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Bistability Through Triadic Closure

Peter Grindrod∗ Desmond J. Higham† Mark C. Parsons‡

December 12, 2011

Abstract

We propose and analyse a class of evolving network models suitable for de-
scribing a dynamic topological structure. Applications include telecommunication,
on-line social behaviour and information processing in neuroscience. We model
the evolving network as a discrete time Markov chain, and study a very general
framework where, conditioned on the current state, edges appear or disappear
independently at the next timestep. We show how to exploit symmetries in the
microscopic, localized rules in order to obtain conjugate classes of random graphs
that simplify analysis and calibration of a model. Further, we develop a mean
field theory for describing network evolution. For a simple but realistic scenario
incorporating the triadic closure effect that has been empirically observed by so-
cial scientists (friends of friends tend to become friends), the mean field theory
predicts bistable dynamics, and computational results confirm this prediction. We
also discuss the calibration issue for a set of real cell phone data, and find support
for a stratified model, where individuals are assigned to one of two distinct groups
having different within-group and across-group dynamics.

Keywords calibration, conjugacy, dynamic network, mean field theory, random graph,
stochastic process, temporal network, triangulation, voice call data.

1 Preliminaries

A diverse range of application areas give rise to large, complex interaction patterns. In
the field of network science, classes of random graph have been proposed and tested as
models to capture the structure of these interactions [24]. In many cases, the model
may be viewed as an iterative procedure that builds a network sequentially by randomly
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rewiring an existing structure [25, 30, 31] or by adding nodes and links in order to ‘grow’
a network [3]. In these cases the object of interest, however, is the final, static net-
work. Our work differs in that we wish to model a network structure that is inherently
dynamic, with edges appearing and disappearing between a fixed set of nodes. Such a
scenario arises naturally in many modern, data-rich, applications; for example, telecom-
munication (who phoned whom each day), on-line social interaction (who interacted with
whom in a chat room), on-line retailing (people who bought this book also bought) [17].
Attention has recently been paid to the issue of extending traditional graph theoretical
concepts such as paths to the time-dependent setting [5, 13, 16, 18, 28, 29] and related
computational complexity issues [1, 7, 8]. There has also been interest in the waiting
times between link changes [2, 32] and the emergence of communities [4, 23]. Also, link
prediction—estimating likely new connections a short time ahead—is being recognized
as an important task [10, 20, 22]. However, in this work we focus on the fundamental
issue of modeling and analysing such networks directly and from first principles; that is,
prescribing reasonable ‘laws of motion’ and studying the potential behaviors that can
arise. Our target applications are digitally generated communication or on-line social
interaction networks and our interest lies in the changes of the connectivity structure
itself. Related work on adaptive networks [14] has studied scenarios where the nodes are
involved in their own dynamical system that is coupled to the dynamic topology—for
example, in an epidemiological SIS model, susceptible (S) nodes may seek to avoid links
with nodes that are currently infected (I).

The main novel contributions in our work are (a) to introduce the concept of conjugate
graphs, which can play an important role in understanding and analysing a model,
(b) to derive a mean field theory approach to summarizing long term behaviour, (c) to
introduce a simple but realistic nonlinear network evolution model driven by the concept
of triadic closure from social science and to show that it admits bistable behaviour, and
(d) to consider the issue of model calibration and show that the use of a stratified model
improves the fit for a voice call data set.

The presentation is organised as follows. In the next section, we introduce a general
stochastic framework and show how modelling and simulation can be simplified by fo-
cussing on the dynamics of individual edges. We also illustrate the ideas in the particular
case where triadic closure is encouraged—friends of friends tend to become friends. Sec-
tion 3 then introduces the concept of conjugacy, which can be used to describe inherent
symmetries in a model. A mean field approach is described in section 4 and applied to
the triadic closure model in section 5. This model, and a more general stratified version,
is fitted to voice call data in section 6, and conclusions are given in section 7.

2 Preliminaries

Throughout this work we focus on undirected graphs on n vertices with no loops, which
may be represented by symmetric, binary n × n adjacency matrices. Here A = (aij) ∈
Rn×n has aij = aji = 1 if there is an edge from node i to node j and has aij = aji = 0
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otherwise, with all aii = 0. Let Sn denote the set of all such adjacency matrices and
let 1 denote the adjacency matrix for the n-vertex clique. If A ∈ Sn then 1 − A ∈ Sn

is the adjacency matrix for the complementary graph to that represented by A. Let
Rn denote the set of symmetric n × n real matrices with all elements taking values in
[0, 1], with zeros on the main diagonal. So Sn ⊂ Rn. For real n × n matrices M1 and
M2 the Hadamard (or Schur) product, denoted by M1 ◦M2, is the matrix obtained by
element-wise multiplication, so that

(M1 ◦M2)ij = (M1)ij(M2)ij.

If A1, A2 ∈ Sn then A1 ◦ A2 ∈ Sn represents the adjacency matrix for the graph of
common edges.

Following the treatment in [12], we use the phrase evolving network model to describe
a stochastic rule that generates a sequence of networks represented by a sequence of
adjacency matrices, {Ak}K

k=0, where each Ak ∈ Sn. We say that Ak represents the state
of the evolving network at the kth time step, tk, where t0 < t1 < . . . < tK are equally
spaced points in time.

It is natural and analytically convenient to focus on Markovian models. We therefore
consider the case of a first order evolving network model characterized by the conditional
probability distribution for Ak+1 given Ak, denoted by P (Ak+1|Ak), defined for all pairs
Ak+1, Ak ∈ Sn. The expected value of Ak+1 given Ak will be written as

〈Ak+1|Ak〉 :=
∑

Ak+1∈Sn

Ak+1P (Ak+1|Ak).

By construction 〈Ak+1|Ak〉 ∈ Rn and the (i, j)th element of 〈Ak+1|Ak〉 contains the
conditional probability that the corresponding edge is present in Ak+1.

We will say that the first order evolving network model, P (Ak+1|Ak), is edge independent
if, given Ak, information about the existence of any particular edges in Ak+1 has no effect
on the probability that any other edge is in Ak+1.

We also note that under this assumption of edge independence, any element W ∈ Rn

defines a random graph. The (i, j)th element of W contains the probability that the cor-
responding edge is present and we can construct the associated probability distribution
over Sn, say PW (A):

PW (A) =
n∏

i=1,j=i+1

(W )
(A)ij

ij (1− (W )ij)
1−(A)ij .

For example, if we have p ∈ (0, 1) then p1 ∈ Rn represents a classical Erdös-Rényi/Gilbert
random graph (usually denoted G(n, p)), where each edge exists with independent prob-
ability p [24]. Let CL(n,k) ∈ Sn represent the adjacency matrix for a circular lattice on
n vertices, with each vertex connected to its k nearest clockwise and its k nearest anti-
clockwise neighbours. Then for any constants 0 < q ≤ p < 1, pCL(n,k) is a partial lattice
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with every edge present with independent probability p, while pCL(n,k) + q(1−CL(n,k))
is a partial lattice with uniform “short cuts” in the spirit of the classical Watts-Strogatz
small world model [25, 31].

In restricting ourselves to first order edge independent evolving network models we may
simply consider matrix valued functions

F : Sn → Rn. (1)

Any such mapping F generates a first order edge independent evolving network model
for which

< Ak+1|Ak >= F(Ak). (2)

A particularly useful form for F(Ak) is

F(Ak) = (1− ω(Ak)) ◦ Ak + α(Ak) ◦ (1− Ak), (3)

where α(Ak) and ω(Ak) are given mappings Sn → Rn, representing conditional birth
rates and death rates respectively, as introduced in [12]. It is straightforward to compute
a path for such a Markov chain; that is, a particular network sequence whose transitions
respect the relevant edge birth and death rates. The following pseudo-code summarizes
this approach, given an initial adjacency matrx, A0.

for k = 0,1, 2, ....

Compute α(Ak), ω(Ak) ∈ Rn

for all disjoint pairs i += j

if (Ak)ij = 0 then set

(Ak+1)ij = 1 with prob. α(Ak)ij (birth)

(Ak+1)ij = 0 with prob. 1− α(Ak)ij (no change)

else we have (Ak)ij = 1, so set

(Ak+1)ij = 0 with prob. ω(Ak)ij (death)

(Ak+1)ij = 1 with prob. 1− ω(Ak)ij (no change)

end if

end for all pairs

end for k
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We finish this section by introducing a novel example that fits into this framework. We
consider the case where the death rate is a constant for all edges

ω(Ak) ≡ ω̃1, for ω̃ ∈ (0, 1), (4)

while the birth rates for edges not present in Ak are given by

α(Ak) = δ1 + ε1 ◦ A2
k, (5)

for some constants δ and ε. We assume that 0 < δ - 1 and, to guarantee probabilities
in the range [0, 1], that 0 < ε(n− 2) < 1− δ.

This model reflects a situation where the more common adjacencies two nonadjacent
vertices have in Ak, the more likely they are to become adjacent in Ak+1. In other
words, somebody who is not currently your friend, but who is currently a friend of many
of your current friends, has an enhanced chance of becoming your friend at the next
step. Forming new associations by the process of triangulating current adjacencies is
very natural within a number of applications. In social networks two peers may be
likely to become introduced through common friends; in this context, the mechanism
is often referred to as triadic closure [11, 19, 27]. In developing cognitive processing
capability in the brain, triangulation increases efficiency of communication and resilience,
and overabundance of triangles has been observed in both anatomical and functional
studies [6, 15, 21].

In Figure 1 we show the evolution of a network path from this model with n = 100 nodes
and parameter values

ω̃ = 0.01, ε = 0.0005, δ = 0.0004. (6)

A dot in row i and column j denotes an edge from node i to node j. The initial network
was a sample of an Erdös-Rényi graph with expected edge density p = 0.3—each possible
edge exists with independent probability p. The figure shows the adjacency matrix at
times tk for k = 50, 100, 150, . . . , 750. We see that the density of edges increases with
time. Figure 2 gives a histogram of the nodal degrees at the final time, k = 750. The
structure appears to be approximately Poisson, and the edge density

p̂k :=
1

n(n− 1)/2

∑ ∑
i>j

(A[k])ij, (7)

at the final time was p̂750 = 0.712.

In Figure 3 we repeat the experiment with the same parameter values, but start with an
Erdös-Rényi graph with a lower expected edge density of p = 0.15. In this case we see
that the edge density decreases over time. The final time value was p̂750 = 0.051. The
degree distribution, shown in Figure 4, again appears to be approximately Poisson.

The analysis that we develop in sections 3 and 4 will explain the difference in behavior
that we see between these two cases, pointing out for the first time in this context that
bistability arises naturally.
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time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Figure 1: Network evolution from the triangulation model (4)–(5) with n = 100 nodes
and parameter values from (6). Initial network is an Erdös-Rényi sample with expected
edge density of p = 0.3.
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Figure 2: Degree distribution for the final network (after 750 iterations) in Figure 1.

3 Classes of Conjugate Random Graphs

In this section we show how symmetries in a model give rise to a natural definition of
conjugacy. Assume that the mapping F in (1) characterising a first order edge inde-
pendent evolving network is subordinate to a mapping F : Rn → Rn. We will see in
section 4 how this can be rather natural in some examples when we wish to replace Ak

by its own expected value. Let λ denote a (finite or infinite dimensional) parameter
ranging over a domain Λ within some suitable space. Let W : Λ → Rn. We will say that
W (λ) is a class of conjugate random graphs for F if for each λ ∈ Λ there exists a unique
element g(λ) ∈ Λ such that

W (g(λ)) = F(W (λ)).

Hence the parameterized set {W (λ)|λ ∈ Λ} ⊂ Rn is positively invariant under F .
Moreover the action of F on Rn can in this case be reduced to the action of g on
Λ.

Suppose that F : Rn → Rn also possesses some symmetries. That is, suppose that there
is a subgroup of n× n permutation matrices, H = {Qr}, such that F is invariant under
each of these these permutations; so that

F(A) = QrF(QT
r AQr)Q

T
r , A ∈ Sn, Qr ∈ H.

Then F uses no a priori (extra) information about the vertices that distinguishes one
permutation in H from another. Now let W ⊂ Rn denote the subset of random graphs
in Rn that are invariant under the symmetries in H, so that

QT
r WQr = W,

for all W ∈W , Qr ∈ H. It then follows that

QT
r F(W )Qr = F(QT

r WQr) = F(W ).
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time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Figure 3: As for Figure 1, with the initial network as an Erdös-Rényi sample with
expected edge density of p = 0.15.
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Figure 4: Degree distribution for the final network (after 750 iterations) in Figure 3.

Hence F maps W into W . So, under a suitable parametrization, with some λ ∈ Λ, the
subset W is a possible class of conjugate random graphs for F .

In the simple case where F is invariant under all possible permutations on n vertices,
we know that no subset of nodes is distinguished in any way. For example this will
certainly be so whenever F(W ) = Q1(W ) ◦ Q2(W ) ◦ ... ◦ QS(W ), where each of the
Qs(W ) : Rn → Rn is a polynomial, Qs(W ) = β01 + β1W + β2W 2 + ... + βµW µ, say, for
suitable nonnegative constants β0, ..., βµ. The random graph W = p1 is invariant under
all such permutations; W is the set of such graphs, parameterized by p ∈ [0, 1]. This
situation represents a kind of egalitarian or democratic scenario where every node is the
same and none is distinguished based on any a priori information. So we must treat all
edges and all edge birth dynamics according to the same model.

Alternatively, we may have a stratified model where some extra prior information di-
vides the nodes onto two disjoint subsets. (The generalization to a finer partition is
immediate.) This could represent a social network between individuals from two sexes
for instance, where it was posited that male-male, female-male and female-female in-
teractions follow different birth/death dynamics. Similarly, there may be an elite and
non-elite (officers and troops), or cultural, or functional splitting of the vertices. To
be concrete, suppose that all edges between any of the first n1 vertices satisfy a given
identical dynamic; all edges between any of the last n2 = n−n1 vertices satisfy a distinct
given identical dynamic; and all edges between any of the first n1 vertices with any of the
last n2 vertices satisfy a third given identical dynamic. Then F will be invariant under
all permutations Q that permute the two subsets separately, and that do not swap any
vertices between them. In that case W is invariant with respect to all such permutations
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if it has a symmetric block structure: say

(W )ij = 0 if i = j

(W )ij = p if i += j and i, j ≤ n1

(W )ij = q if i += j and i, j > n1

(W )ij = r if min{i, j} ≤ n1 and max{i, j} > n1.

Then W is the set of such graphs, parameterised by three constants: λ = (p, q, r) ∈
[0, 1]3 = Λ.

For such a stratified random graph, W ∈W , the expected number of edges is given by

n1(n1 − 1)

2
p +

n2(n2 − 1)

2
q + n1n2r.

We also recall that the Watts-Strogatz clustering coefficient for a node is defined as
the ratio of links between the vertices within its neighbourhood divided by the number
of links that could possibly exist between them [24, 31]. The expected Watts-Strogatz
clustering coefficient then has the form

n1!
2!(n1−3)!p

3 + n2!
2!(n2−3)!q

3 + n1n2!
2!(n2−2)!r

2q + n2n1!
2!(n1−2)!r

2p + n1(n1 − 1)n2pr2 + n2(n2 − 1)n1qr2

n1!
2!(n1−3)!p

2 + n2!
2!(n2−3)!q

2 + n1n2!
2!(n2−2)!r

2 + n2n1!
2!(n1−2)!r

2 + n1(n1 − 1)n2pr + n2(n2 − 1)n1qr
.

This expression has six terms in each of the denominator and the numerator, repre-
senting the expected number of open jaws (pairs of edges from a central vertex to two
other distinct vertices), and the expected number of those open jaws that are complete
triangles, respectively. Six terms arise because the central vertex (of the open jaw) may
be in either of the stratified subsets, while the other two vertices may be such that none,
one, or both lie within the same subset. The expression simplifies to yield

3(n1 − 1)n1n2pr2 + 3n1(n2 − 1)n2qr2 + (n1 − 2)(n1 − 1)n1p3 + (n2 − 2)(n2 − 1)n2q3)

(2(n1 − 1)n1n2pr + 2n1(n2 − 1)n2qr + (n1 − 1)n1n2r2 + n1(n2 − 1)n2r2 + (n1 − 2)(n1 − 1)n1p2 + (n2 − 2)(n2 − 1)n2q2)
.

In section 6 we compare unstratified and stratified models on voice call data.

4 A Mean Field Approximation for Evolving Net-
works

Our aim in this section is to develop a heuristic approach for analysing the behaviour
of an edge independent first order evolving network (2). We begin with the simplifying
assumption that Ak has the properties of its own mean (expected) graph, 〈Ak|X〉, given
any prior information X, rather than including all of the details of any particular value
for Ak. Then we may use this expected value to calculate the consequent expectation,
〈Ak+1|〈Ak|X〉〉.
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In reality of course each of the edges in Ak is there or not, taking a binary value. Hence
by employing the expectation for Ak, the analysis is only an approximation. It will
be particularly poor at times when the probability of edges appearing is relatively small
and/or the existence and distribution of just a few edges has a critical effect: they cannot
in reality be smeared out.

Alternatively, we may only be given 〈Ak|X〉 ∈ Rn as a random graph itself, conditional
on any previous information X, and we may wish to use our evolving graph model to
calculate an estimate for 〈Ak+1|X〉, and so on. We should calculate

〈Ak+1|X〉 =
∑

Ak∈Sn

F(Ak)P (Ak|X).

Instead we might calculate the approximation

〈Ak+1|X〉 ≈ F(
∑

Ak∈Sn

AkP (Ak|X)) = F(〈Ak|X〉). (8)

There is equality here if the only nonlinearities in F involve the multiplication of in-
dependent stochastic variables. In most cases we will have to consider the expected
number(s) of some combinations of edge being present. Here the edge independence
assumption is exactly what we need. For example, the expected value of the number of
mutual adjacencies (for any give pair of vertices) involves a sum over all pairs of edges
connecting to the possible mutual adjacent vertex. These are mutually independent, and
of course the two necessary edges within each term are mutually independent. Hence for
this type of F , with each term in the range involving only sums over independent events
each of which itself is a product over individual edges, (8) is exact. We refer to (8) as a
mean field approximation for the evolving graph.

Suppose that we may represent < Ak|X > by some random graph, say Wk ∈ Rn. Then
using the mean field approximation we simply iterate with F :

Wk′+1 = F(Wk′), k′ = k, k + 1, k + 2, . . .

to obtain 〈Ak′|X〉 = Wk′ for all k′ = k, k + 1, k + 2, . . .. This iteration generates a
sequence of expected values for the evolving network at all future time steps, given the
approximation for Ak, but using the mean field approximation.

Now let us assume that W (λ) is a conjugate random graph for F . If we have Wk =
W (λk), for some λk ∈ Λ, then we can iterate with g to produce a sequence

λk′+1 = g(λk′), k′ = k, k + 1, k + 2, . . . ,

and it follows that

〈Ak′|X〉 = Wk′ = W (λk′), k′ = k, k + 1, k + 2, . . .

Hence under the mean field approximation a conjugate random graph is particularly
useful, as it descends from the mean field iteration over Rn to one over Λ.
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5 Bistability Through Triadic Closure

We now apply this mean field theory to the triadic closure model (4)–(5), where

F(Ak) = (1− ω̃)Ak + (1− Ak) ◦ (δ1 + εA2
k). (9)

It is easy to see by symmetry of the model (there being no distinguished vertices nor
differences in the way vertices and edges are treated) that the Erdös-Rényi graphs are
possible conjugate random graphs for this mapping. Substituting 〈Ak|X〉 = pk1 for Ak

as the mean field approximation, we obtain the iteration pk+1 = g(pk) where

g(p) = (1− ω̃)p + (1− p)(δ + ε(n− 2)p2). (10)

At equilibrium pk+1 = pk ≡ p!, where

p! = (1− p!)(δ + ε(n− 2)p!2)/ω̃. (11)

In the limit δ → 0, there are three real roots p! if and only if ω̃ < ε(n−2)/4. The smallest
is δ/(δ + ω̃) + O(δ2), representing a sparse graph with almost no triangulation, where
the random birth rate, δ, equilibrates with death rate, ω̃; and the the larger roots are
at 1/2±

√
1/4− ω̃/ε(n− 2)+O(δ), where the nonlinear triangulation term equilibrates

with the death rate, ω̃. Moreover g′(p) ≥ 0 for all p ∈ [0, 1] and g(0) = δ. Hence, in
this regime, the two outer steady states are stable for this iteration, whilst the middle
root is unstable. Intuitively, with a low initial edge density the triangulation rule cannot
get started and the network remains sparse, whereas for a sufficiently high initial edge
density, the network evolves into an ε-dependent state. Figure 5 illustrates the case with
n = 100 and model parameters from (6), where there are stable fixed points at 0.049
and 0.721 surrounding an unstable fixed point at p! = 0.229. These values are consistent
with the experiments in Figures 1–4.

As a further test, Figure 6 shows the results of a single simulation with the same model
parameters as in Figure 5. As the initial network, we sampled an Erdös-Rényi random
graph with edge probability p = 0.3. The jagged curve in the figure shows the edge
density (7) against tk. The solid curve represents the mean field recurrence from (10),
with p0 = 0.3. We see that there is very good agreement when this macroscopic quan-
tity is computed directly from the full microscopic simulation and from the mean field
approximation.

Our mean field analysis predicts that the long term behaviour may be sensitive not only to
the initial conditions but also to the transient stochastic fluctuations. Figure 7 confirms
this effect by showing five separate simulations with the same model parameters, all
starting out from the same graph, a sample of an Erdös-Rényi graph with edge probability
p = 0.23. This value was chosen deliberately to be close to the unstable middle fixed
point of the mean field equation. As in Figure 6, we plot the edge density p̂k at each time
step. We see that four paths evolve towards the lowest mean field solution, p! = 0.049,
and one breaks out towards the highest mean field solution p! = 0.721.
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Figure 5: Graph of p (dashed) and (1− p)(δ + ε(n− 2)p2)/ω̃ (solid): the fixed points are
at 0.049, 0.229 and 0.721. (Here n = 100 and parameter values are taken from (6).)

Figure 6: Comparison of p̂k in (7) estimated from a simulation with solution to the
dynamical mean field equation (10).

At each tk, we can calculate the average Watts-Strogatz clustering coefficient, Ck, defined
as the clustering coefficient averaged over all nodes. It is interesting to compare its
evolution with that of the edge density, p̂k. Since the initial network and long term
networks are Erdös-Rényi graphs we will have have Ck = p̂k there. For the simulation
in Figure 8, we see that Ck increases slightly ahead of p̂k, as initially random clusters
strengthen, before they infill at the higher density. The individual, vertex-wise, values
of the clustering coefficient increase in variance during the phase of rapid growth; see
Figure 9.

To finish this section, we emphasize our belief that in order to understand network forma-
tion and forecast network behaviour it is essential to have a class of realistic dynamical
models capable of replicating behaviour seen in evolving network structures. Indeed,
if we merely observe evolving social and communication networks, then, as with any
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Figure 7: Five simulations starting from the same network: we show the fraction of
edges p̂k in (10) at each time step (equivalent to the edge probability p for an evolving
Erdös-Rényi random graph).

Figure 8: Ratio of average clustering coefficient to edge density: Ck/p̂k.

Figure 9: Vertex-level clustering coefficients as the network in Figure 8 evolves.

dynamical system, we only see some subset of stable behavior. The bistability effect
shown in this section confirms that a single realisation can give a misleading picture,
and also opens up the possibility of timely and targeted intervention—for example, a
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service provider may wish to stimulate early activity to move the edge density into a
region where the network will then self-organise into a profitable, well connected regime.

6 Application to Voice Call Data

In this section we consider an evolving network data set of pairwise mobile phone com-
munications during a period of the year where connections were on the increase. We
compare the unstratified (homogeneous) model and a stratified model introduced in sec-
tion 3, by first calibrating them via the evolution of the appropriate edge densities, and
then examining how they predict the corresponding possible evolution of the average
Watts-Strogatz clustering coefficient.

Suppose that we observe an evolving random graph. By making an assumption about F ,
and selecting an appropriate subgroup of permutations, Q, we may derive the mean field
equations, over W , which will involve the dynamical parameters from F . From data we
can calculate the evolution of the coordinates λ describing W . By fitting these to the
mean field model we can estimate the unknown dynamical parameters. Then the choice
of model may be validated or invalidated by checking other evolving network metrics not
used to do the calibration.

For example here we consider weeks 8 through 15 of data from the Reality Mining data
set given in [9], showing voice call between around 150 people over time. We consider the
weekly call networks, summarizing which pairs of people communicated during successive
weeks.

Assuming initially that no people are distinctive in any way, we first fit the simple three
parameter unstratified model in (9). Assuming a homogeneous population, since F is
invariant under all permutations, the mean field dynamics act over W = {p1 | p ∈ [0, 1]}.
So, as described in section 5 we have pk+1 = g(pk) for g in (10). From the data we can
estimate pk via p̂k in (7) , the density of edges present. We have

p̂k+1 = (1− ω̃)p̂k + (1− p̂k)(δ + ε(n− 2)p̂2
k) + errk,

where the errors, errk, arise as an average over n(n − 1)/2 independent edge-processes
each of which must take binary values. Thus a Gaussian approximation to the structure
of the errors is reasonable and the parameters may be fitted with simple least squares.
This results in estimates (δ, ε, ω̃) = (0.02170, 0.00868, 0.18399). In Figure 10 we show p̂k

as well as the 5th and 95th percentiles arising from 200 simulations with the full model,
each starting out from A8 and using the estimated dynamical parameters. We see that
the calibrated model provides an ensemble of simulations about the actual data.

Now let us examine the performance of the model by considering the evolution of the
average Watts-Strogatz clustering coefficient, Ck, from week to week. For an Erdös-Rényi
graph Ck = pk in expectation. In Figure 11 we see that the model performs extremely
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Figure 10: Evolution of edge density by week from data (crosses), and also the 5 and 95
percentile values (triangles) achieved via an ensemble of model simulations each using
the fitted dynamical parameter values, and each starting from A8.
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Figure 11: Evolution of Ck by week from data (crosses), and also the the 5 and 95
percentile values (triangles) achieved via an ensemble of model simulations each using
the fitted dynamical parameter values, and each starting from A8.

poorly since the observed values for Ck are much higher than those achievable under the
conditioned Erdös-Rényi mean field evolution.
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Figure 12: Evolution of edge density by week from data (crosses), and also the 5 and 95
percentile values (triangles) achieved via an ensemble of model simulations each using
the fitted dynamical parameter values, and each starting from A8.

One explanation for this poor fit is that the population is not homogeneous, which
motivates us to consider a stratified random graph model of the type introduced in
section 3, in order to increase the clustering within some subgroup, and thus increase
the values for Ck overall, while keeping the overall edge density low. We partitioned the
vertices into two sets; one of size n1 = 92, and one of size n2 = 14. This was done by first
clustering the vertices using the sum of the adjacency matrices as a similarity matrix
and adopting a Fiedler vector approach to give a spectral clustering [12, 26]. In other
applications this task might be done a priori on grounds such as gender, functional role
or responsibility of the individuals.

Assuming an identical birth and death dynamic for edges within each vertex subset and
between the subsets, then, in the (p, q, r) notation of section 3, the mean field dynamic
at the (k + 1)th time step becomes

pk+1 = (1− ω̃p)pk + (1− pk)(δp + εp((n1 − 2)p2
k + n2r

2
k)),

rk+1 = (1− ω̃r)rk + (1− rk)(δr + εr((n1 − 1)pkrk + (n2 − 1)qkrk)),

qk+1 = (1− ω̃q)qk + (1− qk)(δq + εq((n2 − 2)q2
k + n1r

2)),

involving nine parameters. These nine degrees of freedom can be fitted using the es-
timates for (pk, qk, rk). We obtain the overall edge density evolution shown in Figure
12.

Again let us examine the performance of the stratified model by considering the evolution
of the Watts-Strogatz clustering coefficient, Ck. In Figure 13 we see that the model
performs far better than the unstratified version. This indicates that there well may be
some hierarchical stratification (such as the one proposed here on the basis of a priori
clustering) amongst the subjects observed in the data set.
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Figure 13: Evolution of Ck by week from data (crosses), and also the 5 and 95 percentile
values (triangles) achieved via an ensemble of stratified model simulations each using the
fitted dynamical parameter values, and each starting from A8.

7 Discussion

The motivation for this work was to develop a framework for modelling and analysing
dynamic connectivity structures. A successful model offers the potential to illustrate
the range of possible behaviors and also to allow predictions under various ‘what if’
scenarios, such as spiking information (rumours, marketing, stimulus) or making direct
perturbations (disabling or enhancing specific vertices or edges).

By introducing the concept of conjugate graphs and developing a mean field theory, we
opened up the potential to approximate and calibrate the dynamics of observed networks.
In particular, this can help us to identify when the network is close to an unstable rest
point, where stochastic details will be important.

We illustrated the ideas on a simple but realistic nonlinear model based on a small set
of parameters that is amenable both to analysis and to calibration. In this model, new
edges are more likely to appear through successive triangulation (in addition to random
births and deaths). This is a natural dynamic that is likely to enhance communication
efficiency and resilience. However, our analysis showed that given a lack of early stimulus
the networks will remain at a relatively sparse state—a sufficiently dense initial state is
needed to produce well-clustered long time networks. There is, of course, great scope
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for many other classes of evolving network mechanisms to be proposed, analysed and
calibrated using the ideas and tools developed here.
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