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Abstract

We introduce a model for a pair of nonlinear evolving networks, defined over
a common set of vertices, subject to edgewise competition. Each network
may grow new edges spontaneously or through triad closure. Both networks
inhibit the other’s growth and encourage the other’s demise. These nonlin-
ear stochastic competition equations yield to a mean field analysis resulting
in a nonlinear deterministic system. There may be multiple equilibria; and
bifurcations of different types are shown to occur within a reduced parameter
space. This situation models competitive peer-to-peer communication net-
works such as BlackBerry Messenger displacing SMS; or instant messaging
displacing emails.

Keywords: Evolving networks, Edgewise competition, Mean field
approximation, Bifurcation structure

1. Introduction

In this paper we consider an extension of modelling non-linear evolving edge
networks introduced in [8], specifically by introducing a competing aspect to
multiple networks’ dynamics. For simplicity we shall consider two different
types of edges, henceforth referred to as Red and Blue edges, acting upon
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the same group of nodes, where each edge type has its own discrete time
dynamics, and series of adjacency matrices detailing its evolution. Since these
edge types act upon the same group of nodes they may be superimposed onto
a single graph, providing the different edge types are clearly differentiated.
The work presented in this paper considers such a network where the different
edge types are competing with one another, that is they negatively impact
each other’s growth. The specifics of our chosen model are outlined in Section
2.

Whilst the extension of tradition network theory from a stochastic to a dy-
namic setting has recently earnt much attention [1, 3, 4, 11, 9, 12, 13], the
notion of competing networks remains largely unexplored. Competing net-
works can however be observed in many technological fields, for example
one might consider a group of BlackBerry owners: the networks of Black-
Berry Messenger usage and SMS texting amongst this group are seen to
be competing with one another due to their similar functions. Here we see
BlackBerry Messenger network partially displace the SMS network at user
switch their method of communication, leading to a fall in SMS usage [2].
Public and social communication poses challenges to both commercial inter-
ests (mass customer industries such as telecommunications, retail, consumer
goods, marketing, advertising and new media) and public interests (secu-
rity, defence policy and opinion formation). Accordingly it is very timely to
consider how one type of communication platform may displace another.

Such competing technologies are typically emergent, with one network, Red,
boasting superior features (and hence its edge density will grow more rapidly)
whereas the other, Blue, possessing a higher userbase (and hence has a higher
initial edge density). We are interested in the equilibrium positions obtained
by both networks (henceforth referred to as the system), and in Section 3 we
introduce a mean field approximation of our system, to aid in locating these
equilibria. We conclude that it is unlikely both networks would reach a high
equilibrium position, since that would imply individual’s node-node relations
use both methods of communication, and instead argue that each other’s
presence negatively impacts each network. Section 4 shows that this causes
either one network to be eliminated or both networks find a compromise at
low edge density values, and we examine all possible equilibrium positions
for the system, together with conditions for their existence.

Finally, in Section 5, we make observations concerning the system’s equilibria
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in the case of highly asymmetric competition.

2. Competing Edge Dynamics

First we introduce some terminology to define our competing evolving net-
works.

Following [8, 7, 10] we define an evolving network, over discrete time steps
indexed by k = 1, 2, ...., via a sequence of adjacency matrices, say {Ak}. We
shall assume that all edges are undirected and we do not allow any edges
connecting a vertex with itself. Thus all of our adjacency matrices lie in the
set Sn of binary, symmetric, n × n matrices having zeros along their main
diagonals. We assume the evolving network dynamic is first order in time:
at the (k + 1)th time step each edge in Ak+1 will have a birth or death rate
that is conditional on Ak. However no new vertices will enter, nor shall any
existing vertices be permanently removed from the evolving network. At each
time step the evolving network is thus a random network conditional on the
evolving network at the previous time step, with a probability distribution
P (Ak+1|Ak), defined as Ak+1 ranges over Sn.

We shall assume that presence of each each edge in Ak+1 is determined in-
dependently of all other edges. This means that it is sufficient to specify the
conditional expectation that each edge is present, given by

< Ak+1|Ak >=
∑

Ak+1∈Sn

Ak+1P (Ak+1|Ak),

rather than dealing with full probability distribution. In fact for such edge-
independent conditional random networks we may write

P (Ak+1|Ak) =
∏

i<j

(< Ak+1|Ak >)
(Ak+1)ij
ij (1− (< Ak+1|Ak >)ij)

1−(Ak+1)ij ,

demonstrating their equivalence.

Notice that since distinct edges may be conditionally dependent on some
of the same information, it is possible for their appearance to be highly
correlated over time, despite their independence.
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Let the sequence {Ak} within Sn denote a Red evolving network defined over
a set of n vertices. Similarly let the sequence {Bk} within Sn denote a Blue
evolving network defined over the same set n vertices. Then, extending the
above ideas, we will assume that both evolving networks have a first order
edge-independent dynamic such that each network at each time step is a
random network conditionally dependent upon both networks at the previous
time step. Then such a competitive dynamic is completely determined by
matrix equations of the form

< Ak+1|Ak, Bk > = Ak ◦ (1− ΩA(Ak, Bk)) + (1−Ak) ◦ ΛA(Ak, Bk))

< Bk+1|Ak, Bk > = Bk ◦ (1− ΩB(Ak, Bk)) + (1− Ak) ◦ ΛB(Ak, Bk)).

Here 1 denotes the adjacency matrix for the n-vertex clique (all ones except
for the main diagonal); ◦ denotes the elementwise (Hadarmard) matrix prod-
uct; ΛA(Ak, Bk) and ΛB(Ak, Bk) denote matrices of conditional edge birth
probabilities (P (edgeij ∈ Ak+1|edgeij /∈ Ak) ∈ [0, 1]); and ΩA(Ak, Bk) and
ΩB(Ak, Bk) denote matrices of conditional edge death probabilities (P (edgeij /∈
Ak+1|edgeij ∈ Ak) ∈ [0, 1]);

Now let us be more specific. We define our networks’ individual edge birth
rates to be based upon a triangulation mechanism [8] (where friends of friends
are more likely to become friends, called triadic closure [5])3, and also con-
taining some antagonistic terms. We shall increase the probability of an
existing Red edge dying if a Blue edge is also present between those two
vertices, and vice-versa. We shall also decrease the probability of a Red edge
being born is a Blue edge is already present between those two vertices, and
vice-versa. Thus we consider

< Ak+1|Ak, Bk > = Ak ◦ (1(1− ωA)− µABk)

+(1− Ak) ◦ (δA + εAAk
2 − γABk) (1)

< Bk+1|Ak, Bk > = Bk ◦ (1(1− ωB)− µBAk)

+(1− Bk) ◦ (δB + εBBk
2 − γBAk), (2)

where ωA,ωB, δA, δB, εA, εB, µA, µB, γA and γB are all real constants in (0, 1).

3These are networks that strive to achieve triadic closure where the edge dynamics
between two vertices depends, amongst other values, on their current number of neighbours
in common.
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Notice that since both Ak+1 and Bk+1 are dependent upon Ak and Bk, there
is therefore no ‘first/late mover advantage’ [6] for the Red or Blue network.

Figure 1 shows the evolution of various synthetic networks in terms of the
edge density for the Red and Blue networks, where each simulation starts
from the same initial pair of matrices, A1 and B1. Their evolution is modelled
according to (1) and (2), with n = 39, and the same parameter values for
both Red and Blue networks: ω = 1/25, ε = 1/110, µ = 1/17, δ = 1/600
and γ = 1/600. Notice that multiple apparently stable equilibria exist and
that they are reachable from the same initial network pair at the first time
step. This highlights the significance of identifying these equilibria for a given
network, and motivates the analysis in the next section.

3. Mean Field Approximation

In order to identify and analyse the long term equilibria, we take the mean
field approximation introduced in [8]. Symmetry of the dynamics implies
there are no preferred vertices or edges (all edges satisfy the same rules since
the birth and death rates have no explicit edge dependencies), so we assume
that we may write < Ak >≈ pk1 and similarly < Bk >≈ qk1 where pk
and qk represent the edge densities of the Red and Blue networks at the kth
time step; and hence that these networks are approximated by Erdos-Renyi
random graphs. Then the mean field approximation for the dynamics of this
system is reduced to a nonlinear iteration of over the unit square:

pk+1 = pk(1− ωA − µAqk) + (1− pk)(δA + εA(n− 2)pk
2 − γAqk) (3)

qk+1 = qk(1− ωB − µBpk) + (1− qk)(δB + εB(n− 2)qk
2 − γBpk). (4)

Notice that 0 ≤ pk, qk ≤ 1 for all k, and our parameters should satisfy several
constraints. In (3) we require:

(a) (1−ωA−µAqk) ≥ 0, and hence, since qk ≤ 1, we must have ωA+µA ≤ 1;

(b) (δA + εA(n− 2)pk2 − γAqk) ≥ 0, and hence, since pk ≥ 0 and qk ≤ 1, we
must have δA − γA ≥ 0;

(c) (δA + εA(n− 2)pk2 − γAqk) ≤ 1, and hence, since pk ≤ 1 and qk ≥ 0, we
must haven δA + εA(n− 2) ≤ 1.
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Figure 1: Three separate simulations of competing networks, modelled according to (1)
and (2). In each case the edge densities of the competing networks are plotted against
one another at each timestep. Notice that each simulation is performed with the same
network parameter values and initial matrix pair, however evolve towards distinct network
positions.
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These three constraints hold similarly for the Blue network’s parameters.

At equilibrium, where, say, pk = p and qk = q for all k, we may rearrange (3)
and (4) into the following form,

q =
εA(n− 2)(1− p)p2 + (1− p)δA − pωA

γA(1− p) + pµA

= fA(p), (5)

p =
εB(n− 2)(1− q)q2 + (1− q)δB − qωB

γB(1− q) + qµB

= fB(q), (6)

where the functions fA and fB differ only in their (suppressed) parameter
values.

The mean field approximation retains the nonlinear nature of the full stochas-
tic iteration, but it is itself a deterministic iteration (over (p, q) space), since
the stochastic evolution has been smoothed away by projecting the expected
value of the adjacency matrix into its mean field representation. This approx-
imation is likely to become unreliable where the original evolution is sensitive
to small perturbations within the network structures (see [8] for further read-
ing). This certainly would include situations where one or other network is
very sparse and also where the pair are close to any unstable equilibrium or
other regions of instability, for the mean field dynamics.

4. Identifying System Equilibria for Symmetrical Competition

Before locating the equilibria for our system we first make the following sim-
plification that equalizes the competition: we shall assume that the param-
eter values for both the Red and Blue networks are equal, i.e., δA = δB = δ
for every parameter in (3) and (4). Hence (5) and (6) become

q = f(p), p = f(q), (7)

where

f(y) =
ε(n− 2)(1− y)y2 + (1− y)δ + yω

γ(1− y) + yµ
.

Now consider the one dimensional iteration defined on [0,1], indexed by t =
1, 2, ...,

yt+1 = f(yt). (8)
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Then equilibria for the mean field iteration (3) and (4), necessarily satisfying
(7), are represented by either fixed point equilibria, y∗ say, for (8); or a period
two, or “flip”, solution for (8), say y1 = f(y2), y2 = f(y1) (y1 (= y2). The
first case leads to a symmetrical equilibrium for (3) and (4), with p = q = y∗;
the second case leads to a mirror image pair of non-symmetric equilibria for
(3) and (4), with (p, q) = (y1, y2) and (y2, y1).

Once an equilibrium is identified, its stability is determined by the spectral
radius of the Jacobian obtained by linearizing (3) and (4) about that point,
with asymptotic stability if and only if this is less than one.

Since the equations in (7) both lead to cubic polynomials, the condition that
both equations are simultaneously satisfied is equivalent to locating the roots
of a ninth order polynomial, where we are only concerned with real roots lying
in the unit square. The constraints placed upon our parameter values do not
exclude the existence of a full set of nine applicable roots, and such a case
is shown in Figure 2. Here we take the parameter values: n = 39, ω = 1/25,
ε = 1/110, µ = 1/17, δ = 1/600 and γ = 1/600.

Fixed points for (8) lead to a cubic equation, p = f(p). So there is either
one or three root(s) in [0,1].

We have

0 = p3 +

(

µ− γ

ε(n− 2)
− 1

)

p2 +

(

ω + γ + δ

ε(n− 2)

)

p−
δ

ε(n− 2)
(9)

A cubic equation will have three real roots if, and only if, the cubic discrimi-
nant is positive. This implies a condition on the system parameters: writing
ε̂ = ε(n− 2), we have

−4δ3ε̂+ δ2((γ − µ)2 − 8ε̂2 + 4ε̂(2γ − 5µ− 3ω))+

(γ + ω)2((γ − µ)2 + ε̂2 − 2ε̂(γ + µ+ 2ω))−

2δ(2ε̂3 + (γ − µ)2(γ − 2µ− ω)−

2ε̂2(2γ + 3µ+ 5ω) + ε̂(γ2 + 6µ2 + 11µω + 6ω2 + γ(−µ + ω))) ≥ 0.

When this is satisfied the three equilibrium solutions correspond to equilibria
for (3) and (4) that lie along axis of reflection, p = q. In Figure 2 these roots
correspond to points A, B and C.
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Figure 2: An example of fixed point curves for a mean field approximation of a competing
edge network with specified parameters resulting in nine intersections.
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The remaining non symmetric equilibria for (3) and (4) may be identified by
considering two-periodic “flip-solutions” for (8). These may occur specifically
when any fixed point for (8) (corresponding to a symmetric equilibrium for
(3) and (4)) undergoes a flip bifurcation, when the system parameters change
so that the slope of f goes from above to below -1 at that equilibrium,
whence a pair of period-two solutions will be born. For (3) and (4) this event
corresponds to a pitchfork bifurcation where two asymmetric equilibria are
born as the stability of the corresponding symmetric equilibrium changes. We
can locate such bifurcations in terms of all of the parameters by first solving
(the cubic) for the equilibria, and then imposing the flip bifurcation condition
that the derivative f ′ is exactly -1 there also. Hence we may determine those
parameter surfaces for which such a pitchfork bifurcation of non symmetric
equilibria occurs for (3) and (4).

This mechanism accounts for the pitchfork bifurcation at point A in Figure
2 (corresponding to a flip bifurcation for (8)) giving rise to the asymmetric
equilibria at F and G, and similarly the pitchfork bifurcation at point C
giving rise to the asymmetric equilibria at H and I.

Finally there remains the possible equilibrium points D and E, where one
network dominates another. These points are stable and can only be anni-
hilated by collisions with the equilibria at F and G respectively (that occur
simultaneously by symmetry). In such a case the equilibrium at A would be
the only survivor.

These observations combined imply that there exists a maximum of nine
applicable roots and a minimum of one applicable root.

We have thus far provided tests to confirm if a system possesses nine ap-
plicable roots, however it is more useful to instead use these tests to locate
parameter values which satisfy them. By first fixing all but two of our param-
eter values it is possible to determine which values the remaining parameters
should take to guarantee4 the existence of nine applicable roots. For exam-
ple, let us fix n = 39, ω = 1/25, δ = 1/600 and γ = 1/600, as in Figure
2, and vary ε and µ. Then we are able to identify regions wherein we have
three first order solutions, and two contours denoting where bifurcation of

4This is not always possible, depending on the other parameter values and due to the
constraints placed upon the parameters.
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Figure 3: A bifurcation map for varying values of ε(n − 2) (x-axis) and µ (y-axis). The
white region indicates the existence of three first order solutions, whereas the orange
shaded region has only one. The green curve is a contour denoting bifurcation at the
lower first order root, where the pair of nonsymmetric roots persists to the left of the
contour. Similarly the blue curve denotes bifurcation at the higher first order root, where
the pair of nonsymmetric roots persist to the right of the contour.

the upper and lower first order solutions occur. Figure 3 demonstrates this
idea.

Selecting ε and µ from the region satisfying all three conditions then guar-
antees the existence of nine applicable roots, and likewise we can determine
the effects to our system’s mean field approximated potential equilibria from
small parameter changes in ε and µ. Figures 4 through 9 sample various ε
and µ values within Figure 3 together with their associated mean field fixed
points graph, and stability analysis of each root.

5. Non-Symmetric Competing Models

Whilst our previous assumption of symmetry between network parameter
values greatly simplified our analysis, it is perhaps unreasonable of an as-
sumption to make in practice. A new emergent network can only invade
successfully with an existing established (high edge density) network if it
possesses suitable parameter values and initial conditions.
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Figure 4: Parameter values chosen are ε(n − 2) = 37/110 and µ = 1/17, resulting in an
associated mean field fixed points graph with nine applicable roots. Of these roots, points
A, C, D and E are found to be stable, whereas the others are unstable.

Figure 5: Parameter values chosen are ε(n − 2) = 79/220 and µ = 1/17, resulting in
an associated mean field fixed points graph with seven applicable roots. With respect to
Figure 4, two roots are lost due to non-bifurcation of point A. Of these roots, points C, D
and E are found to be stable, whereas the others are unstable.
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Figure 6: Parameter values chosen are ε(n − 2) = 17/44 and µ = 1/17, resulting in an
associated mean field fixed points graph with five applicable roots. With respect to Figure
5, two more roots are lost due to only possessing a single first order solution. Of these
roots, points A, B and C are found to be stable, whereas the others are unstable.

Figure 7: Parameter values chosen are ε(n − 2) = 31/110 and µ = 1/17, resulting in
an associated mean field fixed points graph with seven applicable roots. With respect to
Figure 4, two roots are lost due to non-bifurcation of point C. Of these roots, points A, D
and E are found to be stable, whereas the others are unstable.
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Figure 8: Parameter values chosen are ε(n − 2) = 13/55 and µ = 1/17, resulting in an
associated mean field fixed points graph with five applicable roots. With respect to Figure
7, two more roots are lost due to only possessing a single first order solution. Of these
roots, points A, B and C are found to be stable, whereas the others are unstable.

Figure 9: Parameter values chosen are ε(n − 2) = 43/110 and µ = 2/21, resulting in an
associated mean field fixed points graph with five applicable roots. With respect to Figure
4, two roots are lost due to non-bifurcation of point A and a further two roots are lost
due to non-bifurcation of point C. Of these roots, points D and E are found to be stable,
whereas the others are unstable.
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Given fB(fA(p))− p = 0, from (5) and (6), this occurs where p is the root of
a ninth order polynomial r(p), say. Then by direct calculation

r(0) = δA
2εB(δA − γA) + γA(δB(δA − γA) + δAωB). (10)

Recall both that all parameters are positive and γA ≥ δA: hence r(0) > 0.
Notice also that,

r(1) = −µA
3(δB − γB)− µA

2ωA(δB − γB)− µA
2µBωA

−εBµAωA
2 − εBωA

3 − µA
2ωAωB. (11)

Then similarly r(1) < 0.

It follows that there exists an odd number of applicable roots satisfying
(5) and (6) in [0, 1], even without equality between network parameters by
the intermediate value theorem. We would expect this to be the case since
applicable roots can only be lost in pairs, through the coalescence of two
roots or a pitchfork bifurcation.

6. Discussion

In this paper we have introduced a model for networks that compete edge-
wise over a fixed set of vertices. Both networks inhibit the other’s growth
(through lower edge birth rates) and encourage the other’s demise (through
greater edge death rates).

The nonlinear stochastic competition equations yield to a mean field anal-
ysis that results in an associated nonlinear deterministic system. This in
turn indicates there may be multiple dynamic steady states; regions of sta-
bility, with some sensitivity to the stochastic details found close to unstable
equilibria; and a sensitivity to sparse initial conditions.

The applications we have in mind are situations where one peer-to-peer com-
munication network competes and gradually displaces the other. For example
where the emergence of BlackBerry Messenger has created a competing net-
work against SMS messages, resulting in a decreased edge density for SMS
communication over this userbase [2]. Our analysis illustrates how the ulti-
mate fate of such competitions may depend upon early sensitive and stochas-
tic behaviour.
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