fact justifies the notation

\[
\Psi_3 = (\Psi_3^R, \Psi_3^L), \quad (\text{Re}\lambda \geq 0, \text{Re}\lambda \leq 0).
\]

(3.11)

The functions \(\Psi_2 \) and \(\Psi_3 \) satisfy the same boundary condition at infinity and the same equation, hence they are equal in their respective domain of analyticity, i.e.

\[
\Psi_2^+(x, y, \lambda) = \Psi_3^R(x, y, \lambda), \quad x \in \mathbb{R}, \quad 0 < y < \infty, \quad 0 \leq \text{arg}(\lambda) \leq \frac{\pi}{2}.
\]

(3.12)

Similarly, the functions \(\Psi_1 \) and \(\Psi_3 \) satisfy the same boundary condition at infinity and the same equation, hence they are equal in their respective domain of analyticity, i.e.

\[
\Psi_1(x, y, \lambda) = \Psi_3^L(x, y, \lambda), \quad x \in \mathbb{R}, \quad 0 < y < \infty, \quad \frac{3\pi}{2} \leq \text{arg}(\lambda) \leq 2\pi.
\]

(3.13)

We denote by \(m^+ = (m_1, m_2)^T \) the first column vector of \(m(x, \lambda) \) given by (3.6), i.e.

\[
m^+(x, \lambda) = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} = \Psi_2^+(x, 0, \lambda), \quad x \in \mathbb{R}, \quad \lambda \in \mathbb{C}^+.
\]

(3.14)
Then, evaluating equation (3.12) at \(y = 0 \) we find
\[
m^+(x, \lambda) = \Psi_1^R(x, 0, \lambda), \quad x \in \mathbb{R}, \quad 0 \leq \arg(\lambda) \leq \frac{\pi}{2}.
\]
(3.15)

Letting \(x \to -\infty \) in (3.15) we find
\[
a(\lambda) = 1, \quad 0 \leq \arg(\lambda) \leq \frac{\pi}{2}; \quad b(\lambda) = 0, \quad \lambda \geq 0.
\]
(3.16)

The analytic continuation of the first equation implies the first of equations (3.9).

Similarly, we denote by \(n^- = (n_1, n_2)^T \) the first column vector of \(\Psi_1(x, 0, \lambda) \):
\[
n^-(x, \lambda) = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} = \Psi_1^-(x, 0, \lambda), \quad x \in \mathbb{R}, \quad \lambda \in \mathbb{C}^-.
\]
(3.17)

Then evaluating the equation (3.13) at \(y = 0 \) we find
\[
n^-(x, \lambda) = \Psi_2^R(x, 0, \lambda), \quad x \in \mathbb{R}, \quad \frac{3\pi}{2} \leq \arg(\lambda) \leq 2\pi.
\]
(3.18)

Summary

The above discussion suggests the following steps for solving the Dirichlet problem for the elliptic sine-Gordon equation:

(i) Given Dirichlet data \(q(x, 0) = g_0(x) \), characterise the unknown Neumann boundary value \(q_y(x, 0) \) by the requirement that the spectral functions \(a(\lambda), b(\lambda) \) satisfy the constraints (3.16). These functions are defined as follows:

\[
a(\lambda) = 1 - \frac{1}{4} \int_{-\infty}^{\infty} \left\{ \frac{i}{\lambda} (1 - \cos g_0(\xi)) m_1(\xi, \lambda) + \left[-\frac{1}{2} \sin g_0(\xi) + ig_0(\xi) + q_y(\xi, 0) \right] m_2(\xi, \lambda) \right\} d\xi,
\]
(3.19)

\[
b(\lambda) = -\frac{1}{4} \int_{-\infty}^{\infty} e^{-2i\omega(\lambda)\xi} \left\{ \frac{i}{\lambda} (\cos g_0(\xi) - 1) m_2(\xi, \lambda) + \left[\frac{1}{2} \sin g_0(\xi) + ig_0(\xi) + q_y(\xi, 0) \right] m_1(\xi, \lambda) \right\} d\xi,
\]
(3.20)

where \((m_1, m_2)^T \) satisfies the first column vector of the ODE (3.6) with \(q(x, 0) \) replaced by \(g_0(x) \), and \(\dot{g}_0(x) \) denotes the derivative of \(g_0(x) \).

(ii) After characterising \(b(\lambda) \) in terms of the given data \(g_0(x) \), solve the RH problem with the jump matrix uniquely defined in terms of \(b(\lambda) \). This RH problem is given by (3.27) below, and is equivalent to the following equation

\[
(\Psi_1(x, y, \lambda), -\Psi_1^+(x, y, \lambda)) = I + \frac{1}{2\pi i} \int_{-\infty}^{0} \left(\Psi_1^-(x, y, l), \Psi_1^+(x, y, l) \right) \begin{pmatrix} 0 & b(-l) e^{-2i(\omega(l)x + \Omega(l)y)} \\ b(l) e^{2i(\omega(l)x + \Omega(l)y)} & 0 \end{pmatrix} \frac{dl}{l-\lambda}, \quad \lambda \notin \mathbb{R}.
\]
(3.21)

Equation (2.2) implies

\[
ig_y(x, y) + q_y(x, y) = -\frac{1}{\pi} \int_{-\infty}^{0} b(l) (\dot{\Psi}_1^+)_2(x, y, l) e^{2i(\omega(l)x + \Omega(l)y)} dl, \quad x \in \mathbb{R}, \quad 0 < y < \infty,
\]
(3.22)

where \((\Psi_1^+)_2 \) denotes the second component of the vector \(\Psi_1^+ \).
The existence theorem

The above procedure outlines how, under the assumption of existence, a solution can be constructed. We now prove that, assuming the given boundary conditions are such that the associated spectral functions \(a(\lambda), b(\lambda)\) satisfy the global relation and have sufficiently small norm, the problem admits a unique solution.

Theorem 3.1 Let the functions \(g_0(x), g_1(x)\) be such that \(g_0 - 2\pi m \in H^1(\mathbb{R}), m \in \mathbb{Z},\) and \(g_1(x) \in H^1(\mathbb{R})\).

Define \(a(\lambda)\) and \(b(\lambda)\) by

\[
a(\lambda) = 1 - \frac{1}{4} \int_{-\infty}^{\infty} \left\{ \frac{i}{\lambda} (1 - \cos g_0(\xi)) m_1(\xi, \lambda) + \frac{1}{\lambda} \sin g_0(\xi) m_2(\xi, \lambda) \right\} d\xi,
\]

\[
b(\lambda) = -\frac{1}{4} \int_{-\infty}^{\infty} e^{-2\omega(\lambda) \xi} \left\{ \frac{i}{\lambda} (\cos g_0(\xi) - 1) m_2(\xi, \lambda) + \frac{1}{\lambda} \sin g_0(\xi) m_1(\xi, \lambda) \right\} d\xi,
\]

where \((m_1(x, \lambda), m_2(x, \lambda))\) denotes the solution of the following system of ODEs:

\[
\begin{aligned}
(m_1)_x &= \frac{i}{\lambda} [1 - \cos g_0(x)] m_1 - \frac{i}{\lambda} \sin g_0(x) - ig_0(x) - g_1(x) m_2, \\
(m_2)_x + 2\omega(\lambda) m_2 &= [\frac{i}{\lambda} \sin g_0(x) + ig_0(x) + g_1(x)] m_1 - \frac{i}{\lambda} [1 - \cos g_0(x)] m_2,
\end{aligned}
\]

\[
\lim_{x \to \infty}(m_1, m_2) = (1, 0), \quad x \in \mathbb{R}, \quad \lambda \in \mathbb{C}^+.
\]

Assume that, given \(g_0(x)\), there exists a function \(g_1(x)\) such that \(a(\lambda), b(\lambda)\) satisfy the following constraints:

\[
a(\lambda) = 1, \quad 0 \leq \arg(\lambda) \leq \pi, \quad b(\lambda) = 0, \quad \lambda \geq 0.
\]

Define the following Riemann-Hilbert problem in terms of \(b(\lambda)\):

\[
\Psi^-(x, y, \lambda) = \Psi^+(x, y, \lambda) J(x, y, \lambda), \quad \lambda \in \mathbb{R}, \quad \Psi = I + O \left(\frac{1}{\lambda} \right), \quad \lambda \to \infty,
\]

where

\[
J = \begin{pmatrix} 1 & b(-\lambda)e^{-\theta(x,y,\lambda)} \\ -b(\lambda)e^{\theta(x,y,\lambda)} & 1 \end{pmatrix}, \quad \theta(x, y, \lambda) = 2(\omega(\lambda) x + \Omega(\lambda) y).
\]

If the \(H^1\) norm of the data \(g_0(x), g_1(x)\) is sufficiently small, the above Riemann-Hilbert problem admits a unique solution \(\Psi(x, y, \lambda)\).

Let the function \(q(x, y), x \in \mathbb{R}, 0 < y < \infty\), be defined in terms of this unique solution by

\[
\begin{aligned}
\lim_{\lambda \to \infty} \langle i\lambda \Psi \rangle_{12}, \quad \cos q(x, y) &= 1 - \lim_{\lambda \to \infty} 4i\lambda \left(\frac{\partial \Psi}{\partial x} \right)_{22} - 2 \lim_{\lambda \to \infty} (\lambda \Psi)_{12}^2.
\end{aligned}
\]

Then \(q(x, y)\) solves the elliptic sine-Gordon equation (2.1) in the half plane \(y > 0\), and furthermore

\[
q(x, 0) = g_0(x), \quad g_y(x, 0) = g_1(x), \quad x \in \mathbb{R}.
\]
Proof

The unique solvability of the Riemann-Hilbert problem (3.27) is a consequence of the so-called vanishing lemma, which states that the problem corresponding to the same jump matrix, but with the condition \(\Psi = O \left(\frac{1}{\lambda} \right) \) at infinity, admits only the trivial solution. The validity of the lemma follows from our small norm assumption.

To prove (3.30), we note that the map \((a(\lambda), b(\lambda)) \rightarrow (g_0(x), g_1(x))\) which is the inverse of the map defined by (3.24), is given by

\[
\cos g_0(x) = 1 - \lim_{\lambda \to \infty} 4i\lambda \left(\frac{\partial M(x, \lambda)}{\partial x} \right)_{22} - 2 \lim_{\lambda \to \infty} (\lambda M(x, \lambda))^2_{12},
\]

\((3.31) \)

\[
i\dot{g}_0(x) + g_1(x) = -i \lim_{\lambda \to \infty} (\lambda M(x, \lambda))_{12}, \quad x \in \mathbb{R}, \; \lambda \in \mathbb{C}^-, \]

where \(M \) is the solution of the Riemann-Hilbert problem

\[
M^-(x, \lambda) = M^+(x, \lambda) J(x, \lambda), \quad \lambda \in \mathbb{R}, \quad M = I + O \left(\frac{1}{\lambda} \right), \; |\lambda| \to \infty, \quad (3.32)
\]

with

\[
J(x, \lambda) = \left(\begin{array}{c}
\frac{1}{b(\lambda) a(\lambda)} e^{-2\omega(\lambda)x} \frac{b(-\lambda) a(-\lambda)}{a(-\lambda) a(\lambda)} \\
-\frac{b(-\lambda) a(-\lambda)}{a(\lambda) b(\lambda)} e^{-2\omega(\lambda)x}
\end{array} \right), \quad \lambda \in \mathbb{R}, \; x \in \mathbb{R}. \quad (3.33)
\]

If the constraints (3.26) are satisfied, then the jump matrix of the above Riemann-Hilbert problem satisfies

\[
J(x, \lambda) = J(x, 0, \lambda), \quad (3.34)
\]

where \(J \) is given by (3.27). Evaluating equations (3.27) and (3.28) at \(y = 0 \) and comparing the resulting equations with equations (3.32) and (3.33), where \(J(x) \) is given by (3.34), we conclude that \(\Psi(x, 0, \lambda) = M(x, \lambda) \). Hence, evaluating equation (3.29) at \(y = 0 \) and comparing the resulting expression with equations (3.31) we find equations (3.30).

QED

4 The linear limit

In the linear limit,

\[
(\Psi^+_1)_{2} \to 1, \quad m_1 \to 1, \quad m_2 \to 0, \quad \sin g_0 \to g_0,
\]

thus equation (3.24) becomes

\[
b(\lambda) = -\frac{1}{4} \int_{-\infty}^{\infty} e^{-2\omega(\lambda)\xi} \left[\chi(\xi) + \frac{g_0(\xi)}{\lambda} \right] d\xi, \quad \lambda \in \mathbb{R}, \quad (4.1)
\]

where \(\chi(\xi) \) is defined by

\[
\chi(\xi) = i\dot{g}_0(\xi) + q_0(\xi, 0), \quad \xi \in \mathbb{R}. \quad (4.2)
\]
Equation (3.22) becomes
\[iq_x(x, y) + q_y(x, y) = -\frac{1}{\pi} \int_{-\infty}^{0} b(l)e^{2\omega(l)x + 2\Omega(l)y}dl, \quad x \in \mathbb{R}, \quad 0 < y < \infty. \] (4.3)

Equation (4.3) implies
\[q(x, y) = -\frac{1}{\pi} \int_{-\infty}^{0} \frac{b(l)}{l}e^{2\omega(l)x + 2\Omega(l)y}dl, \quad x \in \mathbb{R}, \quad 0 < y < \infty. \] (4.4)

Indeed, applying the operator \(i\partial_x + \partial_y \) to equation (4.4) and using
\[2i\omega(\lambda) + 2\Omega(\lambda) = \lambda, \]
we find (4.3).

It can immediately be verified that equation (4.4) satisfies the modified Helmholtz equation
\[q_{xx} + q_{yy} = q, \quad x \in \mathbb{R}, \quad 0 < y < \infty. \]

The expression for \(b(\lambda) \) given by equation (4.1) involves the unknown function \(q_y(x, 0) \).
Thus, in order to obtain an effective solution of the linear problem, we must use the global relation \(\{ b(\lambda) = 0, \lambda > 0 \} \) to eliminate this unknown boundary value. In this respect we note that the transformation \(\lambda \rightarrow -\frac{1}{\lambda} \) leaves \(\omega(\lambda) \) invariant. Using this transformation in the global relation \(\{ b(\lambda) = 0, \lambda > 0 \} \), we find
\[\int_{-\infty}^{\infty} e^{-2\omega(\lambda)\xi} [\chi(\xi) - \lambda g_0(\xi)] d\xi = 0, \quad \lambda \leq 0. \] (4.5)

Multiplying this equation by \(\frac{1}{4} \) and adding the resulting equation to equation (4.1) with \(\lambda \leq 0 \), we find
\[b(\lambda) = -\Omega(\lambda) \int_{-\infty}^{\infty} e^{-2\omega(\lambda)\xi} g_0(\xi) d\xi, \quad \lambda \leq 0. \] (4.6)

In summary, the solution of the Dirichlet problem of the modified Helmholtz equation in the upper half plane is given by equation (4.4), where \(b(\lambda) \) is given explicitly in terms of the Dirichlet boundary condition \(q(x, 0) = g_0(x) \) by equation (4.6).

The above construction of \(b(\lambda) \) for the modified Helmholtz equation illustrates the following remarkable fact that occurs in a large class of linear boundary value problems: by utilising certain invariant properties in the complex \(\lambda \) plane (in our example, \(\lambda \rightarrow -\frac{1}{\lambda} \)), it is possible to eliminate the unknown boundary values, i.e. it is possible to compute the spectral functions without the need to compute the unknown boundary values.

For nonlinearisable integrable boundary value problems, it is not possible to eliminate the unknown boundary values; however, it is possible to characterise these unknown functions in terms of the given boundary conditions by analysing the global relation. The relevant construction needed here is presented in section 5. In order to motivate this construction we present next two different approaches. In both approaches, the global relation (4.5) is used to obtain the following formula:
\[\chi(x) = \frac{1}{\pi} \int_{-\infty}^{0} \Omega(\lambda)e^{2\omega(\lambda)x} \left(\int_{-\infty}^{\infty} e^{-2\omega(\lambda)\xi} g_0(\xi) d\xi \right) d\lambda, \quad x \in \mathbb{R}. \] (4.7)
This formula expresses the unknown Neumann boundary values in terms of the given Dirichlet boundary condition.

Before deriving this equation, we note that the right hand side of (4.7) coincides with the expression obtained by evaluating equation (4.3) at \(y = 0 \).

In the first approach, we consider the global relation \(\{ b(\lambda) = 0, \ \lambda \geq 0 \} \), i.e. the equation

\[
\int_{-\infty}^{\infty} e^{-2\omega(\lambda)\xi} \left[\chi(\xi) + \frac{g_0(\xi)}{\lambda} \right] d\xi = 0, \quad \lambda \geq 0. \tag{4.8}
\]

We multiply (4.8) by \((1 + \frac{1}{\lambda^2}) e^{2 \omega(\lambda) x} \) and integrate the resulting equation with respect to \(\lambda \) along the positive real axis, to obtain

\[
\lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} \frac{1}{\lambda} \left[\int_{-\infty}^{\infty} e^{2\omega(\lambda)(x-\xi)} \chi(\xi) d\xi \right] d\lambda = -\lim_{\epsilon \to 0} \int_{\epsilon}^{\infty} e^{2\omega(\lambda)(x-\xi)} g_0(\xi) d\xi d\lambda. \tag{4.9}
\]

Using in the left and the right hand sides of equation (4.9) the change of variables, respectively

\[
\Lambda = \frac{1}{2} \left(\lambda - \frac{1}{\lambda} \right), \quad l = -\frac{1}{\lambda},
\]
equation (4.9) becomes equation (4.7).

In the second approach, we use the linear limit of the more general global relation (3.15) (recall that the global relation \(\{ b(\lambda) = 0, \ \lambda \geq 0 \} \) is the particular case of equation (3.15) when \(x \to -\infty \)). The linear limit of equation (3.15) yields

\[
I - \int_{x}^{\infty} e^{-\omega(\lambda)(x-\xi)} \hat{\sigma}_3 Q_0^L(\xi, \lambda) d\xi = I - i \int_{0}^{\infty} e^{\Omega(\lambda) \eta} \hat{\sigma}_3 Q_0^L(\xi, \eta, -\lambda) d\eta, \quad x \in \mathbb{R}, 0 < \arg(\lambda) < \frac{\pi}{2}, \tag{4.10}
\]

where \(Q_0^L \) denotes the linear limit of the expression \(Q_0 \) defined in (3.7) and \(Q^L \) denotes the linear limit of the expression for \(Q \) defined in (2.5), i.e.

\[
Q_0^L(\xi, \lambda) = \frac{1}{4} \left(\begin{array}{cc}
\chi(\xi) + \frac{g_0(\xi)}{\lambda} & \chi(\xi) - \frac{g_0(\xi)}{\lambda} \\
0 & 0
\end{array} \right), \quad \xi \in \mathbb{R}, \ \lambda \in \mathbb{C} \tag{4.11}
\]

and

\[
Q^L(x, \eta, -\lambda) = \frac{1}{4} \left(\begin{array}{cc}
0 & i q_x(x, \eta) + q_y(x, \eta) - \frac{q(x, \eta)}{\lambda} \\
0 & 0
\end{array} \right), \quad x \in \mathbb{R}, \ 0 < \eta < \infty, \ \lambda \in \mathbb{C}. \tag{4.12}
\]

The (21) component of the matrix equation (4.10) yields

\[
\int_{x}^{\infty} \left(\chi(\xi) + \frac{g_0(\xi)}{\lambda} \right) e^{-2\omega(\lambda)(\xi-x)} d\xi = i \int_{0}^{\infty} \left(i q_x(x, \eta) + q_y(x, \eta) - \frac{q(x, \eta)}{\lambda} \right) e^{-2\Omega(\lambda) \eta} d\eta,
\]

10
Before solving this equation for $\chi(x)$, we note that the global relation (4.8) is a particular case of equation (4.13). Indeed, the exponentials appearing in the left and the right hand sides of equation (4.9) are bounded as $|\lambda| \to \infty$ and as $|\lambda| \to 0$, if $0 \leq \arg(\lambda) \leq \pi$ and $-\frac{\pi}{2} \leq \arg(\lambda) \leq \frac{\pi}{2}$ respectively. Thus equation (4.13) is well defined for $0 \leq \arg(\lambda) \leq \pi$. However, if $x \to -\infty$, the exponential on the left hand side of (4.13) is bounded only for $\lambda \in \mathbb{R}$, thus in this case equation (4.13) is valid only for $\lambda \geq 0$; then letting $x \to -\infty$ in (4.13) we find equation (4.8).

We multiply equation (4.13) by $1 + \frac{1}{\lambda^2}$, subtract from both sides of the resulting equation the term $\frac{2\imath g_0(x) + 4\imath g_y(x,0)}{\lambda^2}$ and then integrate with respect to λ along the curve ∂D_1 defined as follows (see figure 2):

$$
\partial D_1 = \lim_{\epsilon \to 0} \partial D_1^\epsilon = \{|\lambda|e^{i\theta}, |\lambda|e^{\pi i}, \epsilon \leq |\lambda| < \infty\}.
$$

The resulting equation can be simplified using the following results:

(i)

$$
\int_{\partial D_1} \left(1 + \frac{1}{\lambda^2}\right) \left[\int_x^\infty \chi(\xi)e^{\frac{\imath}{4\pi\lambda}(\lambda-\frac{1}{\lambda})(\xi-x)}d\xi\right]d\lambda = 2\pi \chi(x), \quad x \in \mathbb{R}.
$$

Indeed, we use Cauchy’s theorem in the domain bounded by the union of ∂D_1^ϵ and of the circular arcs $C^{(r)}$ and $C^{(\infty)}$ (see figure 3)

$$
C^{(r)} = \{\epsilon e^{i\theta}, \quad 0 \leq \theta \leq \frac{\pi}{2}\}, \quad C^{(\infty)} = \lim_{R \to \infty} C^{(R)}, \quad C^{(r)} = \{Re^{i\theta}, \quad 0 \leq \theta \leq \frac{\pi}{2}\}.
$$

The integrand of the λ-integral in (4.15) is an analytic function in λ, with poles at the origin and at infinity. Integration by parts yields the term $\frac{2\imath g_0(x)}{\lambda} \frac{\lambda^2 + 1}{\lambda^2}$, thus

$$
\int_x^\infty \chi(\xi)e^{\frac{\imath}{4\pi\lambda}(\lambda-\frac{1}{\lambda})(\xi-x)}d\xi \sim \left\{\begin{array}{ll}
\frac{2\imath g_0(x)}{\lambda}, & |\lambda| \to \infty, \\
-\frac{2\imath g_y(x,0)}{\lambda^2}, & |\lambda| \to 0,
\end{array}\right. \quad x \in \mathbb{R}.
$$
Thus Cauchy’s theorem yields
\[
\int_{\partial D_1} \left(1 + \frac{1}{\lambda^2}\right) i \left[\int_x^\infty \chi(\zeta) e^{\frac{i}{2}(\lambda - \frac{i}{2}) (\zeta - x)} d\zeta \right] d\lambda - 2i\chi(x) \int_{\pi/2}^0 i d\theta + 2i\chi(x) \int_0^{\pi/2} i d\theta = 0, \quad x \in \mathbb{R},
\]
i.e. equation (4.15).

(ii)
\[
\int_{\partial D_1} \left(1 + \frac{1}{\lambda^2}\right) i \left[\int_0^\infty (iq_x(x, \eta) + q_y(x, \eta)) e^{-\frac{i}{2}(\lambda + \frac{i}{2}) \eta} d\eta \right] d\lambda = 0, \quad x \in \mathbb{R}. \tag{4.16}
\]
The integrand of the \(\lambda\)-integral in (4.16) is again an analytic function of \(\lambda\) with poles at the origin and at infinity. Integration by parts yields the term \(\frac{2i\chi(x)}{\lambda}\), thus
\[
\left(1 + \frac{1}{\lambda^2}\right) i \int_0^\infty (iq_x(x, \eta) + q_y(x, \eta)) e^{-\frac{i}{2}(\lambda + \frac{i}{2}) \eta} d\eta \sim \begin{cases} \frac{2i\chi(x)}{\lambda}, & |\lambda| \to \infty, \quad x \in \mathbb{R}, \\ \frac{2i\chi(x)}{\lambda}, & |\lambda| \to 0, \quad x \in \mathbb{R}, \end{cases}
\]
and Cauchy’s theorem yields
\[
\int_{\partial D_1} \left(1 + \frac{1}{\lambda^2}\right) i \left[\int_0^\infty (iq_x(x, \eta) + q_y(x, \eta)) e^{-\frac{i}{2}(\lambda + \frac{i}{2}) \eta} d\eta \right] d\lambda + 2i\chi(x) \int_{\pi/2}^0 i d\theta + 2i\chi(x) \int_0^{\pi/2} i d\theta = 0,
\]
hence equation (4.16).

(iii)
\[
\int_{\partial D_1} \left[\frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2}\right) (-i) \int_0^\infty q(x, \eta) e^{-\frac{i}{2}(\lambda + \frac{i}{2}) \eta} d\eta + \frac{2i\chi_0(x)}{\lambda} + \frac{4i\chi(x, 0)}{\lambda + \lambda^2} \right] d\lambda = 0, \quad x \in \mathbb{R}. \tag{4.17}
\]
Indeed, integrating by parts twice, we find
\[
\frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2}\right) (-i) \int_0^\infty q(x, \eta) e^{-\frac{1}{2}(\lambda + \frac{1}{\lambda}) \eta} d\eta + \frac{2i g_0(x)}{\lambda^2} + \frac{4i q_y(x, 0)}{\lambda + \lambda^3} \sim \begin{cases} \mathcal{O}\left(\frac{1}{\lambda}\right), & |\lambda| \to \infty, \\ \mathcal{O}(1), & |\lambda| \to 0. \end{cases}
\]
Hence the integrand of the \(\lambda \) integral on the right-hand side of (4.17) is analytic and bounded in \(D_1 \) and equation (4.17) follows.

(iv) Define \(G(\lambda) \) by the integral below; integrating by parts twice we find
\[
G(\lambda) = \frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2}\right) \int_x^\infty g_0(\xi) e^{\frac{1}{2}(\lambda - \frac{1}{\lambda}) (\xi - x)} d\xi + \frac{2i g_0(x)}{\lambda^2} + \frac{4i q_y(x, 0)}{\lambda + \lambda^3} \sim \begin{cases} \mathcal{O}\left(\frac{1}{\lambda}\right), & |\lambda| \to \infty, \\ \mathcal{O}(1), & |\lambda| \to 0. \end{cases}
\]
Thus the only singularity of the function \(G(\lambda) \) in \(D_1 \) a simple pole at the origin, and its integral around \(\partial D_1 \) is bounded.

Using equations (4.15)-(4.18) we find
\[
2\pi \chi(x) = - \int_{\partial D_2} \left[\frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2}\right) e^{2\omega(\lambda) x} \left(\int_x^\infty g_0(\xi) e^{-2\omega(\lambda) \xi} d\xi\right) + \frac{2i g_0(x)}{\lambda^2} + \frac{4i q_y(x, 0)}{\lambda + \lambda^3} \right] d\lambda, \quad x \in \mathbb{R},
\]
Letting \(l = -\frac{1}{\lambda} \), equation (4.19) becomes
\[
2\pi \chi(x) = 4 \int_{\partial D_2} \Omega(l) e^{2\omega(l) x} \left(\int_x^\infty g_0(\xi) e^{-2\omega(l) \xi} d\xi\right) - \frac{i g_0(x)}{2} - \frac{il q_y(x, 0)}{l^2 + 1} \right] dl, \quad x \in \mathbb{R},
\]
where \(\partial D_2 \) is the oriented boundary of the second quadrant of the complex \(l \)-plane shown in figure 4.

We now repeat the above computations starting with the linear limit of equation (3.18), namely the equation
\[
I + \int_{-\infty}^x e^{-\omega(\lambda)(x-\xi)} \mathcal{Q}_0^{(L)}(x, \lambda) d\xi = I - i \int_0^\infty e^\Omega(\lambda) \eta \mathcal{Q}_0^{(L)}(\xi, \eta, \lambda) d\eta, \quad (4.21)
\]
valid for \(\frac{3\pi}{2} \leq \text{arg}(\lambda) \leq 2\pi \).
The (21) component of the matrix equation (4.21) yields
\[
\int_{-\infty}^{x} \left(\chi(\xi) + \frac{g_0(\xi)}{\lambda} \right) e^{-2\omega(\lambda)(\xi-x)} d\xi = -i \int_{0}^{\infty} \left(iq_x(x,\eta) + q_y(x,\eta) - \frac{q(x,\eta)}{\lambda} \right) e^{-2\Omega(\lambda)\eta} d\eta,
\]
where \(x \in \mathbb{R}, \ 0 < \eta < \infty, \ \frac{3\pi}{2} \leq \text{arg}(\lambda) \leq 2\pi, \ x \in \mathbb{R}. \) \quad (4.22)

Multiplying this equation by \(1 + \frac{1}{\lambda^2} \) and subtracting the leading order terms at the origin, using computation analogous to those presented in (i)-(iv) above, we find
\[
2\pi \chi(x) = - \int_{\partial D_4} \left[\frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2} \right) e^{2\omega(\lambda)x} \left(\int_{-\infty}^{x} g_0(\xi)e^{-2\omega(\lambda)\xi} d\xi \right) - \frac{2ig_0(x)}{\lambda^2} - \frac{4i q_y(x,0)}{\lambda + \lambda^3} \right] d\lambda,
\]
where \(\partial D_4 \) is the boundary of the fourth quadrant in the complex \(\lambda \) plane. Hence using the change of variables \(l = \frac{-1}{\lambda} \),
\[
2\pi \chi(x) = 4 \int_{\partial D_3} \left[\Omega(l)e^{2\omega(l)x} \left(\int_{-\infty}^{x} g_0(\xi)e^{-2\omega(l)\xi} d\xi \right) + \frac{iq_0(x)}{l} - \frac{ilq_y(x,0)}{l^2 + 1} \right] dl, \quad x \in \mathbb{R},
\]
where \(\partial D_3 \) is the oriented boundary of the third quadrant of the complex \(l \)-plane shown in figure 5.

Adding equations (4.20) and (4.24) and deforming the contours along the positive and the negative imaginary axis to contours along the positive real axis we find
\[
\chi(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left[\Omega(l)e^{2\omega(l)x} \left(\int_{-\infty}^{\infty} g_0(\xi)e^{-2\omega(l)\xi} d\xi \right) \right] dl, \quad x \in \mathbb{R}. \quad (4.25)
\]
Using the global relation \(\{ b(\lambda) = 0, \ \lambda \geq 0 \} \), equation (4.25) reduces to equation (4.7).

\section{The Dirichlet to Neumann map}

In this section, with slight abuse, we use the following notation:
\[
\chi(x,y) = iq_x(x,y) + q_y(x,y), \quad \chi(x) = iq_0(x) + q_y(x,0). \quad (5.1)
\]

Our aim is to characterise uniquely the unknown function \(\chi(x) \) (hence the Neumann datum \(g_1(x) = q_y(x,0) \)) in terms of the given function \(g_0(x) \). We prove the following result:
The Neumann boundary value is characterised by

\[\text{Theorem 5.1} \]

Let \(q(x, y) \) satisfy the elliptic sine-Gordon equation (2.1), for \(-\infty < x < \infty\), 0 < y < \infty, with prescribed Dirichlet boundary condition (within 2\(\pi \) multiples)

\[
q(x, 0) = g_0(x), \quad g_0(x) - 2\pi m \in H^1(\mathbb{R}) \text{ (some } m \in \mathbb{Z}).
\] (5.2)

The Neumann boundary value is characterised by

\[
q_g(x, 0) = \frac{g_0(x)}{2} = -i\tilde{g}_0(x) \text{cos} \frac{g_0(x)}{2} \quad x \in \mathbb{R}
\]

\[
+ \frac{1}{\pi} \int_{\Omega(l)} \left\{ \int_x^\infty \left[\sin g_0(\xi)m_1(\xi, -\frac{1}{\lambda}) + i(\cos g_0(\xi) - 1)m_2(\xi, -\frac{1}{\lambda}) \right] e^{-2\omega(\xi)(\xi - x)} d\xi \right. \right.
\]

\[
+ \int_{-\infty}^x \left[\sin g_0(\xi)n_1(\xi, -\frac{1}{\lambda}) + i(\cos g_0(\xi) - 1)n_2(\xi, -\frac{1}{\lambda}) \right] e^{-2\omega(\xi)(\xi - x)} d\xi \right) d\lambda,
\] (5.3)

where the vectors \((m_1(x, \lambda), m_2(x, \lambda))\) and \((n_1(x, \lambda), n_2(x, \lambda))\) satisfy the ODEs

\[
\begin{align*}
(m_1)_x &= \frac{1}{\lambda}(1 - \cos g_0(x))m_1 - \left[\frac{1}{\lambda} \sin g_0(x) - \chi(x) \right]m_2 \\
(m_2)_x + 2\omega(\lambda)m_2 &= \left[\frac{1}{\lambda} \sin g_0(x) + \chi(x) \right]m_1 - \left[\frac{1}{\lambda}(1 - \cos g_0(x)) \right]m_2 \\
&\lim_{x \to \infty} (m_1, m_2) = (1, 0)
\end{align*}
\]

\[
\begin{align*}
(n_1)_x &= \frac{1}{\lambda}(1 - \cos g_0(x))n_1 - \left[\frac{1}{\lambda} \sin g_0(x) - \chi(x) \right]n_2 \\
(n_2)_x + 2\omega(\lambda)n_2 &= \left[\frac{1}{\lambda} \sin g_0(x) + \chi(x) \right]n_1 - \left[\frac{1}{\lambda}(1 - \cos g_0(x)) \right]n_2 \\
&\lim_{x \to \infty} (n_1, n_2) = (1, 0)
\end{align*}
\] (1, 0)

Proof:

To prove this result, we consider the global relation (3.15). The (21) element of this relation gives

\[
-\frac{i}{4} \int_0^\infty e^{-2\Omega(\lambda)\eta} \left[\chi(x, \eta) - \frac{1}{\lambda} \sin q(x, \eta) \right] \left(\Psi_3^R \right)_{11} - \frac{i}{\lambda} \left(\cos q(x, \eta) - 1 \right) \left(\Psi_3^R \right)_{21} \right] d\eta =
\]

\[
-\frac{1}{4} \int_x^\infty e^{-2\omega(\lambda)(\xi - x)} \left[\chi(\xi)m_1(\xi, \lambda) + \frac{1}{\lambda} \sin g_0(\xi)m_1(\xi, \lambda) + i\left(\cos g_0(\xi) - 1 \right)m_2(\xi, \lambda) \right] d\xi,
\]

\[
x \in \mathbb{R}, \quad 0 \leq \arg \lambda \leq \frac{\pi}{2}.
\] (5.4)
Multiplying equation (5.4) by $1 + \frac{1}{\lambda^2}$, and integrating the resulting expression with respect to λ along the boundary of D_1 defined by (4.14), we obtain

$$\frac{i}{4} \int_{\partial D_1} \left(1 + \frac{1}{\lambda^2}\right) \int_0^\infty e^{-2\Omega(\lambda)\eta} \left[\chi(x, \eta)(\Psi^R_3)_{11}(x, \eta, \lambda)\right] d\eta d\lambda$$

$$-\frac{i}{4} \int_{\partial D_1} \frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2}\right) \int_0^\infty e^{-2\Omega(\lambda)\eta} \left[(\sin q(\Psi^R_3)_{11} + i(\cos q - 1)(\Psi^R_3)_{21}(x, \eta, \lambda) d\eta d\lambda\right.$$}

$$= \frac{1}{4} \int_{\partial D_1} \left(1 + \frac{1}{\lambda^2}\right) \int_x^\infty (i\eta_x(\xi, 0) + q_y(\xi, 0)) m_1(\xi, \lambda) e^{-2\omega(\lambda)(\xi-x)} d\xi d\lambda$$

$$+ \frac{1}{4} \int_{\partial D_1} \frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2}\right) \int_x^\infty [\sin g_0(\xi)m_1(\xi, \lambda) + i(\cos g_0(\xi) - 1)m_2(\xi, \lambda)] e^{-2\omega(\lambda)(\xi-x)} d\xi d\lambda. $$

The above equation is the analogue of the equation resulting from (4.13) in the linear case. We can simplify this equation using the following facts:

(i) In the first quadrant of the λ complex plane, the function $\Psi^R_3(x, 0, \lambda)$, $x \in \mathbb{R}$, has the following asymptotic behaviour:

$$(\Psi^R_3)_{11}(x, 0, \lambda) = m_1(x, \lambda) \sim \begin{cases} 1 + \frac{A(x)}{\lambda}, & |\lambda| \to \infty, \\
\cos \frac{g_0(x)}{2} + O(1), & |\lambda| \to 0, \\
\end{cases}$$

$$(\Psi^R_3)_{21}(x, 0, \lambda) = m_2(x, \lambda) \sim \begin{cases} -\frac{i\chi(x)}{2\lambda} + O\left(\frac{1}{\lambda}\right), & |\lambda| \to \infty, \\
i\sin \frac{g_0(x)}{2} + O(1), & |\lambda| \to 0, \\
\end{cases}$$

where $A(x)$ satisfies

$$A_x(x) = \frac{1}{4}(1 - \cos g_0(x)) - \frac{1}{2}\chi(x)^2, \quad \lim_{x \to \infty} A(x) = 1.$$ We give a proof of this statement in the Appendix.

(ii) Integrating by parts, we find that the asymptotic behaviour of the integrand of the left hand side of (5.7) is

$$\frac{i\chi(x)}{2\lambda}(\Psi^R_3)_{11}(x, 0, \lambda) \sim \begin{cases} \frac{i\chi(x)}{2\lambda}, & \lambda \to \infty \\
\frac{i\chi(x)}{2\lambda} \cos \frac{g_0(x)}{2}, & \lambda \to 0. \\
\end{cases}$$

Calculating the residues at infinity and at the origin, we find (5.7).
(iii) For $x \in \mathbb{R}$,

$$\frac{1}{4} \int_{\partial D_1} \left(1 + \frac{1}{\lambda^2} \right) \int_{\xi}^{\infty} \chi(\xi)m_1(\xi, \lambda)e^{-2\omega(\lambda)(\xi-x)} d\xi d\lambda = \frac{\pi}{4} \chi(x)(1 + \cos \frac{g_0(x)}{2}). \quad (5.8)$$

Integrating by parts, we find that the asymptotic behaviour of the integrand of the left hand side of (5.8) is

$$\frac{i}{2} \frac{\lambda^2 + 1}{2\lambda \lambda^2 - 1} \chi(x)m_1(x, \lambda) \sim \begin{cases} \frac{i\chi(x)}{2\lambda} & |\lambda| \to \infty, \quad x \in \mathbb{R}, \quad \lambda \in \mathbb{C}^+ \\ -\frac{i\chi(x)}{2\lambda} \cos \frac{g_0(x)}{2} & |\lambda| \to 0. \end{cases}$$

Calculating the residues at infinity and at the origin, we find (5.7).

(iv)

$$\int_{\partial D_1} \left\{ \left(-\frac{i}{4} \right) \frac{1}{\lambda} \left(1 + \frac{1}{\lambda^2} \right) \int_{0}^{\infty} e^{-2\Omega(\lambda)\eta} \left[(\sin q(\Psi^R_3)_{11} + i(\cos q - 1)(\Psi^R_3)_{21}) (x, \eta, \lambda) \right] d\eta \\
+ \frac{i}{\lambda^2} \sin \frac{g_0(x)}{2} \cos \frac{g_0(x)}{2} \right\} d\lambda, \quad x \in \mathbb{R}. \quad (5.9)$$

Integrating by parts and using the asymptotic behaviour of Ψ^R_3, as well as the identity

$$\sin g_0(x) \cos \frac{g_0(x)}{2} + i(\cos g_0(x) - 1)i \sin \frac{g_0(x)}{2} = 2 \sin \frac{g_0(x)}{2},$$

we find that the integrand of the left hand side of (5.9) is of order $O\left(\frac{1}{\lambda^2} \right)$ at infinity and $O(1)$ at the origin, It follows that the integrand is analytic and bounded in D_1, hence its integral around the boundary vanishes.

In summary, we find

$$\frac{\pi}{4} \chi(x)(1 - \cos \frac{g_0(x)}{2}) = \frac{\pi}{4} \chi(x)(1 + \cos \frac{g_0(x)}{2}) \quad (5.10)$$

$$+ \frac{1}{4} \int_{\partial D_1} \left\{ \left(1 + \frac{1}{\lambda^2} \right) \int_{0}^{\infty} \left[\sin g_0(\xi)m_1(\xi, \lambda) + i(\cos g_0(\xi) - 1)m_2(\xi, \lambda) \right] e^{-2\omega(\lambda)(\xi-x)} d\xi \\
+ \frac{i}{\lambda^2} \sin \frac{g_0(x)}{2} \cos \frac{g_0(x)}{2} \right\} d\lambda, \quad x \in \mathbb{R}.$$

Simplifying and using the change of variables $l = -\frac{1}{\lambda}$, we finally obtain

$$\frac{\pi}{2} \chi(x) \cos \frac{g_0(x)}{2} = \int_{\partial D_2} \left\{ \Omega(l) \int_{0}^{\infty} \left[\sin g_0(\xi)m_1(\xi, -\frac{1}{l}) + i(\cos g_0(\xi) - 1)m_2(\xi, -\frac{1}{l}) \right] e^{-2\omega(l)(\xi-x)} d\xi \\
- i \sin \frac{g_0(x)}{2} + \frac{ilq_0(x, 0)}{1 + l^2} \cos \frac{g_0(x)}{2} \right\} dl, \quad x \in \mathbb{R}. \quad (5.11)$$
We now consider the global relation (3.18). Repeating the construction where we now use equation (3.18) in the fourth quadrant, we find

\[
\frac{\pi}{2} \chi(x) \cos \frac{g_0(x)}{2} = \frac{1}{\pi} \int_{\partial R} \left\{ \Omega(l) \left\{ \int_{-\infty}^{x} \left[\sin g_0(\xi) n_1(\xi, -\frac{1}{2}) + i(\cos g_0(\xi) - 1) n_2(\xi, -\frac{1}{2}) \right] e^{-2\omega(l)(\xi - x)} d\xi \right. \right. \\
\left. \left. + \int_{-\infty}^{x} \left[\sin g_0(\xi) m_1(\xi, -\frac{1}{2}) + i(\cos g_0(\xi) - 1) m_2(\xi, -\frac{1}{2}) \right] e^{-2\omega(l)(\xi - x)} d\xi \right\} d\lambda, \quad x \in \mathbb{R}. \tag{5.12}
\]

Adding (5.12) and (5.11) and deforming the appropriate contours to \(R \), we find

\[
\chi(x) \cos \frac{g_0(x)}{2} = \frac{1}{\pi} \int_{\partial R} \left\{ \Omega(l) \left\{ \int_{x}^{\infty} \left[\sin g_0(\xi) m_1(\xi, -\frac{1}{2}) + i(\cos g_0(\xi) - 1) m_2(\xi, -\frac{1}{2}) \right] e^{-2\omega(l)(\xi - x)} d\xi \right. \right. \\
\left. \left. + \int_{-\infty}^{x} \left[\sin g_0(\xi) n_1(\xi, -\frac{1}{2}) + i(\cos g_0(\xi) - 1) n_2(\xi, -\frac{1}{2}) \right] e^{-2\omega(l)(\xi - x)} d\xi \right\} d\lambda. \tag{5.13}
\]

Using the definition of \(\chi(x) \) this is equation (5.3).

QED

Remark 5.1 The linear limit of equation (5.13) is equation (4.7). Indeed, in the linear limit

\[
m_1, n_1 \to 1, \quad m_2, n_2 \to 0, \quad \sin g_0 \to g_0, \quad \cos g_0, \cos \frac{g_0}{2} \to 1,
\]

so that (5.13) becomes

\[
\chi(x) = \frac{1}{\pi} \int_{\partial R} \left\{ \left\{ \int_{x}^{\infty} g_0(\xi)e^{-2\omega(l)(\xi - x)} d\xi + \int_{-\infty}^{x} g_0(\xi)e^{-2\omega(l)(\xi - x)} d\xi \right\} d\lambda, \tag{5.14}
\]

which is (4.7).

6 Conclusions

We have derived the Dirichlet to Neumann map for an elliptic nonlinear boundary value problem, namely the Dirichlet problem for the elliptic sine-Gordon equation posed in a half plane, see Theorem 5.1. This nonlinear map characterises the spectral functions in terms of the given boundary conditions only. The derivation is based on the general ideas of the analogous derivation for the case of integrable evolution equations, but it also contains novel steps, in particular it involves the analysis of all eigenfunctions of the direct problem. This is conceptually justified by the fact that, contrary to the case of evolution equations, there is no part of the boundary where all boundary values are prescribed. Hence, the details of the derivation of the Dirichlet to Neumann map are technically more challenging and, to our knowledge, they are presented for a nonlinear elliptic problem for the first time.

Acknowledgements

This research was partially supported by EPSRC. ASF would like to express his gratitude to the Guggenheim Foundation, USA.
Appendix

In this appendix we derive the asymptotic formulas (5.5) and (5.6) for the vector $m^+(x, \lambda)$, $x \in \mathbb{R}$, $\lambda \in \mathbb{C}^+$, defined in (3.15).

Recall that the components (m_1, m_2) of $m^+(x, \lambda)$ satisfy the system of ODEs (see (3.25)

\begin{align}
\frac{d}{dx}m_1 &= \frac{1}{4} \left[\frac{i}{\lambda} (1 - \cos q_0(x)) m_1 + \left(\chi(x) - \frac{\sin q_0(x)}{\lambda} \right) m_2 \right], \\
\frac{d}{dx}m_2 &= \frac{1}{4} \left[\left(\chi(x) + \frac{\sin q_0(x)}{\lambda} \right) m_1 - \frac{i}{\lambda} (1 - \cos q_0(x)) m_2 \right],
\end{align}

(6.1)

(6.2)

$x \in \mathbb{R}$, $\lambda \in \mathbb{C}^+$,

where $\chi(x)$ is given by (5.1).

The asymptotic behaviour of $m^+(x, \lambda)$ as $|\lambda| \to \infty$

Substituting in (6.1)-(6.2) the ansatz

\begin{align*}
m_1(x, y, \lambda) &= 1 + \frac{A(x)}{\lambda} + O \left(\frac{1}{\lambda^2} \right), \\
m_2(x, y, \lambda) &= \frac{a(x)}{\lambda} + O \left(\frac{1}{\lambda^2} \right),
\end{align*}

as $|\lambda| \to \infty$, $0 < \arg(\lambda) < \frac{\pi}{2}$,

and equating powers of $\frac{1}{\lambda}$, we find

\begin{align*}
a(x) &= -\frac{i}{2} \chi(x), \\
A_x(x) &= \frac{i}{4} (1 - \cos q_0(x)) - \frac{i}{2} \chi(x)^2, \\
x \in \mathbb{R},
\end{align*}

hence the behaviour as $|\lambda| \to \infty$ in (5.5) and (5.6).

The asymptotic behaviour of $m^+(x, \lambda)$ as $|\lambda| \to 0$

Note that $m^+(x, \lambda)$, $x \in \mathbb{R}$, $\lambda \in \mathbb{C}^+$, is the first column vector of the matrix $\Psi_2(x, 0, \lambda)$ defined by (3.2). This matrix is bounded for $\lambda \in (\mathbb{C}^+, \mathbb{C}^-)$.

Let

\begin{equation}
\Psi_2(x, 0, \lambda) = \varphi(x, \lambda)e^{\omega(\lambda)x\sigma_3}.
\end{equation}

Since Ψ_2 satisfies (2.2), the matrix φ satisfies

\begin{equation}
\varphi_x = (Q(x, 0, \lambda) - \omega(\lambda)\sigma_3)\varphi, \quad \lim_{x \to \infty} \varphi(x, \lambda)e^{\omega(\lambda)x\sigma_3} = I.
\end{equation}

with $Q(x, y, \lambda)$ given by (2.5). Thus

\begin{equation}
\varphi_x = -\frac{i}{4\lambda} \tilde{Q}(x)\varphi + O(1), \quad \text{as } |\lambda| \to 0, \ \lambda \in (\mathbb{C}^+, \mathbb{C}^-),
\end{equation}

where

\begin{equation}
\tilde{Q}(x) = \begin{pmatrix}
\cos g_0(x) & -i \sin g_0(x) \\
i \sin g_0(x) & -\cos g_0(x)
\end{pmatrix}.
\end{equation}
Noting that
\[\tilde{Q} = D\sigma_3 D^{-1}, \quad D = \begin{pmatrix} \cos \frac{g_0(x)}{2} & i \sin \frac{g_0(x)}{2} \\ i \sin \frac{g_0(x)}{2} & \cos \frac{g_0(x)}{2} \end{pmatrix}, \]
we find
\[(D^{-1} \varphi)_x = -\frac{i}{4\lambda} \sigma_3 D^{-1} \varphi + O(1). \]
Solving this ODE, using the boundary condition at \(x \to \infty \), we find
\[\varphi(x, \lambda) = \left[\begin{pmatrix} \cos \frac{g_0(x)}{2} & i \sin \frac{g_0(x)}{2} \\ i \sin \frac{g_0(x)}{2} & \cos \frac{g_0(x)}{2} \end{pmatrix} \right] + O(1) \left[e^{\frac{1}{4\pi} x \sigma_3} \right], \quad |\lambda| \to 0, \; \lambda \in (\mathbb{C}^+, \mathbb{C}^-). \quad (6.4) \]
From equation (6.4) it follows that
\[m^+(x, \lambda) = \begin{pmatrix} \cos \frac{g_0(x)}{2} & i \sin \frac{g_0(x)}{2} \\ i \sin \frac{g_0(x)}{2} & \cos \frac{g_0(x)}{2} \end{pmatrix} + O(1), \quad \text{as} \; |\lambda| \to 0, \; \lambda \in C^+, \; x \in \mathbb{R}, \quad (6.5) \]
hence the behaviour as \(|\lambda| \to 0 \) in (5.5) and (5.6).

References

