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Abstract. The understanding of the statistical properties anddoes not obey ergodicity and its asymptotic state depends on
of the dynamics of multistable systems is gaining more andwhat is the basin of attraction the initial condition belongs
more importance in a vast variety of scientific fields. This isto. Among the many interesting properties of multi-stable
especially relevant for the investigation of the tipping points systems, we may mention their possibility of featuring hys-
of complex systems. Sometimes, in order to understand théeretic behaviour: starting from an initial equilibrium= xip
time series of given observables exhibiting bimodal distri- realized for a given value of a paramefee Py, and increas-
butions, simple one-dimensional Langevin models are fit-ing adiabatically the value aP so that the system is always
ted to reproduce the observed statistical properties, and usedt equilibrium followingx = x’(P), we may eventually en-
to investing-ate the projected dynamics of the observablecounter bifurcations leading the system to a new branch of
This is of great relevance for studying potential catastrophicequilibriax = x’(P) such that, if we revert the direction of
changes in the properties of the underlying system or resovariation of P, we may end up to a different final stable state
nant behaviours like those related to stochastic resonancesin = x'(Pn) # x(Pin) = xin. More generally, we can say
like mechanisms. In this paper, we propose a frameworkthat the history of the system determines which of the stable
for encasing this kind of studies, using simple box modelsstates is realized for a given choice of the parameters.
of the oceanic circulation and choosing as observable the Whereas hysteretic behaviour has first been discussed in
strength of the thermohaline circulation. We study the sta-the context of magnetism, climate dynamics offers some
tistical properties of the transitions between the two modesoutstanding examples where multistability is of great rele-
of operation of the thermohaline circulation under symmet-vance, such as the classical problem of the snowball/snow-
ric boundary forcings and test their agreement with simpli- free Earth (Saltzman 2002; Lucarini et al., 2010; Pierrehum-
fied one-dimensional phenomenological theories. We exbert et al., 2011). In this context, the problem which has
tend our analysis to include stochastic resonance-like ampliprobably attracted the greatest deal of interest in the last two
fication processes. We conclude that fitted one-dimensionadlecades is that of the stability properties of the thermoha-
Langevin models, when closely scrutinised, may result to bdine circulation (THC). Since paleoclimatic evidences sug-
more ad-hoc than they seem, lacking robustness and/or wellgest that the large scale circulation of the Atlantic Ocean
posedness. They should be treated with care, more as goresents at least two, qualitatively different, stable modes
empiric descriptive tool than as methodology with predictive of operation (Boyle et al., 1987; Rahmstorf, 2002), theoreti-
power. cal and modellistic efforts have long been directed to under-
standing the mathematical properties of the circulation and
the physical processes responsible for switching from one to
the other stable mode and those responsible for ensuring the
1 Introduction stability of either equilibrium.

Interestingly, it has been possible to construct very sim-
An interesting property of many physical systems with sev-ple models of the THC (Stommel, 1961; Rooth, 1982) able
eral degrees of freedom is the presence of multiple equilibto feature most of the desired properties, and models of
ria (or, more in general, of a disconnected attractor) for ahigher degrees of complexity have basically confirmed the
given choice of the parameters. In such a case, the systemobustness of such properties of multistability, from simple
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10 V. Lucarini et al.: Bistable systems with stochastic noise

two-dimensional convective equations models (Cessi andind, on the other side, allows for jumps (large scale vari-
Young, 1992; Vellinga, 1996; Lucarini et al., 2005, 2007) to ability) driving the system across the boundaries separat-
simplified climate models (Stocker and Wright, 1991; Rahm-ing the basin of attraction of the fixed points. See Friedlin
storf, 1995; Stocker and Schmittner, 1997). Whereas cli-and Wentzel (1998) for a detailed mathematical treatment of
mate models of intermediate complexity now consistentlythese problems. Since the landmark Hasselmann's (1976)
represent the THC as a multistable system (Rahmstorf etontribution, it has become clearer and clearer in the cli-
al., 2005), results are not conclusive when full 3-D climate mate science community that stochastic forcing components
models are considered (Stouffer and Manabe, 2003; Scottan be treated as quite reliable surrogates for high frequency
et al., 2008). Nonetheless, recent simulations performed byrocesses not captured by the variables included in the cli-
Hawkins et al. (2011) with a full 3-D climate model have suc- mate model under consideration (Fraedrich, 1978; Saltzman,
cessfully reproduced the kind of bistability properties shown2002). This has raised the interest in exploring whether tran-
by Rahmestorf et al. (2005). In the case of THC, the strengthsitions between stable modes of operation of the THC far
of the hydrological cycle plays the role of dominant parame-from the actual tipping points could be triggered by noise,
ter, whose variation can lead the system through bifurcationsepresenting high-frequency (with respect to the ocean’s time
(Sijp and England, 2006, 2011; Sijp et al., 2011). A detailedscale) atmospheric forcings, of sufficient amplitude (Cessi,
account of these analyses can be found in Rahmstorf (1995),994; Monahan, 2002). Along these lines, it has become es-
Scott et al. (1999), and Titz et al. (2001, 2002). The mat-pecially tempting to interpret the dynamics of the THC in
ter is of great relevance for understanding climate variabilitypresence of noise as resulting from an effective Langevin
and climate change because, if the system is close to a biequation of the formig = F(q, p)dt + edW — whered W
furcation point, small changes in the parameters value coulds the increment of a Wiener process — as this opens the
have virtually irreversible effects, driving the climate system way to approaching the problem in terms of one-dimensional
a qualitatively different steady state. As evidenced in manyFokker-Planck equation. Ditlevsen (1999) suggested the
studies (see, e.g. Kuhlbrodt et al., 2007), a transition from thepossibility of considering more general stochastic processes
present state of the THC to a state featuring weaker meridfor accommodating the statistical properties of observational
ional circulation would have very relevant climatic effects at data.
regional and global scale, as the northward ocean heat trans- The Langevin equation approach has also led various re-
port in the Atlantic would be greatly reduced. searchers to study whether the process of stochastic reso-
The potential of shut-off of the THC is considered a high nance (Gammaitoni et al., 1998) — basically noise-enhanced
impact climate risk — even if its likelihood for the present response amplification to periodic forcing — could explain
climate is considered very low (Rahmstorf, 2006) — and thethe strength of the climate response (in terms of actual THC
conditions under which such a transition can occur are probstrength) in spite of the relative weakness of the Milankovic
ably the best example of a “climate tipping point” (Lenton et forcing. Note that stochastic resonance, which has enjoyed
al., 2008). great success in fields ranging from microscopic physics to
Since we are dealing in principle with a 3-D fluid with neurobiology and perception, was first proposed in a climatic
complex thermodynamical and dynamical properties, a lotcontext (Benzi et al., 1982; Nicolis, 1982; Benzi, 2010).
of efforts have been directing at finding, using suitable scal-Velez-Belchi et al. (2001) provided the first example of a sim-
ing and simplified theoretical setting, an approximate one-ple THC box-model featuring stochastic resonance, and later
dimensional ordinary differential equation equation of the Ganopolski and Rahmstorf (2002) observed a similar mech-
formg = F(q, P), whereg is the intensity of the THC ang anism in action in a much more realistic climate model.
is a set of parameters of the system. Such an equation would In this work we would like to examine critically the effec-
be able to represent at least in a semi-quantitative way théiveness and robustness of using one-dimensional Langevin
evolution of the THC strength as a function of the strengthequations to represent the dynamical and statistical proper-
and some parameters only and, by solvifigg, P) =0, ties of the THC strength resulting from models which fea-
would provide the (in general) multiple equilibria corre- ture more than one degree of freedom. This is methodologi-
sponding to a specific choice of the set of paramekerén cally relevant, in the context of recent efforts directed at un-
excellent account of this methodology can be found in Di- derstanding whether the transitions between different steady
jkstra (2005). Note that, very recently, a related surrogatestates associated to the tipping points can be highlighted by
one-dimensional dynamics for a salinity indicator has beenearly indicators (Scheffer et al., 2008). In Sect. 2 we show
proposed to fit the output of a comprehensive climate modehow to construct, from data, the form of the effective driv-
(Sijp et al., 2011). ing force and the intensity of noise, and propose tests for
The dynamics of multistable systems becomes rather interinvestigating the robustness of the approach. In Sect. 3 we
esting when stochastic forcing is considered. In the most badescribe the main properties of the simple box models of the
sic case, such a forcing is represented in the form of additiveoceanic circulation analysed in this paper. In Sect. 4 we test
white noise. Noise introduces on one side small scale variour methodology by studying, in various cases, whether it
ability around each of the stable equilibria of the system,is possible to represent consistently the statistical properties
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V. Lucarini et al.: Bistable systems with stochastic noise 11

of the THC strength resulting from the stochastic forcing of Let's now consider the less idealised case where we ob-
the models introduced in Sect. 3 using an one-dimensionaserve a scalar output signalx) generated by a stochastic or
Langevin model. In Sect. 5 we further expand our analy-chaotic deterministic flow of the systemliving, in general,
sis by testing whether the matching conditions for observingin an N-dimensional phase space, and let's assume that the
stochastic resonance are obeyed. In Sect. 6 we present oempirical pdfr(y) is bimodal, so that two peaks are found
conclusions. aty=y4, y=y_, separated by a local minimum gt yo.

We wish to test the possibility of constructing a Langevin

) equation for the scalar:
2 Theoretical background

_ _ dy = Feff(y)dt + eeftd W (4)

2.1 Modelling a bistable system

so that the statistics generated by Eq. (4) closely resembles
Let’s consider a one dimensional Langevin equation for thethe one deriving from the full system. Such a representa-
variablex of the form: tion would bypass the details of the full dynamics of the sys-
tem and its construction can be approached by imposing con-
dx=F(x)dt+edW, 1) straints based upon the populations of the basin of attractions
whereF(x) is a smooth function of giving the drift term, ~ ofthe two modes gnd upon the transition prqb_ability betwe_en
W is a standard Wiener process afi¥ is its infinitesimal ~ Such basins. Basically, this amounts to defining an effective
increment, so that parameterises the strength of the stochas-Projected dynamics. _
tic forcing. As well known, the invariant probability density ~ The observation time of the variable must be long

function (pdf)z (x) can be written as: enough to allow for a robust estimate of the pdf and for ob-
serving many transitions between the two modes. From the
7(x) = Ce*% (2) ~ empirical pdf of the considered observahiey) we derive
the function(y) = —In(z(y)). In order to achieve compati-
whereV (x) is the effective potential such tha¥ (x)/dx = bility with Eq. (2), we define
—F(x) andC is the normalisation constant. The local ex-
trema of the potential correspond to the fixed points of the2Veff(y)/ s2= U (y) +const ®)

deterministic system obtained when=0, and in particular
its local minima (maxima) giving the stable (unstable) equi-
libria. Quite intuitively, in the stochastic case, the peaks of
the invariant probability distribution correspond to the min-
ima of the potential.

In the prototypical situation of a confining double well po- Szﬁ U Ut
tential, where we refer to the position of the right and left 7 (+—> —) ~ ﬁ\/ U"(y)U" (yo)e~ V00~V 0+ (6)
minimum of V (x) asxy, X—, and to local maximum asg,
the two peaks of the (x) are separated by a dip correspond-  BY comparing this expression with the observed transition
ing to the local maximum of the potential, while for large rate, we can finally find the actual value @f, because all
positive and negative values mfthen(x) approaches zero the other terms can be CompUtEd from the time series of the
asV (x) diverges forx| — co. The average rate of transition ¥ observable. Assuming that in the region between the two

The functionU (y) contains information on both the effec-
tive potential of the system and on the effective intensity of
the noise. Substituting the expression\@f(y) in Eq. (3),
we can write, e.g. the average ratg- — —) as follows:

r(+ — _) from the basin of attraction Of+ to that of x_ minima and the local maximum the functlﬁl(y) is SmOOth,
can be approximated using the Kramer’s formula: we obtain the following expression, which is numerically
more robust as the second derivatives disappear:

1 —pYlo—Vixs) @)
r(+——)=5=vV"(x4)V"(x0)e s 2

2 + Ft— —)~ “/zseff (U (yo) — U(z-i—)) o~ V00U
under the condition that the absolute value of the exponent T (y+—0)
is larger than one, so tha&t(xg) — V (x;) > £2/2. This cor- 23 (V _v 7(2v<yo>—v<.v+>>
responds to the physical condition that the noise is moderate = (V(y0) (y+))e G @)

Y
with respect to the depth of the potential well. The average T ¥+ —0)
rate of transition-(— — +) in the opposite direction can be where G(+ — —) = V2 W0G0-UG) ,~UGo)-UG4) is a

obtained by exchanging the sign plus with the sign minus , T (y+—y0)? .
in the previous expression. The Kramer's formula basically[2Ctor depending only on the observed probability. -Note

expresses the general fact that at stationary state a detaiIg‘Hat Eas. (6)~(7) are valid under the condition thityo) —
balance conditions applies. U(y+) 2 1 or, equivalently, that (y,)/m (vo) % e. By plug-
ging the obtained value @ts into Eq. (5) we derivé/es(y).

We can then reconstruct the effective Langevin equation in
the form given in Eq. (4). Itis crucial that the same value for
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12 V. Lucarini et al.: Bistable systems with stochastic noise

ceff IS Obtained when using as benchmark the average rataeeded in order to check whether our methodology is solely
r(— — +), because otherwise we have that the reconstructedescriptive of the statistics of the chosen observable system
dynamics does not obey detailed balance, or, equivalentlyfor a given choice of parameters, or, instead, has predictive
there is a mismatch between time-scales of the transitionpower, in terms of allowing one to understand how the sta-

and steady state populations of the two basins. Such an issugstical properties of the observable change when the param-
is not relevant in the special case when the pdf of the systeneters of the full system are altered. Obviously, as mentioned

is symmetric with respect te. above, choosing a suitable variablewill be crucial in en-
suring the effectiveness of this one-dimensional parameteri-
2.2 Robustness sation:

Let's now consider an N-dimensional Langevin equation of _ As a first condition of robustness, we may ask that if
the form: we multiply the noise intensity of the true system by a
factor «, so thate;; — «ag;; in EQ. (8), we obtain that
dxi =Fi(x,... xn)dt +&ijdW; 8) correspondingly@egf — Oégejf-f and?hé ;ﬁective potential
where thedw; terms indicate increments of independent Veit(y) is not altered in Eq. (4).
Wiener processes and thé(x1,...,xy) are the (generally
nonlinear) drift terms. We can write the Langevin equation
for the observable constructed as linear combination of the
system variables = ¢; x; as follows:

— Another condition of robustness is that if in Eq. (9) we
alter the noise matrix;; in such a way that is not
altered in Eqg. (9), we would like that, correspondingly,
ceff and Vesr are not altered in Eq. (4).

dy=c; Fi(xl,...,xN)dr+ci8idej

These conditions basically require that the reconstructed de-
= i Fi(x1, o xy)dt +EdW ©) yreq

terministic drift term is independent of the intensity of the
where, exploiting the independence of the Wiener processedl0iSe — so that an underlying deterministic dynamics is well

we have: — /SN (cei)2 (ciei)2. If the deterministic part of defined — and the reconstructed noise intensity scales linearly
Ty sl with the actual noise applied to the system, so that we can

system (9) features two stable equilibia andx_, when  ~onciruct a relationship such ag(8) ~ y &

stochastic noise is added, we will see hopping between the

basins of attraction of these two points. When looking at

the variabley = ¢;x; as output of the system, we will see 3 Simple box models of the thermohaline circulation
a bimodal distribution where the two peaks are centred at

yi =cixi 4 andy_ =c¢;x; _, respectively, with a local mini- 3.1 Full model

mum in-between situated &. _ _ L
The true dynamics of the observablds indeed given in We consider the simple deterministic three-box model of

Eq. (9), but, if we are provided only with the time series of the deep circulation of the At_Iantic chan introduced by
y, the best we can do in to try to derive the “best” approx- Rooth (1932_) and thoroughly discussed in Scott et al. (_1999)
imate equation — the one-dimensional Langevin model — of2nd Lucarini and Stone (2005a, b). The model consists of
the form given in Eq. (4), using the heuristic procedure de-& Northern high-latitude box (box 1), a tropical box (box 2),

scribed above. Comparing Egs. (4) and (9), we understan@nd @ southern high-latitude box (box 3). The volume of the
that the difference in the drift termasF; (x1, ..., xn) — Feft(y) two high-latitude boxes is the same and i¥ 1limes the vol-

describes the deterministic dynamics of theariable which ~ Ume of the tropical box, where is chosen to be equal to 2.
cannot be parameterised in terms of theariable alone. We The ph'y5|cal'st.ate of the baxs despnbed by its temperature
may expect that i is a slow variable, which retains the long T; and its salinitys;; the boxi receives from the atmosphere
term memory of the system, such a difference is small, and"€ net flux of heat/; and the net flux of freshwater; the

the dynamics of is truly quasi-one-dimensional In there is reshwater fluxes globally sum up to O, so that the average
time-scale separation, one may expect that the impact of th@ceanic salinity is a conserved quantity of the system. The

faster variables on its evolution can be effectively expressed©* i IS subjected to the oceanic advection of heat and salt
as noise, thus determining the valuesofSaltzman, 2002). from the upstream box through the THC, whose strength is

Therefore, the rati@ /et gives an indirect measure of how ¢- The dynamics of the system is described by the evolution
strong is this effect, being close to 1 if the dominant contri- €quation for the temperature and the salinity of each box. Af-
bution for comes from the direct stochastic forcing into the €7 @ Suitable procedure of non-dimensionalisation (Lucarini
system. and Stone, 2005a), We.o_btam the followmg final form for
Since constructing an ad-hoc one-dimensional model fromthe temperature and salinity tendency equations for the three

a time-series is typically possible by following the lines de- POX€S:
scribed above, we need to introduce some criteria to test. {q(Tz_T1)+H1

the robustness of the approach we have undertaken. This is' = | |¢|(T5— T1) + H1 (10a)

Nonlin. Processes Geophys., 19, 92 2012 www.nonlin-processes-geophys.net/19/9/2012/



V. Lucarini et al.: Bistable systems with stochastic noise 13

depends only on the strength of the buoyancy fluxes in the
upwelling boxHy eqand Fy:

|grefl = / k(o Hu,eq+ B Fu),

where the sign ofjeq is positive ifu = 1 and negative if
fy= |91 =T3)+Hs, ¢>0 (10c)  u=1. Instead, for a given value @, the realised pattern of
l9|(Ta=T3)+Hs, =0 circulation is stable as long @ < 3F,, which implies that
Fg = 3F, a bifurcation leading to an instability of the sys-
tem is found. Such an instability exchanges the role of the
(20d) upwelling and downwelling boxes. Therefore, if, e.g. in the
initial stateu = 3 andd = 1, and F3 is kept fixed, the sys-
tem features bistability for the following range of values of
. 1. . F1:1/3F3 < F1 < 3F3. These approximate relations become
S2=—1,(S1+53) (10e)  exact in the limit of infinitely fast thermal relaxation.
Following Scott et al. (1999) and Lucarini and
Stone (2005a), we select for the constants of the sys-
o [asi=S9)—F3 ¢>0 (100 tem the valuest = 1.5x 108571, ¢ =1.5x 1074 K1,
1g|(S2— S3)— Fa, ¢ <0 B=80x10*(psuy?, A =13x10"%s"1 v =2. When
symmetric boundary conditions are considered with
whereq = k(p1 — p3) and p; = po(1—aT; + BS;), so that T3 = T3 =0°C, T3 =30°C, F; = F3=9x 10 1psust?,
q =k(B(S1—S3)—a(T1—T3)),a andp are the usual thermal we obtain at steady statigref| = 1.47 x 10s™1. The
and haline expansion coefficients is a baseline density, sign of g depends uniquely on the initial conditions of the
andk is the hydraulic constant controlling the water trans- integration: we have 50 % probability of ending up in either
port. Such a parameterisation was first introduced by Stomthe northern or the southern downwelling state if random
mel (1961) for a hemispheric box model, whereas the apinitial conditions are chosen. Since the internal time scale
proximate linear relationship between the density difference|g,o 1 ~ 215y is much larger than the thermal time scale
between the two high-latitude regions and the THC strengthy.—1 ~ 25y, we conclude that the thermal relaxation is a fast
has been confirmed by simplified yet realistic GCM simula- process.
tions (Rahmstorf, 1995; Scott et al., 2008). The physical valug of the strength of the thermohaline
The freshwater fluxeg; are considered given constants, circulation can be found from the normalised value above
with Fo = —(F1+ F3)/V, sothatS1+ VS2+S3=(V +2)Sp as ¢ = qVbox 1, Where Vhox1 = Vbox3 = Vhox2/V = 1.1 x
at all times, whereSo = 35 psu is a baseline salinity. Instead, 10'"m? is the volume of either high-latitude box. Instead,
the heat fluxH; = A(T; — T;) is such that the box tempera- the physical value of the net freshwater flExinto boxi is
ture is relaxed to a fixed target temperat@yevith the time  obtained ag; = Fy Vboxi/So; its intensive value per unit sur-
constant. . Such a representation mimics the combined ef-face results to bé; = F; Vboxi/ AboxiSo = F; Dpox/So Where
fect of radiative heat transfer and of a meridional heat trans-Dy,, = 5000 m is the common depth of the three oceanic
port. This also implies that the spatial average of ocean temboxes. Therefore, our base state features reasonable val-
peratureT = (T + VTz +73)/(2+ V) obeys the evolution ues for the net poleward transport of freshwater flux — about
equation? = (T — T), whereT is the spatial average of the 2.8x10°m3s~1 0 28 Sv, and for the THC strength — about
target temperature, so that asymptotically (and, in practisel.55x 10’m3s~1 =155Sv.
after few units ofa~ 1)T is a conserved quantity. Therefore, o
we practically havel ~ — (71 + T3)/V. We usually have 3-2 Simplified model
that the internal time scale of the systgm! is much larger
thanx—1, thus implying that the thermal relaxation is fast.

: L(T3—T2)+ Ha
To=1V 10b
27 1L (T~ T2) + Hp (10b)

q(S2—81)—F1

§ =
glSs—s)—F1

A simplified version of the model given in Eq. (10a—f) can
The water of the high latitude ocean box where down-be derived by assuming that the thermal restoring constant
9 — oo so that the time scale of the feedback — 0. Thus,

wellin rs is warmer and mor line that than si
elling occurs is warmer and more saline that than situate he temperatures of the three boxes are such that at all times

on the opposite side of the planet, since it receives advectio
from the warm and saline equatorial box. Since the halmer% I;, so that we obtain a reduced dynamical system with
only 2 degrees of freedom (d.o.f.):

contribution is stronger, the downwelling box is denser than
the upwelling box. The sign af is positive if downwelling . q(2S0—3/251—1/283)—F, q>0
occurs in box 1, and negative if it occurs in box 3. The buoy- S1= { lg1(S3— S1) — F1 g<0
ancy fluxes in the upwelling and downwelling boxes serve

different purposes in determining the dynamics of the sys-

tem. In fact, the strength of the circulation at equilibrigps

(11a)

www.nonlin-processes-geophys.net/19/9/2012/ Nonlin. Processes Geophys., 2, 2012



14 V. Lucarini et al.: Bistable systems with stochastic noise

o | q(S1—83)—F3 g>0 )
S= { lq1(2S0—3/2853—1/251)—F3  ¢<O0 (11b) |

where the THC strength can be written@as k8(S3 — S1). T
Note that, since the system (11a—b) has been obtained by pel.

forming a singular perturbation to (10a—f), we need to renor- , \ y \

malize the value of the hydraulic constanin order to ob- | |
tain gref = 1.47x 1071571 at steady state when choosing

F1=F3=9x101psus?! as above. The resulting value ; ‘ ’ = ; 2‘ ;

is k=3.0x10""s™1, with |grefl = VEBFy = VkBF1. The

same physical scalings described above apply here. Such a N S _

simplified model retains the most relevant elements of theFig. 1. Empirical probability distribution function for the THC
dynamics of the full model, even if the thermal dynamical strength in the 2 d.o.f. model for selected values of symmetrically
feedback (Scott et al., 1999) are missing. applied noise.

the procedure outlined in Sect. 2, for each value,6f ¢3 =
¢, where we have on purpose kept the system'’s parameters
invariant with respect to exchanging the box 1 and the box 3,
4.1 Symmetric forcing to the simplified model we attempt the derivation of the deterministic drift term and
the stochastic noise defining the effective Langevin equation
We now modify the dynamical system (11a-b) by including for the THC strength:
additive noise in both the evolution equations for b&tfand
S1 so that we obtain the following system of stochastic dif- dq = Feit(q, &)t +eeff()dW (13)
ferential equations in the Ito form: where our notation accommodates for a noise-dependent ef-
fective drift term, which corresponds to an efficient poten-
dSs = {‘1(250_3/251_1/253)dt_Fld’+gldW1’ 9>0 (125) tial Vefi(g.¢), such thatFeii(q,e) = —d Veri(q,)/dq. The
141(S3 = S1)d = Fadi +e1d Wi 9=0 pdfs 7(¢) feature a very strong dependence on the inten-
sity of the noise, with, as expected, higher noise intensity
associated to flatter distributions (Fig. 1). We then derive
the normalised potentidl (¢,¢) = —In(x(q,¢)) (Fig. 2). By
matching the observed hopping rate- — —) (Fig. 3a) with
whered W1 3 are the increments of two independent Wiener the right hand side of the formula given in Eq. (7) — in
processes. Note that Ditlevsen (1999) proposed the possFig. 3b we present the values of the facté# — —) — we
bility of considering more general noise processes to explairderive for each value of the corresponding value ats.
the THC dynamics. Hereby, we stick to the more usual whiteNote that for each value of the noise we use only the ob-
noise case. served difference between the valueltfy, ¢) evaluated in
We then perform a set of experiments by integratingg =0 and ing = |gref| and the value ofgre|, and the upper
the stochastic differential Eq. (12a—b) using the numeri-bound ofe has been chosen so théigo, &) — U(g+,8) =
cal scheme proposed in Mannella and Palleschi (1989) folU (¢o,¢) — U (g—,¢) 2 1.5. As shown in Fig. 3c, we obtain
values ofe; = e3 =¢ ranging from 36 x 10-%psus??  that up to a high degree of precisies; ~ yv/2kBe = y &,
to 6.2 x 10-°psus /2. This corresponds to a range of wherey = 1 for all values ofs. Moreover, also is in agree-
noise strength for the physical freshwater flux ol2x ment with our expectations given at the end of Sect. 2, we
108 m3s 1210 1.96x 10° m3s~1/2, In more concrete terms, have thatVest(g,€) = Vett(g), SO that the effect of adding
we are exploring stochastic perturbations to the freshwatenoise does notimpact the deterministic drift term, or, in other
flux whose variability (standard deviation), over the charac-terms, a deterministic dynamics is well defined. Figure 4
teristic internal time scalégref| ™1 ~ 215 yr, range between shows that for all values of noise the obtained effective po-
27 % and 47 % of the baseline valdg = F3. Results are tentials collapse into a single universal function, apart from
presented for sets of 100 ensemble members for each valuen additive constant of no physical significance.
of &, with each integration lasting $@r. The chosen time Our experimental procedure has shown quite convincingly
stepis 1yr. that we can reduce the time evolution of the THC strength to
We wish to study the possibility of defining up to a good a one-dimensional Langevin equation. We wish now to in-
degree of precision a consistent stochastic dynamics for thgestigate how to derive analytically the drift and the noise
THC strengthy involving only g itself and noise. Following term in Eq. (13) and an expression for the hopping rate

4 Numerical experiments: fitting the dynamics from the
population and the transition rates

) q(S1—83)dt — F3dt +¢e3d W3, qg>0
dSz= { lq1(2So—3/283—1/281)dt — F3dt +e3dW3 g <0 (12b)
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Fig. 3. Goodness of the one-dimensional approach for the reduced
2 d.o.f. model. (a) Average rate of hopping between the north-
ern and southern sinking equilibrid+ — —) =r(— — +) (black
line). The theoretical value is shown with the red line. Data are in
units of s™1. (b) Geometrical factoG(+ - —) = G(— — +) of

the hopping rate computed from Eq. (7). Adimensional quantity.
(c) Value of the parameter giving the ratio betweeng¢ (obtained

asa divided byb) and the theoretically derived expressigkge.
Adimensional quantity.

Fig. 2. One-dimensional adimensional potentialg) obtained as
minus the logarithm of the pdf given in Fig. 1.

r(+— —). Rewriting the system (10a—b) with respect to
the new variableg; = kB(S1 — S3) = k(p1 — p3) and Q =
k(p1+ p3), we obtain the following coupled evolution equa-
tions:

dq=q(2kp—3/2¢%/|q| — Q)dt +e,dW, (14a)

it is possible to project very efficiently the dynamics of the
5 5 system on the variablg alone, which seems to capture well
dQ=q(2kp+1/24°/Iq| = Q)dt —kB(F1+ Fa)di+e0dWo  (14b)  the slow manifold (Saltzman, 2002) of the system. Using

wherep = po(1—a(T1+ 2T> + T3) /4 + BSo) is the average  EO- (15), we obtain the following approximate expression for

density of the system, we have that, following Eq. €)= the average rate of transitiex4- — —) between the northern

> > ) ) sinking and the southern sinking state,
eg =kB/e1+e5, anddW,, dWy are increments of Wiener

processes. Note that the drift terms in both Eqg. (11) is odd 22 _ Iqreﬂzz
with respect to the — —¢g transformation and the SDE for r(+—>-)~ 3 Igrefle a®be)
the THC strength is in the form of Eq. (9), with —&. We Y. (P32
- . 2 2 —
assume t_ha}t the s_ystgm spends most of its time near the two <V < kBFre © /ipe2 —r(— =), (16)
deterministic equilibria withy = F|gref|, and that over the 3

timescales of our interest the deterministic drift term of the
variableQ vanishes. Assuming that the random forcing®n
has little impact ory, we derive the following approximate
Langevin equation for the evolution of the THC strength:

~ 2
4 24(q"/1g|~lgredr +¢qd We. 13) 4.2  Asymmetric forcing to the simplified model

where, the drift term is odd with respect to parity and is in-

dependent of the noise strength. The corresponding effecthe obtained results suggest that the simplified model of the
tive potentialVest(g) is independent of and can be written  THC with only 2 degrees of freedom allows for a robust treat-
as Veft(q) = —q°|qrefl + 2/3¢%|q|+ const. Note that this is ment of the one-dimensional stochastic dynamics of the THC
a not a quartic symmetric potential but has the same parstrength. Nonetheless, in the previous set of experiments we
ity properties and is twice differentiable everywhere. As have only verified the first condition for the robustness of
shown in Fig. 4, this functional form closely approximates the one-dimensional representation (well-posedness for lin-
the experimental findings previously described, with discrep-ear scaling on the forcings). In this section, we wish to test
ancies where the probability density is exponentially van-how the system behaves when, following Eq. (9), we change
ishing and small deviations also fgr~ 0 (where the den- the noise matrix;; in such a way that the term noise strength
sity is also low). Moreover, ife; = ¢3, we obtain that ¢ for the considered observable is not altered. Therefore, we
gg=8= V2kBe1 ~ eeff, SO that the agreement between our perform a new set of experiments, where the stochastic forc-
experimental and theoretical findings for both the determin-ing is exerted only in one of the two boxes, e.g. box 1, so that
istic and stochastic part of the dynamics is quite satisfactoryin Eq. (12a—b) we set; = 0 ande1 = +/2¢ for each value of
This suggests that in the experimental setting of Eq. (12a—b} considered in the previous set of experiments. This choice

where the last identity is due to the symmetry of the poten-
tial. This formula provides rates in excellent agreement with
the outputs of the numerical simulations, as can be seen by
comparing the red and the black line in Fig. 3a.
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£ (10710 peru s71/2)

Fig. 6. Goodness of the one-dimensional approach for the non-

Fig. 4. One-dimensional efficient potentiks(g) controlling the symmetric case(a) Average hopping rates(+ — —) (blue line)
evolution of the THC strength in the 2 d.o.f. model with symmet- andr(— — +) (red line). Data are in units ofd. (b) Geometrical

ric noise. The results of some numerical experiments are showdactorsG (+ — —) (blue line) andG (— — +) (red line) computed
together with the analytical estimate. from Eq. (7). Adimensional quantitiegc) Value of the parameter
ry giving the ratio betweengf (obtained as divided byb) and

the theoretically derived expressiaf2kgs. Adimensional quanti-
ties. The values obtained using the—> — (blue) and— — + (red)
processes are not compatible.

anymore. In the previous set of experiments, as opposed to
that, both boxes were equally (in a statistical sense) stochas-
il ) tically forced, and so that the northern and southern sinking
¢ states had equivalent forcings at all times. The more for-
mal mathematical reason why the statistical propertieg of
= . are different in the two sets of experiments even if Eq. (9)
s is apparently the same can be traced to the differences in
the correlation between the stochastic forcingg tand Q
Fig. 5. Empirical probability d_istribl_Jtion fur_1ction fqr the THC _ compare Eq. (14a-b). In the case of symmetric stochas-
strength in the 2 d.o.f. model with noise applied only inbox 1. ¢ forcing in the freshwater fluxes into the two boxes with
€1 =¢3, it is easy to see that the increments to the Wiener
rocessedg W, andd Wy are not correlated, whereas when
guarantees that we have exact correspondence for the valug??: 0 the two quantities W, andd Wy, are identical so that
of gg == kﬁ,/streg = V/2kpe, so that Eq. (9) looks ex- their correlation is unitary.
actly the same as in the previous set of experiments. Unfortu- We wish now to test whether, in such an asymmetric set-
nately, as shown in Fig. 5, following the procedure describecting of forcings, the pdfs of the THC strength scale with the
in Sect. 2 we obtain for all values efan asymmetric prob- intensity of the noise in such a way to allow the possibility of
ability distribution function, with the northern sinking equi- defining consistently an effective potentié(q, ) driving
librium being the most probable state. The prominence ofthe deterministic part of the one-dimensional stochastic evo-
theq > 0 conditions become stronger as we consider weakelution of the THC strength. Given the asymmetry of the pdfs,
intensities for the noise. Therefore, the proposed stochastisuch an effective potential would, unavoidably, be different
modelling is not as robust as one could have guessed. from the one derived in the previous set of experiments, so
At a second thought the presence of asymmetry in thisthat in no way we can be satisfied in terms of robustness
case becomes clearer. In this case the two sinking statesf the one-dimensional Langevin approach. But, if we are
undergo different forcing, because when- 0 the stochas- able to define such an effective potential, we can deduce that
tic forcing is exerted only in the box where downwelling each choice of the correlation matrix for the noise in the full
occurs, whereas whep< 0 the stochastic forcing impacts system determines a specific projected effective deterministic
only the box where upwelling occurs. Since, as explaineddynamics, which is a weaker, but maybe still useful, result.
at the beginning of Sect. 3 and discussed in Lucarini and We follow the procedure described in Sect. 2, and for all
Stone (2005a), the impact of changing freshwater fluxeghe chosen values efwe have that (go,e) —U(g—,¢) 2 1.5
is different in terms of destabilising the system dependingandU (qo,¢) —U (¢=,¢) 2 1.5. In Fig. 6a we present the hop-
on whether the forcing is applied in the box where down- ping ratesr(+ — —) (blue) andr(— — +) (red). We see
welling or upwelling occurs, the two states are not equivalentthat both values increase monotonically withas stronger
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noise favours transitions. Note that, quite unexpectedly, for .
e >7x 10 9psus?/2 (beyond the range where our full .
analysis is performed, not showm)+ — —) becomes big- o
ger. By simple population algebra, this implies that the frac-
tion of states withy < 0 is larger than 1/2, even if the most
probable state is given, in all cases 4oy gref > 0. In Fig. 6b

we plot the factorsG(+ — —) andG(— — +). By match-

ing the rate of transition with the correspondiagfactor,

one obtains for each value efthe effective noise intensity

eeff such that the probability distribution of the states and the | 4 ; \N
transitions statistics are compatible. As mentioned before, in ©~ ° 2 B o i 2 K

order to have a consistent picture, we need to obtain the same

value ofeeff by either using the — — or the— — + path. Fig. 7. Empirical probability distribution function for the THC

In Fig. 6¢ (compare with Fig. 3c) we show thal does not  strength in the full model for some selected values of symmetrically
scale linearly witre (or, equivalentlyy is not a constant) as applied noise.

found in the symmetric case, and, much more seriously, that

there is no consistency between its value as obtained using

the statistics of the- — — and — — + transitions. Given of Q is negligible, we end up writing the same approximate
the mismatch between the time-scale of the transitions an@utonomous Eqg. (15) for the THC strength under the hypoth-
the populations in the two basins, we cannot reconstruct #sis that the system spends most time near the two determin-
well-defined effective potentiaVeft(¢,), So that a consis- istic fixed pointsg = &|geq|. This suggests that also in this
tent one-dimensional Langevin representation of the dynamcase we might empirically derive a well-defined effective po-
ics and statistics of the THC strength as proposed in Eq. (13)ential Vest(¢) analogous to the one obtained for the 2 d.o.f.
is not possible here. This can be the case if noise can effeonodel if considering stochastic forcing acting on both boxes
tively activate non-trivial dynamical processes allowing for 1 and 3.

a transition between the neighbourhoods of the two steady Therefore, we follow the analysis of the previous subsec-
states withg = +|qefi|, Where by non-trivial we mean that tion, and concentrate to stochastic perturbations to the fresh-
they cannot be represented even approximately as a functiowater flux having the same strength= e3 = ¢ in both hemi-

25|

of g only. spheres. We first observe that, as anticipated, for a given
_ _ value ofe the distribution of the THC strength is flatter than
4.3 Symmetric forcing to the full system in the case of the 2 d.o.f. model (Fig. 7). In order to ob-

) _ tain a pdf analogous to what obtained in the 2 d.o.f. case,
We now revert to the full system described at the begin-in the full model we need to consider a stochastic forcing

ning of Sect. 3 and consider the case of symmetric boundsmajier by about 25 %, which suggests that the full model is,
ary conditions. By adding stochastic perturbations to thej, some sense, less stable. We will discuss this below. As
freshwater fluxes in a similar fashion as in Eq. (11a-b), sopefore. we select values skuch that (g0, &) — U (g, &) =

that F; — Fj=e;dW;/dr with j =13 in Eq. (10a—f) we 1y, o)1 (q_,e) > 1.5in order to be able to use Kramers’
obtain the following Langevin equations for the variables formyla as a constraint to check the consistency of our data

q=k(p1—p3) andQ =k(p1+p3) : with the one-dimensional Langevin model. In Fig. 8a we
da = a(25—3/202/a] — OVdi report .the hopping rates as a fl_mc_tlon of the intensity of
=424 =3/29"/la] = Q)i+ the noise. The behaviour is qualitatively analogous to what
kad (T —Ta)dt +eqd Wy, (178)  shown in Fig. 3a for the 2 d.o.f. model, but, in agreement with
the discussion above, the hopping rate betweep th® and
the ¢ < 0 states are consistently higher for the full model
dQ=qkp+1/24%/|q| — Q)dt — B(F1+ F3)dt+ when the same stochastic forcing is considered. In Fig. 8b
ka)»(ﬁ— T1+T3— Ta)dt +eodWo, (17Db) we present the facto (+ — —) = G(— — +) introduced

in Eq. (7), which depends uniquely on the ratio between
where the same notation as in Eq. (14a-b) has been usethe probability density at the two maxima and at the local
Note that, as opposed to Eq. (11), the deterministic drift termminimum forg = 0. Figure 8c, similarly to Fig. 3c, shows
is not odd with respect to the— —g transformation, since the proportionality constant between the value af.s and
in this case explicit temperature dependent terms are preserthe value of = v/2kBe. The parametey should be close
so that a negative parity is realised only when the signs ofto unity in the case the projection of the dynamicsqois
both 71 — T3 and S1 — S3 are changed. Note that, follow- “trivial” (as in the case of the 2 d.o.f. model with symmetric
ing the same derivation as in the case of the system with Ztochastic forcing), and, more importanty,should be ap-
d.o.f. and assuming that over time-scales of interest the drifproximately independent af In the case analysed here both
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Fig. 8. Goodness of the one-dimensional approach for the full

model.(a) Average rate of hopping between the northern and south-Fig' 9'_ One-dimensional effici_ent potentiakit(¢) cont.rolling the )
ern sinking equilibria(+ — —) = r (— — +) (black line). The the- evolution of the THC strength in the 5 d.o.f. model with symmetric

oretical value is shown with the red line. Data are in unitsof.s noise. The results Of, some.numerical experiments are shovyn to-
(b) Geometrical facto6 (+ — —) = G(— — +) of the hopping rate gether with the gnalytlcal estimate. The results are rather similar to
computed from Eq. (7). Adimensional quantifg) Value of the pa- what shown in Fig. 4.

rametery giving the ratio betweengfs (obtained as divided byb)

and the theoretically derived expressig@kBe. The value ofy ob- . ) .

tained if considering the renormalized value (referred to the 2 d.o.f>  Numerical experiments: stochastic resonance

model) fork can be read on the right hand side scale. Adimensional ) ) o
quantities. Stochastic resonance (Benzi et al., 1982; Nicolis 1982; Gam-

maitoni et al., 1998) is an exceedingly interesting process

conditions are not satisfied. The first issue points to the factVNereby noise amplifies the response of the system at the
that we need to renormalize the constants when developing@™Me frequency of a periodic forcing. Typically, itis realised
a lower dimensional projected dynamics (which is exactlyWhen we consider a Langevin equation of the form:

what we did when constructing the 2 d.o.f. model from the :

dx = F(x)dt + Asin(wt dt+edW 18
full model). In fact, if we consider as effectikethe one con- * (x)de+ (@t +@)di +¢ (18)
sidered for the 2 d.o.f. model, the valuesyofre relatively where the drift termF (x) = —dV (x)/dx derives from a

close to 1 (check the scale on the right hand side of Fig. 8c)(symmetric, but necessarily so) potentialx) with a double
More critical is the presence of a nonlinear relation betweenwell-structure like those considered in this study. We can as-
eeff ande, which is caused by the fact that in the full model socijate the time dependent didft(x, ) = F(x) + Asin(wt +
faster modes are excited by noise and impact in a nontrivy) to a time dependent potentid¥ (x,r) = — [dxF(x) —
ial way the effective surrogate noise acting ongheariable  Asin(wr +¢) = V (x) — Axsin(wt +¢). The periodic forc-
taken as independent. ing modulates the bistable system, so that one stable state
When reconstructing frorty (¢, ¢) the actual effective po- corresponding to one of the two minima results to be less
tential Veft (¢, ) using Eq. (5), we obtain that the effective po- stable than the other every half a period of the forcing, so
tential is a function of only, so thatVesi(q,¢) = Veti(¢) (see  that every period the populations of the neighbourhoods of
Fig. 9) so thatitis possible to disentangle completely the driftthese points are, alternatively, exponentially increased and
term from the stochastic forcing. Moreover, such potential issuppressed by a factor ex2A (|x— — xo|)/¢%). As accu-
very similar to what obtained in the reduced model with 2 rately discussed in Gammaitoni et al. (1998), when we tune
d.o.f., as can be seen by comparing Figs. 4 and 9. The heighhe noise intensity so that the inverse of the hopping rate
of the potential barrier between the two minima is slightly given in Eq. (7) for the unperturbed system is approximately
lower in the case of the full model analysed here, in agree-equal to half of the period/w, the system is in a condi-
ment with the argument of the destabilising feedback duetion where there is maximum probability for leaving the less
to the thermal restoring process presented by Lucarini angtable state into the more stable one, before, randomly, the
Stone (2005a). This can be explained as follows: since persystem switches back. In this case, the system attains a high
turbations in the value of — |geq| are positively correlated degree of synchronisation with the input periodic signal, so
to perturbationg — T3 thanks to advection, the contribution that the output is basically a square wave with constant phase
ka)(Ty—T3) in Eq. (17a) weakens the force driving the sys- difference with the sinusoidal forcing.
tem towards the nearby deterministic fixed point, thus en- Interestingly, even if the stochastic resonance is apparently
hancing its instability. Overall, the good agreement betweera highly nonlinear process, it can be accurately described us-
Figs. 4 and 9 implies that the deterministic dynamics of theing linear response theory, whereby one studies the ampli-
THC strength is robustly consistent between the full and re-tude of the output signal at the same frequency of the peri-
duced model. odic forcing for various values of the noise. Such amplitude,

Nonlin. Processes Geophys., 19, 92 2012 www.nonlin-processes-geophys.net/19/9/2012/



V. Lucarini et al.: Bistable systems with stochastic noise 19

o ‘ ‘ the casep =0,y = —1 is identical to case 2 by symmetry.
The results are reported in Fig. 10, with the black line corre-
sponding to case 1 and the red line corresponding to case 2.
The obtained curves for the amplitude of the response agree
very accurately, especially considering the rather small un-
certainty, and feature exactly the right shape as presented in
Gammaitoni et al. (1998). We observe a relatively broad res-
onance for values of noise comparable to those inducing in
FL o the unperturbed system transitions with average rate similar
=, 1. o - to the semiperiod of the forcing. Finding quite accurately the

signature of stochastic resonance is a further proof that in the
. . . . . special setting of the unperturbed system considered here the
Fig. 10. Response to linear periodic perturbation as a function of thed . . . . .

ynamics of; is indeed quasi-one dimensional.

background noise for five experimental settings. Case 1 and 2 are ] o .
indicative of stochastic resonance. The value of noise realising the V& Want to contrast this positive outcome with what one
approximate matching conditiofi+ — —) = r(— — +) = 7 /wg iS obtains by adding periodic perturbations of the same form
indicated. as above to an “unperturbed” state featuring stochastic forc-
ing acting on box 1 only, described in Sect. 4.2. We choose
exactly the same forcing parameters as above and repeat the
in the weak field limit, is proportional to the amplitude of the experiments using the same ensemble size. We refer to the
periodic forcingA (Gammaitoni et al., 1998). scenario wherg) = — = 1/2 as case 3, and the scenario
Along these lines, we consider the 2 d.o.f. model, andwhere¢ —1,4 =0 as case 4, and to the scenario where
take into account a periodic modulation to the freshwa-¢ —0,4 = —1 as case 5. Note that here case 4 and case
ter fluxes, so that’y — F2+$AFsin(wr) and F3 — F3+ 5 are not equivalent. We obtain (see Fig. 10) that in the
¥ AFsin(wr), with symmetric background forcingy = F3.  three cases, whereas we obtain qualitatively and quantita-
Assuming that the stochastic forcing acts with equal strengthjyely analogous results for the normalised amplitude of the
£1=¢e3=¢ on both boxes 1 and 3, as analysed in Sect. 4.1yesponse of the output at the same frequency of the forcing,
we obtain that Eq. (15), which satisfactorily describes theihe curves are distinct with high statistical significance and
one-dimensional stochastic dynamicgois modified as fol-  gjiffer also from what obtained for cases 1 and 2. Such dis-
lows: crepancy would not be possible if the dynamicg efere ac-
da~ —24(q%/\q| — larethdi + k(& — ) AFsinwn) +e,dW,,  (19) curately desc.ribed'with a one—Qimensiopal effective potential
plus stochastic noise plus periodic forcing. The fact that the
which is exactly in the form of Eq. (15). As we see, for a three curves 3, 4, and 5 are not superimposed (and disagree
given value ofA F, the strength of the periodic forcing to  with 1 and 2) further supports the fact that the dynamicg of
depends only on the absolute value of the differei@ce v), is not quasi-one dimensional. Nonetheless, an obvious pro-
and not separately on the valuespofindy . If the dynamics  cess of resonance (not strictly one-dimensional) is obviously
of ¢ is accurately described by a one-dimensional Langevinstill in place.
equation, we expect to be able to observe the process of
stochastic resonance whenande, are suitably matched.
In order to test this, we set the peried= wg=27/19000yr 6 Conclusions
—where the period of 19 000 yr has been chosen because itis
long compared to the internal time scijgf| 1 ~215yrand In this work we have re-examined the classic problem of
has paleoclimatic relevance in conjunction to Milankovitch trying to reconstruct the effective stochastic dynamics of
theory (Velez-Bechi et al., 2001; Saltzman, 2002) — choosean observable from its time series in the special case of a
a moderate value for the amplitude of the sinuisodal mod-clearly bimodal empirical probability density function. This
ulation AF =9 x 1012572 and study the amplitude of the issue is especially relevant in climatic and paleoclimatic re-
wo frequency component of the times seriegyads a func-  search, where it is very tempting to try to deduce the large
tion of ¢, and create an ensemble of 100 members for eaclscale, qualitative properties of the climate system, their mod-
considered setting. We can state that the phenomenologylation with time, the potential presence of tipping points
of stochastic resonance is well reproduced if (a) we findthrough the observations of long time series of proxy data
the characteristic peak for the response in the vicinity of a(Livina and Lenton, 2007; Livina et al., 2009). Furthermore,
value ofe such that the corresponding hopping rate for thesince amplifying mechanisms such as stochastic resonance
unperturbed system given in Fig. 3a is closertwg, and  have been proposed to explain enhanced low frequency vari-
(b) such response depends, for all valueg,06n (¢ — ) ability of the oceanic circulation as a result of slow mod-
only. We refer to the scenario whepe= —y =1/2 as case ulations of some parameters (Ganopolski and Rahmstorf,
1, and the scenario whege= 1,1 =0 as case 2. Note that 2002), such empirically reconstructed statistical/dynamical
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properties may be interpreted as starting points to deducef the background freshwater forcinfg = F3, but the fol-
special “sensitivities” of the climate system. Therefore, anlowing scaling allow to extensively generalise our findings:
important question is to understand how accurate and robust ~ (F1)Y2, Vett(q) ~ (F1)%/2, eet ~ (F1)¥*. Things change
these procedures of reconstruction are. dramatically when considering the case of stochastic forcing

From this work it is apparent that from the statistical prop- acting only on one of the two high-latitude boxes. We tune
erties of the time series of an observable featuring a sym-our experiments in such a way that, apparently, the Langevin
metric bimodal pdf it seems relatively easy to construct theequation for the; variable is not altered with respect to the
corresponding one-dimensional Langevin equation by deterprevious case. Not only we obtain a non-symmetric pdf,
mining the drift term and the intensity of the white noise but, moreover, it is not possible to reconstruct an approxi-
by basically imposing a self-consistent population dynam-mate but consistent stochastic dynamics for gheariable
ics. Assuming that the observable is a function of the phaselone. Therefore, there is no ground for achieving a satis-
space variables of a stochastic dynamical systems, it is an oldactory projection of the dynamics, and a one-dimensional
vious temptation to interpret the obtained equation as the dekangevin equation cannot be derived.
scription of the projected dynamics for the observable, where Finally, we test the possibility of observing the mechanism
the impact of the other (in general, many) neglected degreesf stochastic resonance in the simplified 2 d.o.f. model by
of freedom of the system contributes to defining the effec-superimposing a slow periodic modulation on the freshwater
tive deterministic dynamics and to creating a surrogate whitefluxes in the two high-latitude boxes to the acting stochas-
noise term. Nonetheless, if the pdf of the observable is notic forcings. Whereas in the scenario where the noise acts
symmetric, the possibility of constructing a meaningful sur- with equal strength in both boxes we obtain numerically out-
rogate stochastic dynamics relies on the fact that one shoulguts in close agreement with the theory stochastic resonance
be able to describe consistently the hopping process and bder one dimensional systems, thus supporting the idea that
tween the two attraction basins and their steady state popula projected dynamics is indeed a good approximation when
tions. attempting a description of the propertiesgofthe opposite

In this work we have considered two very simple box mod- holds in the scenario where the noise acts only on one box.
els of the oceanic circulation (Rooth, 1982; Scott et al., 1999;This further supports the fact that in this case the dynamics
Lucarini and Stone, 2005a, b), comprising two high latitude of ¢ is not trivially quasi-one dimensional, and transitions
and a low latitude boxes with time-dependent temperatureoccur through processes that cannot be written precisely as a
and salinity as testbeds for these methodologies. These moddnction ofg only.
els are able to reproduce the bistability properties of the ther- Our results support the idea that deducing the approximate
mohaline circulation, by featuring two possible asymmetric stochastic dynamics for an observable of a multidimensional
circulations (one mirror image of the other) in presence ofdynamical system from its time series is definitely a non-
symmetric external heat and freshwater forcings. In bothtrivial operation. The reconstructed drift term and the noise
models the circulation strength is parameterised as proporforcing depend, in general, in a non-trivial way on the inten-
tional to the difference between the densities of the two high-sity and correlation properties of the white noise of the true
latitude boxes. The simpler 2 d.o.f. model is suitably derivedsystem. This implies that a “true” projected dynamics can-
from the full, 5 d.o.f. model by imposing a fixed temperature not be defined. Therefore, in practical applications, it seems
for the boxes. tentative to assume that from the pdf of a bimodal observ-

We first impose stochastic forcing of the same intensityable obtained with a given level of noise it is possible to un-
on the freshwater forcings to the two high-latitude boxes andderstand how the bistability property of the full system will
observe that the resulting pdf of the thermohaline circulationchange when the level of the input noise is altered. In particu-
strength is bimodal and symmetric. More importantly, for lar, it seems difficult to be confident on obtaining information
both models the dynamics gfcan be accurately described on how the rate of transition between the two equilibria will
with a Langevin equation with a drift term derived from a change and on the characteristics of tipping points. This also
one-dimensional effective potential plus stochastic noise. Ansuggests that recent claims of the possibility of detecting ro-
excellent approximation to the true dynamics (as well as tobustly early warning signals for critical transitions at tipping
the hopping rates) can be obtained in an explicit form by im-points from time series as proposed in Scheffer (2008) must
posing that the sum of the densities of the two high-latitudebe carefully checked.
boxes is a slow variable. The main difference between the A better understanding of the properties of multistable
two is that in the full model the nonlinear feedbacks actingmodels can be reached only by going beyond a simplified
on the variable we are neglecting alter in a nontrivial, non-description of the statistical properties of the observables we
linear way the effective surrogate noise acting onghari- are mostly interested into. In order to address these points,
able. In other terms, in the case of the full model a carefulwe will attempt the kind of critical analysis proposed in this
tuning of the noise allows for taking care very accurately —paper on more complex models but still idealised models
in a statistical sense — of the effect of all the variables weof the thermohaline circulation, such as that considered in
are neglecting. Our results are obtained for a specific valud.ucarini et al. (2005, 2007). We will test to what extent a
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simple one-dimensional Langevin model for the evolution of lantic overturning circulation in a global climate model and links
the THC strength can be defined and in which range of the to ocean freshwater transport, Geophys. Res. Lett., 38, L10605,
parameters determining the boundary conditions, and how d0i:10.1029/2011GL047202011.

the drift and noise terms of the Langevin model — if it can Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann,
be defined — are related to the internal parameters of the full mérijri]gn?:;\r/gsrtgmi :@jCﬁzuﬁg‘:i:r:'vg‘gvpg’ecs;?j: Ojléh%gg%rg'lc
systgm. Atamore theorgncal_level, we W|_Illtry to propose ap- d0i:10.1029/2004RGO00168007.

proximate ways for dealing with the transitions between high

. . . . . . Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahm-
occupations regimes in multidimensional gradient flows, at- storf, S., and Schellnhuber, H. J.: Tipping elements in the Earth’s

tempting to derive a markovian description of transitions be-  jimate system, Proc. Natl. Acad. Sci. USA, 105, 1786-1793,

tween discrete states. 2008.
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