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Abstract

In the first half of this text we explore the interrelationships between the ab-
stract theory of limit operators (see e.g. the recent monographs of Rabinovich, Roch
and Silbermann [74] and Lindner [51]) and the concepts and results of the gen-
eralised collectively compact operator theory introduced by Chandler-Wilde and
Zhang [23]. We build up to results obtained by applying this generalised collec-
tively compact operator theory to the set of limit operators of an operator A (its
operator spectrum). In the second half of this text we study bounded linear op-
erators on the generalised sequence space `p(ZN , U), where p ∈ [1,∞] and U is
some complex Banach space. We make what seems to be a more complete study
than hitherto of the connections between Fredholmness, invertibility, invertibility
at infinity, and invertibility or injectivity of the set of limit operators, with some
emphasis on the case when the operator A is a locally compact perturbation of the
identity. Especially, we obtain stronger results than previously known for the subtle
limiting cases of p = 1 and ∞. Our tools in this study are the results from the
first half of the text and an exploitation of the partial duality between `1 and `∞

and its implications for bounded linear operators which are also continuous with
respect to the weaker topology (the strict topology) introduced in the first half of
the text. Results in this second half of the text include a new proof that injectivity
of all limit operators (the classic Favard condition) implies invertibility for a general
class of almost periodic operators, and characterisations of invertibility at infinity
and Fredholmness for operators in the so-called Wiener algebra. In two final chap-
ters our results are illustrated by and applied to concrete examples. Firstly, we
study the spectra and essential spectra of discrete Schrödinger operators (both self-
adjoint and non-self-adjoint), including operators with almost periodic and random
potentials. In the final chapter we apply our results to integral operators on RN .

2000 Mathematics Subject Classification. Primary 47A53, 47B07; Secondary 46N20, 46E40,

47B37, 47L80.
Key words and phrases. infinite matrices, limit operators, collective compactness, Fredholm

operators, spectral theory.
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CHAPTER 1

Introduction

1.1. Overview

This text develops an abstract theory of limit operators and a generalised col-
lectively compact operator theory which can be used separately or together to
obtain information on the location in the complex plane of the spectrum, essen-
tial spectrum, and pseudospectrum for large classes of linear operators arising in
applications. We have in mind here differential, integral, pseudo-differential, differ-
ence, and pseudo-difference operators, in particular operators of all these types on
unbounded domains. This text also illustrates this general theory by developing,
in a more complete form than hitherto, a theory of the limit operator method in
one of its most concrete forms, as it applies to bounded linear operators on spaces
of sequences, where each component of the sequence takes values in some Banach
space. Finally, we apply this concrete form of the theory to the analysis of lattice
Schrödinger operators and to the study of integral operators on RN .

Let us give an idea of the methods and results that we will develop and the
problems that they enable us to study. Let Y = `p = `p(Z, C), for 1 ≤ p ≤ ∞, de-
note the usual Banach space of complex-valued bilateral sequences x = (x(m))m∈Z
for which the norm ‖x‖ is finite; here ‖x‖ := supm |x(m)|, in the case p = ∞, while
‖x‖ := (

∑
m∈Z |x(m)|p)1/p for 1 ≤ p < ∞. Let L(Y ) denote the space of bounded

linear operators on Y , and suppose A ∈ L(Y ) is given by the rule

(1.1) Ax(m) =
∑
n∈Z

amnx(n), m ∈ Z,

for some coefficients amn ∈ C which we think of as elements of an infinite matrix
[A] = [amn]m,n∈Z associated with the operator A. Of course A, given by (1.1), is
only a bounded operator on Y under certain constraints on the entries amn. Simple
conditions that are sufficient to guarantee that A ∈ L(Y ), for 1 ≤ p ≤ ∞, are to
require that the entries are uniformly bounded, i.e.

(1.2) sup
m,n

|amn| < ∞,

and to require that, for some w ≥ 0, amn = 0 if |m−n| > w. If these conditions hold
we say that [A] is a band matrix with band-width w and that A is a band operator.
We note that the tri-diagonal case w = 1, when A is termed a Jacobi operator,
is much-studied in the mathematical physics literature (e.g. [89, 47]). This class
includes, in particular, the one-dimensional discrete Schrödinger operator for which
amn = 1 for |m− n| = 1.

It is well known (see Lemma 6.39 below and the surrounding remarks) that,
under these conditions on [A] (that [A] is a band matrix and (1.2) holds), the

1



2 1. INTRODUCTION

spectrum of A, i.e. the set of λ ∈ C for which λI −A is not invertible as a member
of the algebra L(Y ), is independent of p. One of our main results in Section 6.5
implies that also the essential spectrum of A (by which we mean the set of λ for
which λI−A is not a Fredholm operator1) is independent of p. Moreover, we prove
that the essential spectrum is determined by the behaviour of A at infinity in the
following precise sense.

Let h = (h(j))j∈N ⊂ Z be a sequence tending to infinity for which it holds
that am+h(j),n+h(j) approaches a limit ãm,n for every m,n ∈ Z. (The existence
of many such sequences is ensured by the theorem of Bolzano-Weierstrass and a
diagonal argument.) Then we call the operator Ah, with matrix [Ah] = [ãmn],
a limit operator of the operator A. Moreover, following e.g. [74], we call the set
of limit operators of A the operator spectrum of A, which we denote by σop(A).
In terms of these definitions our results imply that the essential spectrum of A
(which is independent of p ∈ [1,∞]) is the union of the spectra of the elements Ah

of the operator spectrum of A (again, each of these spectra is independent of p).
Moreover, this is also precisely the union of the point spectra (sets of eigenvalues)
of the limit operators Ah in the case p = ∞, in symbols

(1.3) specess(A) = ∪Ah∈σop(A){λ : Ahx = λx has a bounded solution x 6= 0}.
This formula and other related results have implications for the spectrum of A. In
particular, if it happens that A ∈ σop(A) (we call A self-similar in that case), then
it holds that

(1.4) spec(A) = specess(A) = ∪Ah∈σop(A){λ : Ahx = λx has a bounded solution}.
In the case A 6∈ σop(A) we do not have such a precise characterisation, but if we
construct B ∈ L(Y ) such that A ∈ σop(B) (see e.g. [51, §3.8.2] for how to do this),
then it holds that

(1.5) spec(A) ⊂ specess(B) = ∪Bh∈σop(B){λ : Bhx = λx has a bounded solution}.

A main aim of this text is to prove results of the above type which apply
in the simple setting just outlined, but also in the more general setting where
Y = `p(ZN , U) is a space of generalised sequences x = x(m)m∈ZN , for some N ∈ N,
taking values in some Banach space U . In this general setting the definition (1.1)
makes sense if we replace Z by ZN and understand each matrix entry amn as an
element of L(U). Such results are the concern of Chapter 6, and are applied to
discrete Schrödinger operators and to integral operators on RN in the final two
chapters.

This integral operator application in Chapter 8 will illustrate how operators
on RN can be studied via discretisation. To see how this simple idea works in the
case N = 1, let G denote the isometric isomorphism which sends f ∈ Lp(R) to the
sequence x = (x(m))m∈Z ∈ `p(Z, Lp[0, 1]), where x(m) ∈ Lp[0, 1] is given by

(x(m))(t) = f(m + t), m ∈ Z, 0 < t < 1.

1Throughout we will say that a bounded linear operator C from Banach space X to Banach
space Y is: normally solvable if its range C(X) is closed; semi-Fredholm if, additionally, either
α(C) := dim(ker C) or β(C) := dim(Y/C(X)) are finite; a Φ+ operator if it is a semi-Fredholm

operator with α < ∞, and a Φ− operator if it is semi-Fredholm with β < ∞; Fredholm if it is
semi-Fredholm and both α and β are finite. If C is semi-Fredholm then α(C)− β(C) is called the
index of C.
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Then the spectral properties of an integral operator K on Lp(R), whose action is
given by

Kf(t) =
∫

R
k(s, t)f(s) ds, t ∈ R,

for some kernel function k, can be studied by considering its discretisation K :=
GKG−1. In turn K is determined by its matrix [K] = [κmn]m,n∈Z, with κmn ∈
L(Lp[0, 1]) the integral operator given by

κmng(t) =
∫ 1

0

k(m + s, n + t)g(s)ds, 0 ≤ t ≤ 1.

Let us also indicate how the results we will develop are relevant to differential
operators (and other non-zero order pseudo-differential operators). Consider the
first order linear differential operator L, which we can think of as an operator from
BC1(R) to BC(R), defined by

Ly(t) = y′(t) + a(t)y(t), t ∈ R,

for some a ∈ BC(R). (Here BC(R) ⊂ L∞(R) denotes the space of bounded
continuous functions on R and BC1(R) := {x ∈ BC(R) : x′ ∈ BC(R)}.) In
the case when a(s) ≡ 1 it is easy to see that L is invertible. Specifically, denoting
L by L1 in this case and defining C1 : BC(R) → BC1(R) by

C1y(t) =
∫

R
κ(s− t)y(s) ds,

where

κ(s) :=
{

es, s < 0,
0, otherwise,

it is easy to check by explicit calculation that L1C1 = C1L1 = I (the identity
operator). Thus the study of spectral properties of the differential operator L is
reduced, through the identity

(1.6) L = L1 + Ma−1 = L1(I + K),

where Ma−1 denotes the operator of multiplication by the function a − 1, to the
study of spectral properties of the integral operator K = C1Ma−1.

This procedure of reduction of a differential equation to an integral equation
applies much more generally; indeed the above example can be viewed as a special
case of a general reduction of study of a pseudo-differential operator of non-zero
order to one of zero order (see e.g. [74, §4.4.4]). One interesting and simple gener-
alisation is to the case where L is a matrix differential operator, a bounded operator
from (BC1(R))M to (BC(R))M given by

Lx(t) = x′(t) + A(t)x(t), t ∈ R,

where A is an M ×M matrix whose entries are in BC(R). Then, modifying the
above argument, the study of L can be reduced to the study of the matrix integral
operator K = CMA−I . Here MA−I is the operator of multiplication by the matrix
A − I (I the identity matrix) and C is the diagonal matrix whose entries are the
(scalar) integral operator C1.

Large parts of the generalisation to the case when the Banach space U is infinite-
dimensional apply only in the case when A = I+K, where I is the identity operator
and the entries of [K] = [κmn]m,n∈Z are collectively compact. (Where I is some
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index set, a family {Ai : i ∈ I} of linear operators on a Banach space U is said to
be collectively compact if {Aix : i ∈ I, x ∈ U, ‖x‖ ≤ 1} is relatively compact in U .)
The first half of this text (Chapters 2-5) is devoted to developing an abstract theory
of limit operators, in which Y is a general Banach space and in which the role of
compactness and collective compactness ideas (in an appropriate weak sense) play
a prominent role. Specifically we combine the abstract theory of limit operators
as expounded recently in [74, Chapter 1] with the generalised collectively compact
operator theory developed in [23], building up in Chapter 5 to general results in
the theory of limit operators whose power we illustrate in the second half of the
text, deriving results of the type (1.3).

Let us give a flavour of the general theory we expound in the first half of the
text. To do this it is helpful to first put the example we have introduced above in
more abstract notation. In the case Y = `p = `p(Z, C), let Vk ∈ L(Y ), for k ∈ Z,
denote the translation operator defined by

(1.7) Vkx(m) = x(m− k), m ∈ Z.

Then it follows from our definition above that Ah is a limit operator of the operator
A defined by (1.1) if [V−h(j)AVh(j)] (the matrix representation of V−h(j)AVh(j))
converges elementwise to [Ah] as j → ∞. Let us introduce, moreover, Pn ∈ L(Y )
defined by

Pnx(m) =
{

x(m), |m| ≤ n,
0, otherwise.

Given sequences (yn) ⊂ Y and (Bn) ⊂ L(Y ) and elements y ∈ Y and B ∈ L(Y )
let us write yn

s→ y and say that (yn) converges strictly to y if the sequence (yn) is
bounded and

(1.8) ‖Pm(xn − x)‖ → 0 as n →∞,

for every m, and write Bn
P→ B if the sequence (Bn) is bounded and

(1.9) ‖Pm(Bn −B)‖ → 0 and ‖(Bn −B)Pm‖ → 0 as n →∞,

for every m. Then Ah is a limit operator of A if

(1.10) V−h(n)AVh(n)
P→ Ah.

Defining, moreover, for b = (b(m))m∈Z ∈ `∞, the multiplication operator Mb ∈
L(Y ) by

(1.11) Mbx(m) = b(m)x(m), m ∈ Z,

we note that A is a band operator with band width w if and only if A has a
representation in the form

(1.12) A =
∑
|k|≤w

Mbk
Vk,

for some bk ∈ `∞. The set BO(Y ) of band operators on Y is an algebra. The
Banach subalgebra of L(Y ) that is the closure of BO(Y ) in operator norm will be
called the algebra of band-dominated operators, will be denoted by BDO(Y ), and
will play a main role in the second half of the text, from Chapter 6 onwards.

In the general theory we present in the first five chapters, following [74] and [23],
Y becomes an arbitrary Banach space, the specific operators Pn are replaced by a
a sequence P = (Pn)∞n=0 of bounded linear operators on Y , satisfying constraints
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specified at the beginning of Chapter 2, the specific translation operators Vn are
replaced by a more general discrete group of isometric isomorphisms, and then
the definitions (1.8), (1.9), and (1.10) are retained in essentially the same form.
The notion of compactness that proves important is with respect to what we term
(adapting the definition of Buck [10]) the strict topology on Y , a topology in which
s→ is the sequential convergence. Moreover, when we study operators of the form
A = I + K it is not compactness of K with respect to the strict topology that we
require (that K maps a neighbourhood of zero to a relatively compact set), but
a weaker notion, that K maps bounded sets to relatively compact sets, operators
having this property sometimes denoted Montel in the topological vector space
literature. (The notions ‘compact’ and ‘Montel’ coincide in normed spaces; indeed
this is also the case in metrisable topological vector spaces.)

In the remainder of this introductory chapter, building on the above short
overview and flavour of the text, we detail a history of the limit operator method
and compactness ideas applied in this context, with the aim of putting the current
text in the context of extensive previous developments in the study of differential
and pseudo-differential equations on unbounded domains; in this history, as we shall
see, a prominent role and motivating force has been the development of theories
for operators with almost periodic coefficients. In the last section we make a short,
but slightly more detailed summary of the contents of the chapters to come.

1.2. A Brief History

The work reported in this text has a number of historical roots. One we have
already mentioned is the paper by Buck [10] whose strict topology we adapt and
use throughout this text. A main thread is the development of limit operator ideas.
The historical development of this thread of research, which commences with the
study of differential equations with almost periodic solutions, can be traced through
the papers of Favard [33], Muhamadiev [57, 58, 59, 60], Lange and Rabinovich
[44, 45, 46], culminating in more recent work of Rabinovich, Roch and Silber-
mann [72, 73, 74]. The other main historical thread, which has developed rather
independently but overlaps strongly, is the development of collectively compact op-
erator theory and generalisations of this theory, and its use to study well-posedness
and stability of approximation methods for integral and other operator equations.

Limit Operators. To our knowledge, the first appearance of limit operator
ideas is in a 1927 paper of Favard [33], who studied linear ordinary differential
equations with almost periodic coefficients. His paper deals with systems of ODEs
on the real line with almost periodic coefficients, taking the form

(1.13) x′(t) + A(t)x(t) = f(t), t ∈ R,

where the M × M matrix A(t) has entries that are almost periodic functions of
t and the function f is almost periodic. A standard characterisation of almost
periodicity is the following. Let T (A) := {VsA : s ∈ R} denote the set of translates
of A (here (VsA)(t) = A(t − s)). Then the coefficients of A are almost periodic if
and only if T (A) is relatively compact in the norm topology on BC(R). If A is
almost periodic, the compact set that is the closure of T (A) is often denoted H(A)
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and called the hull of A. A main result in [33] is the following: if

(1.14) x′(t) + Ã(t)x(t) = 0, t ∈ R,

has only the trivial solution in BC1(R), for all Ã ∈ H(A), and (1.13) has a solution
in BC1(R), then (1.13) has a solution that is almost periodic. (Since A ∈ H(A),
this is the unique solution in BC1(R).)

Certain of the ideas and concepts that we use in this text are present already
in this first paper, for example the role in this concrete setting of the strict con-
vergence s→ and of compactness arguments. In particular, conditions analogous to
the requirement that (1.14) have no non-trivial bounded solutions for all A ∈ H(A)
will play a strong role in this text. Conditions of this type are sometimes referred
to as Favard conditions (e.g. Shubin [86, 87], Kurbatov [42, 43], Chandler-Wilde
& Lindner [17]).

The first appearance of limit operators per se would seem to be in the work of
Muhamadiev [57, 58]. In [57] Muhamadiev develops Favard’s theory as follows.
In terms of the differential operator L : (BC1(R))M → (BC(R))M given by (1.6),
equation (1.13) is

Lx = f.

Under the same assumptions as Favard (that A is almost periodic and the Favard
condition holds) Muhamadiev proves that L : (BC1(R))M → (BC(R))M is a bi-
jection. Combining this result with that of Favard, it follows that L is also a
bijection from (AP 1(R))M to (AP (R))M . (Here AP (R) ⊂ BC(R) is the set of
almost periodic functions and AP 1(R) = AP (R)∩BC1(R).) New ideas which play
an important role in the proof of these results include a method of approximating
almost periodic by periodic functions and the fact that, if A is a periodic function,
then injectivity of L implies invertibility. (These ideas are taken up in the proofs
of Theorems 6.7 and 6.38 in Chapter 6.)

Muhamadiev also considers in the same paper the more general situation when
the entries of A are in the much larger set BUC(R) ⊂ BC(R) of bounded uniformly
continuous functions. A key property here (which follows from the Arzela-Ascoli
theorem and a diagonal argument) is that, if the sequence (tn) ⊂ R tends to infinity,
then A(·−tn) has a subsequence which is convergent to a limit Ã, uniformly on every
finite interval. (Cf. the concept of a rich operator introduced in §5.3.) Denoting by
Lim (A) the set of limit functions Ã obtained in this way, the following theorem is
stated: if (1.14) only has the trivial solution in BC1(R) for every Ã ∈ Lim (A) then
L̃ : (BC1(R))M → (BC(R))M is a bijection for every Ã ∈ Lim (A) (here L̃ denotes
the operator defined by (1.6) with A replaced by Ã).

This is a key result in the development of limit operator theory and it is a
shame that [57] does not sketch what must be an interesting proof (we are told
only that it ‘is complicated’). Denoting by MA the operator of multiplication by
A, the set {MÃ : Ã ∈ Lim (A)} is a set of limit operators of the operator MA, and
so the set {L̃ : Ã ∈ Lim (A)} is a set of limit operators of the operator L. Thus this
result takes the form: if each limit operator L̃ is injective, specifically L̃x = 0 has
no non-trivial bounded solution, then each limit operator is invertible. A result of
this form is a component in the proof of (1.3) and similar results in this text (and
see [17]). In the case that A is almost periodic it is an easy exercise to show that
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H(A) = Lim (A), i.e. the hull of A coincides with the set of limit functions of A (cf.
Theorem 6.10). Thus this second theorem of Muhamadiev includes his result for
the case when A is almost periodic.

The first extension of results of this type to multidimensional problems is the
study of systems of partial differential equations in RN in [58]. Muhamadiev studies
differential operators elliptic in the sense of Petrovskii with bounded uniformly
Hölder continuous coefficients, specifically those operators L that are what he terms
recurrent, by which he means that σop(L) = σop(L̃), for all L̃ ∈ σop(L). Here σop(L)
is an appropriate version of the operator spectrum of L. Precisely, where Ap(t),
for t ∈ RN and for multi-indices p with |p| ≤ r, is the family of coefficients of the
operator L (here r is the order of the operator), the differential operator of the
same form L̃ with coefficients Ãp(t) is a member of σop(L) if there exists a sequence
tk →∞ such that, for every p,

(1.15) Ap(t− tk) → Ãp(t)

uniformly on compact subsets of RN as k →∞.

The main result he states is for the case where L is recurrent and is also, roughly
speaking, almost periodic with respect to the first N − 1 variables. His result takes
the form that if a Favard condition is satisfied (L̃x = 0 has no non-trivial bounded
solutions for all L̃ ∈ σop(L)) and if supplementary conditions are satisfied which
ensure that approximations to L with periodic coefficients have index zero as a
mapping between appropriate spaces of periodic functions, then L is invertible as
an operator between appropriate spaces of bounded Hölder continuous functions.

Muhamadiev’s results apply in particular in the case when the coefficients of the
differential operator are almost periodic (an almost periodic function is recurrent
and its set of limit functions is its hull). Shubin, as part of a review of differen-
tial (and pseudo-differential) operators with almost periodic solutions [87], gives a
detailed account of Muhamadiev’s theory, in the almost periodic scalar case (one
case where Muhamadiev’s supplementary conditions are satisfied), and of results
which relate invertibility in spaces of bounded functions to invertibility in L2(RN ).
Specifically, his paper includes a proof, for a scalar elliptic differential operator L
with C∞ almost periodic coefficients, that the following are equivalent: (i) that the
Favard condition holds; (ii) that L is invertible as an operator on BC∞(RN ); (iii)
that L is invertible as an operator on L2(RN ) in an appropriate sense.

In [59] Muhamadiev continues the study of the same class of differential opera-
tors L on RN , elliptic in the sense of Petrovskii, but now, for some of his results, with
no constraints on behaviour of coefficients at infinity beyond boundedness, though
his main results require also uniform Hölder continuity of all his coefficients. With
this constraint (which, inter alia, is a richness requirement in the sense of §5.3),
he studies Fredholmness (or Noethericity) of L considered as a bounded operator
between appropriate spaces of bounded Hölder continuous functions. It is in this
paper that a connection is first made between Fredholmness of an operator and
invertibility of its limit operators. The identical Favard condition to that in [58]
plays a key role. His main results are the following: (i) that L is Φ+ iff the Favard
condition holds; (ii) that if L is Φ− then all the limit operators of L are surjective;
(iii) (his Theorem 2.5 and his remark on p. 899) that L is Fredholm iff all the limit
operators of L are invertible. We note further that his methods of argument in
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the proof of his Theorem 2.1 show moreover that if L is Fredholm then the limit
operators of L are not only invertible but the inverses are also uniformly bounded,
i.e.

sup
L̃∈σop(L)

‖L̃
−1
‖ < ∞.

Extensions of these results to give criteria for normal solvability and Fredholmness
of L as an operator on Sobolev spaces are made in [60].

In [59] Muhamadiev also, briefly, introduces what we can term a weak limit
operator. Uniform continuity of the coefficients Ap(t) is required to ensure that
every sequence tk →∞ has a subsequence, which we denote again by tk, such that
the limits (1.15) exist uniformly on compact subsets (cf. the definition of richness
in §5.3). The set of all limit operators defined by (1.15) where the convergence is
uniform on compact sets we have denoted by σop(L). Muhamadiev notes that it
is enough to require that the coefficients Ap be bounded (and measurable) for the
same richness property to hold but with convergence uniformly on compact sets
replaced2 by weak convergence in L2(RN ). In the case when the coefficients Ap

are bounded, the set of limit operators defined by (1.15) where the convergence
is weak convergence in L2(RN ) we will term the set of weak limit operators of L.
We note that this set coincides with σop(L) in the case when each Ap is uniformly
continuous. In [60] Muhamadiev gives criteria for Fredholmness of L on certain
function spaces in terms of invertibility of each of the weak limit operators of L.

Muhamadiev’s work has been a source of inspiration for the decades that fol-
lowed. For example, similar to his main results in [59] but much more recently,
A. and V. Volpert show that, for a rather general class of scalar elliptic partial
differential operators L on rather general unbounded domains and also for systems
of such, a Favard condition is equivalent to the Φ+ property of L on appropriate
Hölder [93, 94, 95] or Sobolev [92, 94, 95] spaces.

Lange and Rabinovich [44], inspired by and building on Muhamadiev’s paper
[59], carry the idea of (semi-)Fredholm studies by means of limit operators over
to the setting of operators on the discrete domain ZN . They give sufficient and
necessary Fredholm criteria for the class BDO(Y ) of band-dominated operators
(as defined after (1.12) and studied in more detail below in §6.3) acting on Y =
`p(ZN , C) spaces. For 1 < p < ∞, they show that such an operator is Fredholm
iff all its limit operators are invertible and if their inverses are uniformly bounded.
Their proof combines the limit operator arguments of Muhamadiev [59] with ideas
of Simonenko and Kozak [39, 84, 85] for the construction of a Fredholm regulariser
of A by a clever assembly of local regularisers. Lange and Rabinovich are thereby
the first to completely characterise Fredholmness in terms of invertibility of limit
operators for the general class of band-dominated operators on `p(ZN , C). Before,
Simonenko [84, 85] was able to deal with the subclass of those operators whose
coefficients (i.e. matrix diagonals) converge along rays at infinity; later Shteinberg
[88] was able to relax this requirement to a condition of slow oscillation at infinity.
Lange and Rabinovich require nothing but boundedness of the operator coefficients.

2We note that, since the coefficients Ap are bounded so that the sequence Ap(· − tk) is

bounded, requiring that the limits (1.15) exist uniformly on compact subsets is equivalent to

requiring convergence
s→ in the strict topology, while weak convergence in L2(RN ) is equivalent

to weak∗ convergence in L∞(RN )
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The final section of [44] studies (semi-)Fredholmness of operators in the so-
called Wiener algebra W (see our §6.5) consisting of all operators

(1.16) A =
∑

k∈ZN

Mbk
Vk with

∑
k

‖bk‖∞ < ∞,

where bk ∈ `∞(ZN , C) for every k ∈ ZN are the coefficients (or diagonals) of the
operator A and Vk and Mbk

are the shift and multiplication operators defined in
(1.7) and (1.11). Operators A ∈ W belong to BDO(Y ) for all spaces Y = `p(ZN , C),
p ∈ [1,∞]. For p = ∞, an analogue of the main result of [59] is formulated (in fact,
the proof in [44] literally consists of the sentence ‘The proofs of Theorems 4.1 and
4.2 repeat the proofs of Theorems 2.1 and 2.2 in [59], with obvious amendments.’):
A is Φ+ iff all its limit operators are injective, i.e. Favard’s condition holds; if A
is Φ− then all its limit operators are surjective. The paper concludes with a first,
simplified version of our Theorem 6.40 below, with a somewhat abbreviated proof:
that A ∈ W is either Fredholm on all spaces Y = `p(ZN , C), p ∈ [1,∞], or on none
of them. Moreover, the uniform boundedness condition on the inverses of its limit
operators is redundant.

From here on we mainly follow the discrete branch of the limit operator story
since this is the focus of our text, noting that the further generalisation from scalar-
valued to vector-valued `p spaces Y = `p(ZN , U) with an arbitrary complex Banach
space U enables us to emulate differential, integral and pseudo-differential operators
on Lp(RN ) (e.g. [45]) by operators on the discrete space Y with U = Lp([0, 1]N )
(see e.g. [43, 73], the discussion in the paragraphs after equation (1.5) above, and
Chapter 8 below).

In the last 10 years, the limit operators of band-dominated operators on the
discrete spaces Y = `p(ZN , U) with p ∈ (1,∞) have been extensively studied by
Rabinovich, Roch, Silbermann and a small number of their coauthors. The first
work of this troika was [72], where the results of [44] for p ∈ (1,∞) are picked up,
this time with full proofs, and are extended, utilised and illuminated in connection
with other problems and concepts such as the applicability of the so-called finite
section method (a truncation method for the approximate solution of corresponding
operator equations) and the idea of two different symbol calculi in the factor algebra
of BDO(Y ) modulus compact operators. Another important result of [72] is the
observation that the limit operator idea is compatible with the local principle of
Allan [2] and Douglas [32] for the study of invertibility in non-commutative Banach
algebras. The latter result was used to slightly relax the uniform boundedness
condition on the inverses of the limit operators in the general Fredholm criterion
[72, Corollary 5] and to completely remove this condition in the case of slowly
oscillating coefficients [72, Theorem 9].

In [73] the same authors tackle the case when U is an arbitrary Hilbert space
under the additional condition that p = 2 so that Y = `2(ZN , U) is a Hilbert space
too and the set of band-dominated operators on it is a C∗-algebra. In this C∗

setting, which makes life slightly easier than the more general case when BDO(Y )
is merely a Banach algebra, the serious obstacle of an infinite dimensional space U
is overcome. The matrix [A] that corresponds to an operator A ∈ BDO(Y ) now has
operator entries aij ∈ L(U) which are infinite dimensional operators themselves.
This changes the Fredholm theory completely: An operator A with only finitely
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many nonzero entries aij is in general no longer of finite rank – not even compact.
That is why Rabinovich, Roch and Silbermann replace the ideal K(Y ) of compact
operators by another set, later on denoted by K(Y,P), which is the norm closure of
the set of all operators A with finitely many nonzero matrix entries. Also this set is
contained in BDO(Y ), it is an ideal there and it is shown that if for A ∈ BDO(Y )
there exists a K(Y,P)-regulariser B ∈ L(Y ), i.e. AB−I and BA−I are in K(Y,P),
then automatically B ∈ BDO(Y ). If U is finite dimensional and p ∈ (1,∞), which
was the setting of [72], then K(Y,P) is the same as K(Y ) and invertibility modulo
K(Y,P), termed invertibility at infinity in [73], coincides with invertibility modulo
K(Y ) alias Fredholmness. So one could argue that in [72] the subject already
was invertibility at infinity which, as a coincidence, turned out to be Fredholmness
too. In fact, the major milestone in [73] was to understand that the limit operator
method studies invertibility at infinity and not Fredholmness, and therefore the new
ideal K(Y,P) was the right one to work with. Fortunately, invertibility at infinity
and Fredholmness are closely related properties so that knowledge about one of
them already says a lot about the other and so the limit operator method can still
be used to make statements about Fredholmness – via invertibility at infinity.

Another problem that occurs when passing to an infinite dimensional space U is
that the simple Bolzano-Weierstrass argument (coupled with a diagonal construc-
tion) previously showing that, for A ∈ BDO(Y ), every sequence h = (h(k))k∈N ⊂
ZN with |h(k)| → ∞ has a subsequence g such that the matrix of the translates
[V−g(k)AVg(k)] = [ai+g(k),j+g(k)]i,j∈ZN converges entry-wise as k →∞, is no longer
applicable as the matrix diagonals are bounded sequences in the infinite dimen-
sional space L(U) now. So the class of all operators A ∈ BDO(Y ) for which every
such sequence h has a subsequence g with this convergence property (the limiting
operator being the limit operator Ag) had to be singled out in [73]. Operators of
this class were later on termed rich operators.

There is one more technical subtlety when passing to an infinite dimensional
space U : The so-called P−convergence (1.9) that is used in (1.10) is equivalent to
strong convergence Bn → B and B∗

n → B∗ if p ∈ (1,∞) and U is finite dimensional;
in fact, this is how it was treated in [72]. So this was another difference to [72]
although nothing new since P−convergence was de facto introduced for exactly this
purpose by Muhamadiev [59] already.

The next two works in this story were the very comprehensive monograph
[74] by the troika Rabinovich, Roch and Silbermann, which summarised the state
of the art to which it largely contributed itself, and the PhD thesis [49] of the
second author of this text. Both grew at roughly the same time and under mutual
inspiration and support. In [74], besides many other things that cannot be discussed
here, the case Y = `p(ZN , U) was successfully treated for arbitrary Banach spaces
U and p ∈ (1,∞). The gaps at p ∈ {1,∞} are filled in [49]. The challenge
about p = ∞ is that duality, which is a frequent instrument in the arguments of
[72, 73, 74], is more problematic since the dual space of Y is no longer one of the
Y -spaces at hand. Instead one works with the predual and imposes the existence of
a preadjoint operator acting on it. Note that some of these ideas have been picked
up and are significantly extended and improved in Section 6.2 below.
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Another important thread that should be mentioned here is the determination
not only of Fredholmness but also of the Fredholm index by means of limit oper-
ators. The key paper in this respect is [71] by Rabinovich, Roch and Roe, where
the case N = 1, p = 2, U = C has been studied using C∗−algebra techniques
combined with K−theory. The idea is to decompose Y = `2(Z, C) into the sub-
spaces Y− and Y+ that correspond to the negative and the non-negative half axis,
respectively, thereby splitting the twosided infinite matrix [A] of A ∈ BDO(Y ) into
the four onesided infinite submatrices [A−−], [A−+], [A+−] and [A++]. Since [A−+]
and [A+−] are compact (note that U has finite dimension), these two blocks can
be removed without changing Fredholmness or the index. By a similar argument,
for every m ∈ N, the first m rows and columns of both [A−−] and [A++] can be
removed without losing any information about Fredholmness and the index. So it
is not really surprising that also the index of A is exclusively stored in the asymp-
totic behaviour of the matrix entries of [A−−] and [A++] at infinity, i.e. in the
limit operators of A. Indeed, calling the index of A±±, understood as an operator
on Y±, the ±−index of A, respectively, it is shown in [71] that all limit operators
of A with respect to sequences tending to ±∞ have the same ±−index as A has,
respectively. Since the index of A is the sum of its plus- and its minus-index, this
gives a formula for the index of A in terms of plus- and minus-indices of two of its
limit operators. The index formula of [71] was later carried over to the case N = 1,
p ∈ (1,∞), U = C in [78] (where it was shown that the index of A does not depend
on p – see [52] for the same result in the setting of a more general Banach space
U), re-proved by completely different techniques (using the sequence of the finite
sections of A) in [75] and generalised to the case of an arbitrary Banach space U
in case A = I + K with a locally compact operator K (i.e. all entries of [K] are
compact operators on U) in [70].

The most recent extended account of the limit operator method is the mono-
graph [51] by the second author. Besides a unification of techniques and results
of [49] and [74], an exposition of the topic of infinite matrices, in particular band-
dominated operators, that is accessible for a wide audience and a number of addi-
tions and clarifications to the theory, it also contains the first fruits of the work with
the other author of this text. For example, it contains a treatment of boundary in-
tegral equations on unbounded surfaces (also see [15, 16]), their Fredholmness and
finite sections, as well as more complete results on the interplay of Fredholmness
and invertibility at infinity and on different aspects of the finite section method.

The above is an account of the main development of limit operator ideas and
the theory of limit operators, starting with the work of Favard [33]. However, we
have omitted mention of a number of instances where limit-operator-type ideas have
been discovered independently. Recent examples are the papers of Davies [27] and
Last and Simon [47], which treat specific Schrödinger and Jacobi operators by limit-
operator-type arguments. Another fairly substantial body of work, in which limit
operator ideas are important, has grown out of the collectively compact operator
theory of Anselone and co-authors [3]. It seems appropriate to summarise the
main historical developments in this line of research in separate paragraphs below
since this body of work work has in common that it is characterised by collective
compactness concepts. However, in much of this work limit-operator-type ideas
also play a key role. Specifically, limit operator ideas combined with collectively
compact operator theory are used already in the 1985 paper of Anselone and Sloan
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[5] to show the stability in BC[0,∞) of the finite section method for the classical
Wiener-Hopf integral equation

(1.17) y(s) = x(s) +
∫ ∞

0

κ(s− t)y(t) dt, s ≥ 0,

with κ ∈ L1(R). (The finite section method is just the approximation of (1.17) by
the equation on the finite interval

y(s) = x(s) +
∫ A

0

κ(s− t)y(t) dt, 0 ≤ s ≤ A,

and the main issue is to study stability and convergence as A →∞.) The methods
and results of [5] are generalised in Chandler-Wilde [13] to obtain criteria in BC(R)
for both stability of the finite section method and solvability for the equation

y(s) = x(s) +
∫ ∞

−∞
κ(s− t)z(t)y(t) dt, s ∈ R,

in operator form

(1.18) y = x + Kzy,

where Kz is the integral operator with kernel κ(s − t)z(t), and it is assumed that
κ ∈ L1(R) and z ∈ L∞(R).

Limit operators do not appear explicitly in [13], or in generalisations of this
work to multidimensional cases [20, 23], to more general classes of kernels [24],
to other functions spaces (Lp(R), 1 ≤ p ≤ ∞, or weighted spaces) [6, 7], or to
general operator equations on Banach spaces [23]. Rather, as we discuss in the
paragraphs below, the results of these papers provide criteria for unique solvability
of (1.18) expressed in terms of injectivity in BC(R) (or equivalently in L∞(R)) of
the elements of a particular family of operators. The connection to limit operators,
explored in Section 5.3 below, is that this family of operators necessarily contains
both the operator I −Kz and all the weak limit operators of I −Kz. (Here weak
limit operator has the same meaning as in our discussion of the paper [59] on page
8 above; we call Kz̃ a weak limit operator of Kz if, for some unbounded sequence
(tk) ⊂ R, it holds that z(· − tk) w∗→ z̃ as k → ∞, where w∗→ is weak∗ convergence in
L∞(R).)

Collective Compactness. In the mid 1960’s Anselone and co-workers (see
[3] and the references therein) introduced the concept of collectively compact op-
erators. A family K of linear operators on a Banach space Y is called collectively
compact if, for any sequences (Km) ⊂ K and (xm) ⊂ Y with ‖xm‖ ≤ 1, there is
always a subsequence of (Kmxm) that converges in the norm of Y . It is immediate
that every collectively compact family K is bounded and that all of its members
are compact operators.

There are some important features of collectively compact sets of operators.
First, recall that if K is a compact operator on Y and a sequence Am of operators
on Y converges strongly (i.e. pointwise) to 0, then AmK converges to 0 in the
operator norm on Y . But under the same assumption, even AmKm converges to 0
in the norm for any sequence (Km) ⊂ K provided K is collectively compact. This
fact was probably the motivation for the introduction of this notion. It was used by
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Anselone for the convergence analysis of approximation methods like the Nyström
method for second kind integral equations.

Another important feature [3, Theorem 1.6] is that if {Km}∞m=1 is collectively
compact and strongly convergent to K, then also K is compact, and the following
holds:

I −K is invertible ⇐⇒
I −Km is invertible for large m, say m > m0, and sup

m>m0

‖(I −Km)−1‖ < ∞

Since K and Km are compact, the above is equivalent to the following statement

I −K is injective ⇐⇒ ∃m0 : inf
m>m0

ν(I −Km) > 0(1.19)

where ν(A) := inf{‖Ax‖ : ‖x‖ = 1} is the so-called lower norm of an operator A.

There are many important examples where K is not compact in the norm topol-
ogy on Y but does have compactness properties in a weaker topology. To be precise,
K, while not compact (mapping a neighbourhood of zero to a relatively compact set)
has the property that, in the weaker topology, it maps bounded sets to sets that are
relatively compact (such operators are sometimes termed Montel)3. In particular,
this is generically the case when K is an integral operator on an unbounded domain
with a continuous or weakly singular kernel; these properties of the kernel make K a
‘smoothing’ operator, so that K has local compactness properties, but K fails to be
compact because the domain is not compact. Anselone and Sloan [5] were the first
to extend the arguments of collectively compact operator theory to tackle a case
of this type, namely to study the finite section method for classical Wiener-Hopf
operators on the half-axis. As mentioned already above, the arguments introduced
were developed into a methodology for establishing existence from uniqueness for
classes of second kind integral equations on unbounded domains and for analyzing
the convergence and stability of approximation methods in a series of papers by
the first author and collaborators [13, 63, 20, 24, 56, 18, 23, 6, 7]. A particular
motivation for this was the analysis of integral equation methods for problems of
scattering of acoustic, elastic and electromagnetic waves by unbounded surfaces
[14, 21, 96, 19, 22, 56, 18, 97, 61, 7, 16]. Other applications included the
study of multidimensional Wiener-Hopf operators and, related to the Schrödinger
operator, a study of Lippmann-Schwinger integral equations [20]. Related devel-
opments of the ideas of Anselone and Sloan [5] to the analysis of nonlinear integral
equations on unbounded domains are described in [1, 4, 62].

In [23] the first author and Zhang put these ideas into the setting of an ab-
stract Banach space Y , in which a key role is played by the notion of a generalised
collectively compact family K. Now the sequence (Kmxm) has a subsequence that
converges in a topology that is weaker than the norm topology on Y , whenever
(Km) ⊂ K and (xm) ⊂ Y with ‖xm‖ ≤ 1. This notion no longer requires the
elements of K to be compact operators and therefore covers a lot more operators
originating from applications. But still, the following similar result to (1.19) was
established in [23]. If K is generalised collectively compact (or uniformly Montel as
we shall term the same property in Definition 3.22 in this text) and some important

3Already in the 1970’s DePree and co-authors [29, 30, 31] studied collectively compact
operator theory in a topological vector space setting, but they retained compactness of K rather

than studying the weaker case where K is Montel.
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additional assumptions hold (see the end of our discussion of limit operators above
and Theorem 5.9 below), then

I −K is injective for all K ∈ K ⇐⇒ inf
K∈K

ν(I −K) > 0.(1.20)

If the family K satisfies rather strong additional constraints (see Theorem 5.9 below
for details), then also invertibility of I−K for every K ∈ K follows from injectivity
for all K ∈ K.

To give a concrete flavour of these results (this was the first concrete application
of these ideas made to boundary integral equations in wave scattering [13, 14]),
one case where they apply is to the integral equation (1.18), with the family K
defined by

K := {Kz : z ∈ L∞(R) and z(s) ∈ Q, for almost all s ∈ R},
for some Q ⊂ C which is compact and convex. That is, existence and uniform
boundedness of (I − Kz)−1 (as an operator on BC(R)) for all Kz ∈ K, can be
shown to follow from injectivity of I −Kz for all Kz ∈ K (see [13, 14] or [23] for
details).

Generalised Collective Compactness and Limit Operators: A Main
Aim of this Memoir. We have briefly indicated above some connections be-
tween the two bodies of work that we have described under the headings ‘Limit
Operators’ and ‘Collective Compactness’. It was a main aim for us in writing4 this
text to explore these connections in a methodical way, in particular to explore the
possibilities for applying the generalised collectively compact operator theory [23]
in a limit operator context, and for combining collective compactness and limit
operator ideas. It turns out that these ideas have a very fruitful interplay (other
recent examples of this interplay in addition to this text are [70] and [17], the lat-
ter paper making use of some of the results we will present below). We finish this
introduction by summarising the main new results of the text and of this interplay
of ideas.

1.3. Summary and the Main New Results

In this final section of the introduction, having given an overview of the ideas
of the text and their historical development in Sections 1.1 and 1.2, we briefly
summarise, chapter by chapter, the main contents and results we obtain.

The text falls into two connected parts. The first part, chapters 2-5, is concerned
with extensions to the general abstract theory of limit operators, as expounded in
Chapter 1 of [74], with exploring the connections with the abstract generalised
collectively compact operator theory of [23], and with making applications of this
theory in the limit operator context.

The short initial Chapter 2 introduces, following [74], the idea of a sequence
(Pn) of bounded linear operators on a Banach space Y that form an approximate

4It was results in [49], in particular where it is pointed out for the first time that the operator

spectrum σop(A) of a rich operator is always relatively sequentially compact with respect to P-

convergence – one of the additional assumptions required for Theorem 5.9 below, taken from [23]
– which prompted the authors to start to investigate this symbiosis, in discussions after the first

author examined the thesis of the second!
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identity on Y , satisfying conditions (i) and (ii) at the beginning of the chapter. In
the theory of limit operators developed in [74] the following notion of sequential
convergence plays a crucial role: we write that xn

s→ x if (xn) is a bounded sequence
and Pmxn → Pmx as n → ∞ for every m. In this text, as we have noted already,
we call s→ strict convergence, by analogy with the strict topology of [10]. Chapter
2 is concerned with study of a topology, which we term the strict topology, in
which s→ is the sequential convergence. We recall properties of this topology from
[23] (which derive in large part from similar results in [10]) and show further
properties, for example characterising the compact and sequentially compact sets
in the strict topology, characterising when the strict and norm topologies coincide,
and introducing many examples that we build on later.

In Chapter 3 we study a number of subspaces of L(Y ), the space of bounded
linear operators on the Banach space Y , namely those subspaces that play an
important role in the abstract theory of limit operators [74] and in the generalised
collectively compact operator theory of [23], and so play an important role in the
rest of the text. These subspaces include the classes L(Y,P) and K(Y,P) central to
the theory of limit operators [74]5, the class S(Y ) of operators that are sequentially
continuous on (Y, s) (Y equipped with the strict topology), and the class SN(Y )
of operators that are sequentially continuous from (Y, s) to (Y, ‖ · ‖) (Y equipped
with the norm topology). We also study the usual class K(Y ) of compact operators
on (Y, ‖ · ‖), the class KS(Y ) of compact operators on (Y, s), and the class M(Y )
of Montel operators on (Y, s) (that map bounded sets to relatively compact sets),
this latter class playing a particularly key role in the later text. Our concern is
to derive explicit characterisations of these sets and to explore the relationships
between them. For example we see in this chapter that S(Y ) coincides with the
set of continuous linear operators on (Y, s), that SN(Y ) is the set of continuous
linear operators from (Y, s) to (Y, ‖ · ‖), and that S(Y ) and SN(Y ) are, roughly
speaking, “one-sided” versions of L(Y,P) and K(Y,P) (see Lemmas 3.3 and 3.10,
Corollary 3.5 and (3.5)). An easy but informative result, which makes clear that
being Montel is a much weaker property than being compact on (Y, s), is Corollary
3.24, which has application for example in Chapter 7, that M(Y ) = L(Y ) if (Y, s)
is sequentially complete and each Pn ∈ K(Y ). In Section 3.2 we study algebraic
properties, for example showing that all of S(Y ), SN(Y ), M(Y ), and KS(Y ) are
Banach subalgebras of L(Y ), and that SN(Y ), KS(Y ), and M(Y ) ∩ S(Y ) are all
ideals of S(Y ).

In the short Chapter 4 we introduce and contrast various notions of convergence
of sequences of operators in L(Y ), with an emphasis on those used in the abstract
theory of limit operators [74] and in the generalised collectively compact operator
theory of [23]. Specifically, our main emphasis is on the P→ convergence of Definition
4.1 (and see [80, 74], though the P→ convergence in [74] is restricted to operators
in L(Y,P)), and on the weaker notions of convergence ( s→ and S→) important in
[23]. These three notions of convergence will play a strong role in subsequent
chapters, but we also compare these notions of convergence to ordinary norm (⇒)
and strong (→) convergence in L(Y ). Informative characterisations we derive are

5Indeed, in [74] the notion of a limit operator of an operator is defined only for operators

in L(Y,P). We will not be this restrictive but extend this notion and other definitions as far as
possible to the whole class L(Y ).
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that a sequence (An) ⊂ L(Y ) satisfies An
P→ 0 if and only if (An) is bounded and

both PmAn ⇒ 0 and AnPm ⇒ 0 as n →∞, for every m, while An
S→ 0 if and only

if (An) is bounded and PmAnx
s→ 0 as n →∞ for every m and every x ∈ Y . Thus

An ⇒ 0 ⇒ An
P→ 0 ⇒ An

S→ 0 ⇐ An → 0 (cf. Corollary 4.14).

Chapter 5 introduces the main abstract concepts and results of the text. In
Section 5.1 we introduce the concept of invertibility at infinity (Definition 5.1) of
an operator A ∈ L(Y ) and show that if A ∈ S(Y ) is a Montel perturbation of an
invertible operator in S(Y ), then A invertible at infinity implies that A is Fredholm
(Theorem 5.4). In Section 5.2 we present a specialisation of some main results
of the generalised collectively compact operator theory on a Banach space Y of
[23], to the case where the family of seminorms on Y required in the theory of
[23] is given by (2.4). In Section 5.3 we make an abstract definition of the limit
operators and the operator spectrum, σop(A) (the set of limit operators), of an
arbitrary operator A ∈ L(Y ). We also list the main properties of the operator
(including Fredholmness, invertibility at infinity, and injectivity and invertibility of
the members of the operator spectrum) that we seek to make connections between
in Chapters 5 and 6. New results in this section include: a refinement of [74,
Proposition 1.2.9], that, in the so-called perfect case (when both Pn and its adjoint
converge strongly to the identity as n →∞), Fredholmness implies invertibility of
all the limit operators of A for every A ∈ L(Y ) (not just for A ∈ L(Y,P)); the
observation that, moreover, Fredholmness is equivalent to invertibility when A is
self-similar (A ∈ σop(A)); and a strong existence result for self-similar operators,
that every rich operator (‘richness’ of A, defined in Section 5.3 and characterised in
Theorem 5.12 , guarantees the existence of limit operators) has a self-similar limit
operator. Section 5.4 contains what are probably the main new results of this text
related to limit operators at an abstract level (Theorems 5.16 and 5.20), obtained
by applying the generalised collectively compact operator theory of Section 5.2.
These results, roughly speaking, relate invertibility of an operator A = I + K, in
the case when K is Montel on (Y, s) (and σop(K) is uniformly Montel in the sense
of Definition 3.22), and stability of an approximating sequence An = I + Kn to A,
to injectivity of the elements of σop(A) or of the members of a slightly larger set.
One main theme of the rest of the text is demonstrating the applicability of these
results, and in fact they are central to the proofs of Theorems 6.3, 6.31, and 6.37,
and are important components of the proofs of Corollaries 6.30, 6.32, 6.43, 6.45,
6.46 and 6.48.

The largest chapter of this text is Chapter 6, where we apply results of Chapter 5
to the concrete spaces Y = Y p := `p(ZN , U) and Y = Y 0 := c0(ZN , U) with N ∈ N,
p ∈ [1,∞] and U a complex Banach space. This is still a fairly general situation, as
illustrated e.g. in Chapters 7 and 8, but it is concrete enough to allow much more
precise statements on Fredholmness and invertibility at infinity of operators on Y
than was possible in the very general setting of Chapter 5. We start with a short
section on the Banach algebra of almost periodic aka norm-rich operators on Y and
their operator spectrum. These results are picked up and improved in a later section
on band-dominated and norm-rich operators with the main result that A = I + K,
with K band-dominated, norm-rich and σop(K) uniformly Montel, is invertible on
Y ∞ iff all its limit operators are injective on Y ∞, i.e. Favard’s condition holds.
In Section 6.2 we study interrelations of (semi-) Fredholmness and index of an
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operator A on Y ∞ and its restriction A0 to Y 0. The main techniques here are to
isometrically embed Y ∞ into (Y 0)∗∗ and Y 1(U∗) := `1(ZN , U∗) into (Y ∞)∗ and
to show that, in terms of these embeddings, every A ∈ S(Y ) is the restriction of
A∗∗

0 to Y ∞ and A∗
0 is the restriction of A∗ to Y 1(U∗). Further connections are

established in the case that U has a predual U/ and A is the adjoint of an operator
A/ on U/. In the following section we introduce BDO(Y ), the set of all band-
dominated operators on Y , which is the norm closure in L(Y ) of the set of all band
operators or, equivalently, the smallest Banach subalgebra of L(Y ) that contains
all shift operators (1.7) and all multiplication operators (1.11) with an operator-
valued multiplier b ∈ `∞(ZN , L(U)). Using results from Chapters 3, 5 and Section
6.2 we then derive criteria for and connections between invertibility at infinity
and Fredholmness of A ∈ BDO(Y p) that are new or more complete than before if
p ∈ {0, 1,∞}. The final section of Chapter 6 studies operators in the Wiener algebra
W that we mentioned in (1.16) already. The attraction for studying this subset of
BDO(Y ) in more depth is that operators in W act boundedly on every space Y p

with p ∈ {0} ∪ [1,∞] and neither their invertibility nor invertibility at infinity,
Fredholmness or the Fredholm index depend on the choice of p. It results that,
while, for general operators A ∈ BDO(Y p) in the previous section, the collective
compactness arguments from Chapter 5 mainly contribute to the theory for p = ∞
(and, via duality, to p = 0 and p = 1), now for operators A ∈ W, the same results
hold for p ∈ (1,∞). For example, one gets that, for N = 1 and K ∈ W rich with
σop(K) uniformly Montel, the operator A = I +K is Fredholm on any of the spaces
Y p iff all of its limit operators are injective on Y ∞, i.e. Favard’s condition holds.

In Chapters 7 and 8 we illustrate our main results for two operator classes
of major interest in applications. In Chapter 7 we discuss discrete Schrödinger
operators (both self-adjoint and non-self-adjoint), making links to other recent work
(e.g Davies [27] and Last & Simon [47]). In particular, we derive what appear to
be new characterisations of the spectrum and essential spectrum (Theorem 7.1 and
(7.13)), in terms of the point spectrum in `∞ of the discrete operator and its limit
operators, and apply these results to Schrödinger operators with potentials that
are almost-periodic, perturbations of almost-periodic, pseudo-ergodic in the sense
of Davies [27], and random, in this latter case reproducing results of Trefethen,
Contedini & Embree [90]. In Chapter 8 we demonstrate how the results of Chapter
6 can be applied to continuous operators, deducing criteria for Fredholmness and
invertibility for members of a large Banach algebra of integral operators on RN .

We conclude this text by a final chapter that contains a small list of open
problems that we consider highly interesting for the further development of this
field.
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CHAPTER 2

The Strict Topology

As usual, by N, Z, R and C we refer to the sets of all natural, integer, real and
complex numbers, respectively. We also put N0 := {0, 1, 2, ...} and R+ := [0,∞).

Throughout, Y will denote a real or complex Banach space, with norm denoted
by ‖ · ‖, and L(Y ) refers to the set of bounded linear operators on Y . P = (Pn)∞n=0

will denote a sequence of operators in L(Y ) with the properties that:

(i) supn ‖Pnx‖ = ‖x‖, x ∈ Y ;

(ii) for every m ∈ N0 there exists N(m) ≥ m such that

(2.1) PnPm = Pm = PmPn, n ≥ N(m).

Throughout we will write n � m or m � n if PnPk = Pk = PkPn for all k ≤ m.
Note that l � m and m � n imply l � n since PnPk = PnPmPk = PmPk = Pk =
PkPm = PkPmPn = PkPn for all k ≤ l.

In [74] a bounded sequence P satisfying (ii) is called an increasing approximate
projection and an increasing approximate projection satisfying (i) (or (i) with the
‘=’ replaced by a ‘≥’) is called an approximate identity. Thus P is an approximate
identity in the terminology of [74].

It is easy to see that (i) implies that ‖Pn‖ ≤ 1 for all n. Moreover, if (i) and
(ii) hold, then ‖Pn‖ = 1 for all sufficiently large n and, for all x ∈ Y , the limit
limn→∞ ‖Pnx‖ exists and

(2.2) lim
n→∞

‖Pnx‖ = ‖x‖, x ∈ Y.

For all n ∈ N0 let Qn := I − Pn and note that (ii) implies that, for all m ∈ N0,

(2.3) QnQm = Qn = QmQn, n ≥ N(m),

and (i) that ‖Qn‖ ≤ 2 for all n ∈ N0.

Remark 2.1 There are two possibilities inherent in the assumptions (i) and
(ii): either Pn = I for some n or Pn 6= I for all n. In the first case (ii) implies that
Pn = I for all sufficiently large n. In the second case Qn 6= 0 for all n and (2.3)
implies that ‖Qn‖ ≥ 1, so that 1 ≤ ‖Qn‖ ≤ 2 for all n. Therefore, unless Pn = I
for all sufficiently large n, it does not hold that ‖Pn − I‖ → 0 as n → ∞. It may
happen that Pn converges strongly to I; this is the case in Example 2.6 below and
in Example 2.4, for 1 ≤ p < ∞, but not in Examples 2.2, 2.3, 2.5 or Example 2.4
for p = ∞.

Example 2.2 Let Y = `∞, the Banach space of bounded real- or complex-
valued sequences x = (x(m))m∈Z, with norm ‖x‖ = supm |x(m)|. Define, for x ∈ Y ,
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n ∈ N0,

Pnx(m) =
{

x(m), |m| ≤ n,
0, |m| > n.

Then P = (Pn) satisfies (i) and (ii) with N(m) = m, so that Pn is a projection
operator for each n. In this case ‖Qn‖ = 1 for all n.

Example 2.3 Let Y = `∞ as in Example 2.2. Define, for n ∈ N0, Pn ∈ L(Y ) by
Pnx(m) = x(m), for |m| ≤ (3n− 1)/2, and by the requirement that Pnx(m+3n) =
Pnx(m), for m ∈ Z. Then P = (Pn) satisfies (i) and (ii) with N(m) = m, so that
Pn is a projection operator for each n. In this case ‖Qn‖ = 2 for all n.

Example 2.4 Let Y = Lp(RN ), the Banach space of those Lebesgue measur-
able real- or complex-valued functions x on RN , for which the norm ‖x‖p is finite,
where ‖x‖p := (

∫
RN |x(s)|pds)1/p, for 1 ≤ p < ∞, and ‖x‖∞ := ess sups∈RN |x(s)|.

Define, for x ∈ Y , n ∈ N0,

Pnx(s) =
{

x(s), |s| ≤ n,
0, |s| > n.

Then P = (Pn) satisfies (i) and (ii) with N(m) = m, so that Pn is a projection
operator for each n. In this case ‖Qn‖ = 1 for all n.

Example 2.5 Let Y = BC(RN ), the Banach space of bounded continuous
real- or complex-valued functions on RN , with norm ‖x‖ = sups∈RN |x(s)|. Choose
χ ∈ BC(R) with ‖χ‖ = 1 and χ(t) = 0, t ≤ 0, = 1, t ≥ 1. Define, for n ∈ N0 and
x ∈ Y ,

Pnx(s) = χ(n + 1− |s|)x(s), s ∈ RN .

Then P = (Pn) satisfies (i) and (ii) with N(m) = m+1. In this case ‖Qn‖ = ‖1−χ‖.

Example 2.6 Let Y = C[0, 1] with ‖x‖ = sup0≤s≤1 |x(s)| and let Pnx denote
the piecewise linear function which interpolates x at j/2n, j = 0, 1, ..., 2n. Then
P = (Pn) satisfies (i) and (ii) with N(m) = m.

Note that in Examples 2.2 and 2.6 Pn has finite-dimensional range for each n,
so that Pn ∈ K(Y ), the set of compact linear operators on Y . (The significance of
this is discussed in Remark 2.16 below.)

Throughout, for (xn) ⊂ Y , x ∈ Y , we will write xn → x (as n → ∞) if (xn)
converges to x in the norm topology, i.e. ‖xn − x‖ → 0 as n →∞. We will also be
concerned with convergence in weaker topologies, defined in terms of semi-norms
on Y that are related to the sequence P. For n ∈ N0 define | · |n : Y → R+ by

(2.4) |x|n := max
0≤m≤n

‖Pmx‖, x ∈ Y.

It is easy to check that | · |n is a semi-norm on Y , and (i) and (ii) imply that,
for m < n, x ∈ Y ,

|x|m ≤ |x|n ≤ ‖x‖
and

‖x‖ = sup
n
|x|n = lim

n→∞
|x|n.
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This last equation implies that the family of semi-norms, {| · |n : n ∈ N0},
is separating. We will term the metrisable topology generated by this family of
semi-norms the local topology: with this topology, Y is a separated locally convex
topological vector space (TVS). By definition, a sequence (xn) converges to x in
the local topology if and only if |xn − x|m → 0 as n →∞ for all m, i.e. if and only
if

(2.5) Pmxn → Pmx as n →∞, for all m.

We will see below that, unless Pn = I for each n, Y is not complete in the
local topology. Let X denote the Fréchet space that is the completion of Y in the
local topology. The linear operators Pn, which are continuous as mappings from
Y equipped with the local topology to Y equipped with the norm topology, have
unique extensions to continuous linear operators from X to Y [77]. The equations
(2.1) hold for the extended operators Pn : X → Y , by the continuity of the operators
Pn and since Y is dense in its completion X. Extending the definition of the semi-
norm | · |n from Y to X using equation (2.4), clearly {| · |n : n ∈ N0} generates the
extension of the local topology from Y to X.

Let Ŷ and Ỹ denote the linear subspaces of X,

Ŷ := {x ∈ X : ‖x‖ := sup
n
|x|n < ∞},

and
Ỹ := ∪n∈N0Pn(X),

and note that, for every n, Ỹ = ∪m≥nPm(X) ⊂ Y by (ii). Let Y0 denote the
norm-closure of Ỹ . It follows from [23, Theorem 2.1 (ii)] and the completeness of
X that, equipped with the norm ‖ · ‖, Ŷ is a Banach space with Y and Y0 ⊂ Y as
closed subspaces.

Lemma 2.7. [74, Lemma 1.1.20] Y0 = {x ∈ Y : Qnx → 0 as n → ∞} so that
Y = Y0 iff Pn ∈ L(Y ) converges strongly to I as n →∞.

Example 2.8 Let Y and P be as in Example 2.4. Then X = Lp
loc(RN ),

Ỹ is the set of compactly supported functions x ∈ Lp(RN ), Ŷ = Y = Lp(RN ),
Y0 = Lp(RN ), if 1 < p < ∞, and

Y0 = {x ∈ L∞(RN ) : ess sup
|s|>a

|x(s)| → 0 as a →∞}

if p = ∞.

Example 2.9 Let BUC(RN ) ⊂ BC(RN ) denote the set of bounded uniformly
continuous functions on RN , let CL(RN ) ⊂ BUC(RN ) denote the set of those
x ∈ C(RN ) for which x(s) → x∞ as |s| → ∞, uniformly in s, for some constant
x∞. Let C0(RN ) denote the set of those x ∈ CL(RN ) for which x(s) → 0 as |s| → ∞,
and let CC(RN ) denote the set of compactly supported continuous functions. Note
that C0(RN ), CL(RN ), BUC(RN ) are all closed subspaces of BC(RN ), equipped
with the usual norm.

Let Y denote one of C0(RN ), CL(RN ), BUC(RN ) or BC(RN ) and let P be as
defined in Example 2.5. Then Ŷ = BC(RN ), Ỹ = CC(RN ) and Y0 = C0(RN ).
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Example 2.10 For x ∈ `∞ and k ∈ Z let xk ∈ `∞ be defined by xk(m) =
x(m − k), m ∈ Z. Call x ∈ `∞ almost periodic (e.g. [51, Definition 3.58]) if
{xk : k ∈ Z} ⊂ `∞ is relatively compact. Let `∞AP ⊂ `∞ denote the set of almost
periodic functions. Let Y = `∞AP and define P as in Example 2.3, noting that
Pn(`∞AP) ⊂ `∞AP for every n ∈ N0. Then Ŷ = `∞ and Y0 is a strict subspace of Y .
In particular, if y(m) = exp(2πiam), m ∈ Z, with a irrational, then y ∈ Y (see e.g.
[51, Lemma 3.64,Proposition 3.65]) but ‖Pny − y‖ = 2, for n ∈ N0, so that y 6∈ Y0

by Lemma 2.7.

We will also be interested in a third topology on Ŷ ⊃ Y , intermediate between
the local and norm topologies. Given a positive null-sequence a : N0 → (0,∞),
define

|x|a := sup
n

a(n)|x|n.

Then {| · |a : a is a positive null sequence} is a second separating family on Ŷ and
generates another separated locally convex topology on Ŷ which, by analogy with
[10], we will term the strict topology. For (xn) ⊂ Ŷ , x ∈ Ŷ , we will write xn

s→ x
if xn converges to x in the strict topology, i.e. if |xn − x|a → 0 as n →∞ for every
null sequence a.

The topology we have called the strict topology is termed the β topology in
[23]. Various properties of the β/strict topology are shown in [23, Theorem 2.1],
in large part adapting arguments from [10]. The properties that we need for our
arguments are summarised in the next lemma. As usual [77] we will call a set S in
a TVS bounded if it is absorbed by every neighbourhood of zero, totally bounded if,
for every neighbourhood of zero, U , there exists a finite set {a1, ..., aN} such that
S ⊂ ∪1≤j≤N (aj + U), and compact if every open cover of S has a finite subcover.
Every totally bounded set is bounded [77].

Lemma 2.11. (i) In Ŷ the bounded sets in the strict topology and the
norm topology are the same.

(ii) On every norm-bounded subset of Ŷ the strict topology coincides with the
local topology.

(iii) A sequence (xn) ⊂ Ŷ is convergent in the strict topology iff it is convergent
in the local topology and is bounded in the norm topology, so that

(2.6) xn
s→ x ⇔ sup

n
‖xn‖ < ∞ and Pmxn → Pmx as n →∞, for all m.

(iv) A norm-bounded subset of Ŷ is closed in the strict topology iff it is se-
quentially closed.

(v) A sequence in Ŷ is Cauchy in the strict topology iff it is Cauchy in the
local topology and bounded in the norm topology.

(vi) Let S ⊂ Ŷ . Then the following statements are equivalent:
(a) S is totally bounded in the strict topology.
(b) S is norm-bounded and totally bounded in the local topology.
(c) Every sequence in S has a subsequence that is Cauchy in the strict

topology.

Proof. For (i)-(iv) see [23, Theorem 2.1]. Part (v) follows from (iii) on noting that,
if fj : N → N, j = 1, 2, are such that f = (f1, f2) : N → N2 is a bijection, then,
defining yn := xf1(n) − xf2(n), (xn) is Cauchy iff (yn) is convergent to zero.
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To see (vi) note that if (a) holds then S is bounded in the strict topology and
so in the norm topology by (ii). Also, S is totally bounded in the (coarser) local
topology. Thus (b) holds. Conversely, if (b) holds, U is a neighbourhood of zero in
the strict topology, M := supx∈S ‖x‖, and B := {x : ‖x‖ ≤ 2M}, then, by (ii), there
exists a neighbourhood of zero in the local topology, U ′, such that U ∩B = U ′ ∩B.
Further, there exists a finite set {s1, ..., sN} ⊂ S such that S ⊂

⋃
1≤j≤N (sj + U ′).

It follows that

S ⊂
⋃

1≤j≤N

(sj + U ′ ∩B) =
⋃

1≤j≤N

(sj + U ∩B) ⊂
⋃

1≤j≤N

(sj + U).

Thus also (b) ⇒ (a).

To see that (b) and (c) are equivalent note that, as the local topology is metris-
able, S is totally bounded in the local topology iff every sequence in S has a subse-
quence that is Cauchy in the local topology. Further, by (v), a sequence is Cauchy
in the strict topology iff it is Cauchy in the local topology and norm-bounded.

Note that it follows from (ii) that the linear operators on Y that are bounded with
respect to the strict topology (map bounded sets onto bounded sets) are precisely
the members of L(Y ).

Let E denote one of Ŷ , Y and Y0. When it is necessary to make a clear distinc-
tion we will denote the TVS consisting of E (considered as a linear space) equipped
with the strict topology by (E, s) and will denote the TVS (and Banach space)
consisting of E with the norm topology as (E, ‖ · ‖).

Lemma 2.12. If Pn = I for some n, then the local, strict, and norm topologies
coincide on Ŷ . If Pn 6= I for all n, then:

(a) on Ŷ the local topology is strictly coarser than the strict topology which is
strictly coarser than the norm topology; and

(b) Ŷ , equipped with the local topology, is not complete, while Ŷ equipped with
the strict topology is complete and non-metrisable.

Proof. It is easy to see that any set open in the local topology is open in the strict
topology and that any set open in the strict topology is open in the norm topology.
If Pn = I for some n then the converse statements clearly hold, as at least one of the
semi-norms defining each topology coincides with the norm. Thus the topologies
coincide.

If Pn 6= I for any n then there exists (xn) such that ‖Qnxn‖ = 1 for all n.
For all m, PmQnxn = 0 for all sufficiently large n, by (ii). Clearly Qnxn 6→ 0,
but it follows from (2.6) that Qnxn

s→ 0 as n → ∞. Thus the strict and norm
topologies are distinct. To see that the local and strict topologies are distinct, note
that nQnxn converges to zero in the local topology but ‖nQnxn‖ = n → ∞ so
that, by (2.6), nQnxn 6

s→ 0.

If Ŷ equipped with the local topology were complete it would be a Fréchet space
and it would follow from the open mapping theorem [82] applied to the identity
operator that the local and norm topologies coincide.

Let Y ∗ denote the completion of Ŷ in the strict topology. Then Y ∗ ⊂ X,
since Ŷ ⊂ X and X is complete in the coarser local topology. Suppose Y ∗ 6= Ŷ .
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Then there exists x ∈ Y ∗ with |x|n → ∞ as n → ∞. Let bn := 1/2 max(1, |x|n),
an := 1/bn, and a = (a0, a1, ...). Then y ∈ Y ∗ and |x − y|a < 1 imply that
|y|n > |x|n/2 for all sufficiently large n, so that {y ∈ Ŷ : |x − y|a < 1} = ∅. This
is a contradiction, for Ŷ is dense in its completion.

By definition, Y0 is the completion of Ỹ in the norm topology and we have
seen that Qnx → 0 if x ∈ Y0 in Lemma 2.7. The next lemma states corresponding
results for the strict topology.

Lemma 2.13. For y ∈ Ŷ , Qny
s→ 0 as n → ∞. Further Ŷ is the completion

of Ỹ in the strict topology and Y = Ŷ iff Y is sequentially complete in the strict
topology.

Proof. If y ∈ Ŷ ⊂ X then Pny ∈ Ỹ ⊂ Y and PmPny = Pmy for all sufficiently
large n. Further, by (i), ‖Pny‖ ≤ ‖y‖. Thus, by Lemma 2.11 (iii), Pny

s→ y. Thus
the completion of Ỹ contains Ŷ and in fact coincides with Ŷ since Ŷ is complete
by Lemma 2.12 (ii). Since Ŷ is complete, Y ⊂ Ŷ is sequentially complete iff it is
sequentially closed. But, since Pny

s→ y for every y ∈ Ŷ , this holds iff Y = Ŷ .

As usual, we will call a subset of a topological space relatively compact if its
closure is compact. We will call a subset of a topological space relatively sequentially
compact if every sequence in the subset has a subsequence converging to a point in
the topological space.

Lemma 2.14. Let S ⊂ Y . Then S is compact in (Y, s) iff it is sequentially
compact. Further,

(a) ⇔ (b) ⇒ (c) ⇔ (d)
where (a)-(d) are the statements:

(a) S is relatively compact in the strict topology.
(b) S is relatively sequentially compact in the strict topology.
(c) S is totally bounded in the strict topology.
(d) S is norm-bounded and Pn(S) is relatively compact in the norm topology

for each n.

If (Y, s) is sequentially complete (i.e. Y = Ŷ ) then (a)–(d) are equivalent.

Proof. To show that compactness (relative compactness) of S is equivalent to se-
quential compactness (relative sequential compactness) it is enough to show this in
the strict topology restricted to S̄, the closure in (Y, s) of S. But, if S is relatively
sequentially compact or relatively compact then it is bounded and so S̄ is bounded.
But, by (ii) of Lemma 2.11, the strict topology coincides with the metrisable local
topology on bounded sets, and in metric spaces compactness and sequential com-
pactness coincide. Thus the first statement of the theorem holds and also (a) ⇔
(b). That (b) implies (c), and the converse if Y is sequentially complete, is imme-
diate from (vi) of Lemma 2.11. If (c) holds then, also by (vi) of Lemma 2.11, S is
norm-bounded and every sequence in S has a subsequence that is Cauchy in the
strict topology. Since Pn is continuous from (Ŷ , s) to (Ŷ , ‖ · ‖) and (Ŷ , ‖ · ‖) is com-
plete, this implies that Pn(S) is relatively compact in the norm topology. Finally,
suppose (d) holds and take an arbitrary bounded sequence (xn) ⊂ Ŷ . Choose a
subsequence (x(1)

n ) such that P1x
(1)
n norm-converges as n →∞. From (x(1)

n ) choose
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a subsequence (x(2)
n ) such that P2x

(2)
n norm-converges, and so on. Then (yn), with

yn := x
(n)
n , which is bounded and Cauchy in the local topology is Cauchy in the

strict topology by Lemma 2.11 (iv). Thus every sequence in S has a subsequence
that is Cauchy in the strict topology, so that, by Lemma 2.11 (vi), (c) holds.

Example 2.15 As an important example of relative compactness in the strict
topology, consider the situation of Examples 2.5 and 2.9, where Ŷ = Y = BC(RN )
and (Y, s) is just Y with the standard strict topology of [10]. It follows from the
equivalence of (a) and (d) in the above lemma and the Arzela-Ascoli theorem that
S ⊂ Y is relatively compact in (Y, s) iff S is bounded and equicontinuous. Recall
that S ⊂ Y is equicontinuous if

sup
x∈S

|x(s)− x(t)| → 0 as t → s,

for all s ∈ RN .

Remark 2.16 As the following corollary of the above lemma already indicates,
many of the results we obtain in the text will simplify and become more complete
in the case that Pn ∈ K(Y ) for all n. We note that, by (ii), Pn is compact for all
n if, for every N , Pn is compact for some n > N .

Corollary 2.17. If Y is sequentially complete in the strict topology (i.e. Y =
Ŷ ) and Pn ∈ K(Y ) for all n, then S ⊂ Y is relatively compact in the strict topology
iff it is norm-bounded.



CHAPTER 3

Classes of Operators

We have introduced already L(Y ) and K(Y ), the sets of linear operators that
are, respectively, bounded and compact on (Y, ‖ · ‖). We have noted that L(Y )
coincides with the set of linear operators that are bounded on (Y, s). Let C(Y ) and
S(Y ) denote the sets of those linear operators that are, respectively, continuous and
sequentially continuous on (Y, s). Thus A ∈ S(Y ) if and only if, for every sequence
(xn) ⊂ Y and x ∈ Y ,

(3.1) xn
s→ x ⇒ Axn

s→ Ax.

Let SN(Y ) denote the set of those linear operators that are sequentially continuous
from (Y, s) to (Y, ‖ · ‖), so that A ∈ SN(Y ) iff

(3.2) xn
s→ x ⇒ Axn → Ax.

We remark that the operators in S(Y ) and SN(Y ) are precisely those termed
s−continuous and sn−continuous, respectively, in [6].

From standard properties of topological vector spaces [82, Theorems A6 and
1.30], and Lemma 2.12, it follows that C(Y ) ⊂ S(Y ) ⊂ L(Y ). In fact we have the
following stronger result.

Lemma 3.1. C(Y ) = S(Y ).

Proof. Let C(Ŷ ), S(Ŷ ) denote the sets of linear operators on Ŷ that are, respec-
tively, continuous and sequentially continuous. For n ∈ N0 let Yn denote the linear
subspace of Y ,

(3.3) Yn := {x ∈ Y : |x|n = 0} = {x ∈ Y : Pmx = 0, 0 ≤ m ≤ n}.

Note that, by (ii), for every m ∈ N0, Qn(Ŷ ) ⊂ Ym for all sufficiently large n, and,
for all x ∈ Y , ‖x −Qnx‖ = ‖Pnx‖ ≤ |x|n. Thus Assumption A′ of [23] holds and
it follows from [23, Theorem 3.7] that C(Ŷ ) = S(Ŷ ).

By Lemma 2.13, the sequential closure of Y ⊂ Ŷ in the strict topology is Ŷ .
In Lemma 3.18 we will show that every A ∈ S(Y ) has an extension Â ∈ S(Ŷ )
defined by Âx = limn→∞ APnx, where the limit exists in the strict topology. Then
Â ∈ C(Ŷ ) and A = Â|Y ∈ C(Y ).

In view of this lemma it holds that

(3.4) SN(Y ) ⊂ C(Y ) = S(Y ) ⊂ L(Y ).

As Lemmas 3.3-3.4 below clarify, in general SN(Y ) is a strict subset of S(Y ).
The following example shows that S(Y ) 6= L(Y ) in general, indeed that A may be
compact on (Y, ‖ · ‖) but not sequentially continuous on (Y, s).

26
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Example 3.2 Let Y = `∞ and Pn be as in Example 2.2. Let c+
` denote the

set of those x ∈ `∞ for which limm→+∞ x(m) exists. By the Hahn-Banach theorem
a bounded linear functional `+ : Y → C exists such that `+(x) = limm→+∞ x(m),
x ∈ c+

` . Define A ∈ L(Y ) by Ax = `+(x)y, x ∈ Y , where y ∈ Y is non-zero and
fixed. Then the range of A is one-dimensional so that A ∈ K(Y ) ⊂ L(Y ). However,
defining x = (..., 1, 1, 1, ...) and xn = Qnx, Qnx

s→ 0 as n → ∞ but AQnx = 1 for
all n. Thus A 6∈ S(Y ).

The following lemmas provide alternative characterisations of the classes SN(Y )
and S(Y ) and shed some light on the relationship with K(Y ).

Lemma 3.3. A ∈ SN(Y ) iff A ∈ L(Y ) and ‖AQn‖ → 0 as n →∞.

Proof. Suppose A ∈ SN(Y ). Then A ∈ L(Y ). To see that also ‖AQn‖ → 0
as n → ∞, suppose that this does not hold. Then there is a bounded sequence
(xn) ⊂ Y such that AQnxn 6→ 0. But this is impossible as Qnxn

s→ 0, and hence
‖AQnxn‖ → 0 as n →∞, which is a contradiction.

For the reverse implication, take an arbitrary sequence (xn) ⊂ Y with xn
s→ 0

as n →∞. Then ‖xn‖ is bounded and ‖Pmxn‖ → 0 as n →∞ for every m. Now,
for every m and n,

‖Axn‖ ≤ ‖APmxn‖ + ‖AQmxn‖
≤ ‖A‖‖Pmxn‖ + ‖AQm‖ sup

n
‖xn‖

holds, where ‖AQm‖ can be made as small as desired by choosing m large enough,
and ‖Pmxn‖ tends to zero as n →∞.

Lemma 3.4. A ∈ S(Y ) iff A ∈ L(Y ) and PmA ∈ SN(Y ) for every m.

Proof. If A ∈ S(Y ) then A ∈ L(Y ). The rest trivially follows from

Axn
s→ 0 as n →∞ ⇐⇒ ‖PmAxn‖ → 0 as n →∞ ∀m

for every bounded operator A and every bounded sequence (xn) ⊂ Y .

Corollary 3.5. A ∈ S(Y ) iff A ∈ L(Y ) and ‖PmAQn‖ → 0 as n → ∞ for
every m.

Example 3.6 Let Y = Lp(RN ) and Pn be defined as in Example 2.4. Let
κ ∈ L1(RN ) and let A be the linear integral operator, a so-called convolution
operator, defined by

Ax(s) =
∫

RN

κ(s− t)x(t)dt, s ∈ RN .

Then, by Young’s inequality, A ∈ L(Y ) with ‖A‖ ≤ ‖κ‖1. Further, A ∈ S(Y ),
since ‖PmAQn‖ → 0 as n → ∞, for all m. To see this, note that, for every m,
PmAQn = 0 for all sufficiently large n if κ ∈ C∞

0 (RN ), and then use the density of
C∞

0 (RN ) in L1(RN ).

Lemma 3.7. S(Y ) ∩K(Y ) ⊆ SN(Y ), with equality if and only if Pn ∈ K(Y )
for all n.
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Proof. Suppose A ∈ S(Y ) ∩ K(Y ). Take an arbitrary sequence (xn) ⊂ Y with
xn

s→ 0 as n → ∞. From A ∈ S(Y ) we conclude that Axn
s→ 0 as n → ∞. Since

{xn} is bounded and A is compact, we know that {Axn} is relatively compact, so
every subsequence of (Axn) has a norm-convergent subsequence, where the latter
has limit 0 since Axn

s→ 0 as n → ∞. Of course, this property ensures that Axn

itself norm-converges to 0.

To see when equality holds consider that, by (ii), it holds for every m that
PmQn = 0 for all sufficiently large n. Thus, by Lemma 3.3, Pm ∈ SN(Y ) for all m.
So clearly SN(Y ) 6⊂ K(Y ) if Pm is not compact for all m. If Pm is compact for all
m and A ∈ SN(Y ) then, by Lemma 3.3 again, A is the norm limit limm→∞ APm,
with APm compact, so that A is compact and SN(Y ) ⊂ K(Y ). Thus equality
holds iff Pm ∈ K(Y ) for all m.

Recall that (e.g. [3]) if K ∈ K(Y ) and An converges strongly to A then, since
pointwise convergence is uniform on compact sets, ‖(An − A)K‖ → 0. This and
Lemma 3.7 have the following implication.

Lemma 3.8. If Pn converges strongly to I then ‖QnK‖ → 0 as n → 0 for all
K ∈ K(Y ), while if P ∗

n converges strongly to I∗ (P ∗
n and I∗ the adjoints of Pn and

I) then ‖KQn‖ → 0 as n → 0 for all K ∈ K(Y ), so that K(Y ) ⊂ SN(Y ).

Lemma 3.9. Let A be a linear operator on Y . Then the following statements
are equivalent.

(a) A ∈ SN(Y ).

(b) A ∈ L(Y ) and there is a neighbourhood of zero, U , in (Y, s), for which A(U)
is norm-bounded, in fact for which supx∈U ‖AQnx‖ → 0 as n →∞.

(c) A is a continuous mapping from (Y, s) to (Y, ‖ · ‖).

Proof. That continuity implies sequential continuity, so that (c) ⇒ (a), is standard
[82].

Suppose that (a) holds. Then A ∈ L(Y ) ⊃ SN(Y ). Moreover, by Lemma 3.3,
‖AQn‖ → 0 as n →∞. Choose positive integers n1 � n2 � ... such that

‖AQj‖ ≤ 4−m, j ≥ nm,

for m ∈ N. Then, for x ∈ Y , m ∈ N, and nm ≤ j ≤ nm+1, since PnN
Qjx

s→ Qjx as
N →∞ and A ∈ SN(Y ),

‖AQjx‖ = lim
N→∞

‖APnN
Qjx‖

= lim
N→∞

‖A(Qj −QnN
)x‖

= lim
N→∞

‖
N−1∑

i=m+1

A(Qñi
−Qñi+1)x‖,

where ñi := ni, for i > m + 1, and ñm+1 := j. Further, for i ≥ m + 1,

‖A(Qñi
−Qñi+1)x‖ = ‖AQñi

Pñi+1x‖ ≤ 41−i‖Pñi+1x‖.

Now, define n0 := 0 and am := 2−i, for ni ≤ m < ni+1, i ∈ N0, and set a :=
(a0, a1, ...) and U := {x : |x|a < 1}. Then, from the above inequalities, we see that,
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for x ∈ U , m ∈ N, and nm ≤ j ≤ nm+1, it holds that

‖AQjx‖ ≤
∞∑

i=m+1

41−i‖Pñi+1x‖ ≤
∞∑

i=m+1

41−i/añi+1 ≤ 23−m,

since añi+1 ≥ ani+1 = 2−(i+1). Thus

sup
x∈U

‖AQjx‖ → 0 as j →∞.

Moreover, for x ∈ U , ‖Pn1x‖ ≤ 1/an1 = 2, so that

sup
x∈U

‖Ax‖ ≤ sup
x∈U

‖APn1x‖+ sup
x∈U

‖AQn1x‖ ≤ 2‖A‖+ 4.

Since U is a neighbourhood in (Y, s), we have shown that (a) ⇒ (b).

Now suppose that (b) holds, so that A ∈ L(Y ) and A(U) is norm-bounded,
with U a neighbourhood of 0 in (Y, s). To show that (c) holds it is enough to show
that A is continuous at 0. But if V is a neighbourhood of 0 in (Y, ‖ · ‖) then V
contains λA(U), for some λ > 0, and so A−1(V ) contains λU . Thus (b) ⇒ (c).

Recall that K(Y ) stands for the set of compact operators on Y . Following [74,
§1.1.2], we denote the set of all K ∈ L(Y ) which are subject to

(3.5) ‖KQn‖ → 0 and ‖QnK‖ → 0 as n →∞
by K(Y,P). Moreover, let L(Y,P) refer to the set of all bounded linear operators
A on Y such that AK and KA are in K(Y,P) whenever K ∈ K(Y,P). Both
K(Y,P) and L(Y,P) are Banach subalgebras of L(Y ), and K(Y,P) is a two-sided
ideal in L(Y,P). By definition, L(Y,P) is the largest subalgebra of L(Y ) with that
property. It is shown in [74, Theorem 1.1.9] that L(Y,P) is inverse closed; that is,
if A ∈ L(Y,P) is invertible then A−1 ∈ L(Y,P).

Lemma 3.10. An operator A ∈ L(Y ) is in L(Y,P) iff for every m ∈ N0,

‖PmAQn‖ → 0 and ‖QnAPm‖ → 0 as n →∞.

Proof. This is a straightforward computation. (See [74, Prop. 1.1.8].)

Remark 3.11 Clearly the characterisations of S(Y ) and SN(Y ) in Lemma
3.3 and Corollary 3.5 bear a close resemblance to the definition of K(Y,P) and
the characterisation of L(Y,P) in the above lemma, respectively. In particular, in
the case that Y is a Hilbert space and Pn is self-adjoint, for each n, it holds that
A ∈ K(Y,P) (∈ L(Y,P)) iff A and A∗ are in SN(Y ) (in S(Y )), where A∗ denotes
the adjoint of A.

The above characterisation also yields the following interesting result:

Lemma 3.12. For an operator K ∈ L(Y,P), either both or neither of the two
properties in (3.5) hold, so that L(Y,P) ∩ SN(Y ) = K(Y,P).

Proof. Suppose K ∈ L(Y,P) and ‖KQn‖ → 0 as n →∞. Then for all m,n ∈ N0,

‖QnK‖ ≤ ‖QnKPm‖+ ‖QnKQm‖ ≤ ‖QnKPm‖+ ‖KQm‖
holds, where ‖KQm‖ can be made as small as desired by choosing m large enough,
and ‖QnKPm‖ tends to zero as n → ∞. Consequently, also the second property
holds in (3.5). By a symmetric argument we see that the second property implies
the first.
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In analogy to Lemma 3.7 we have the following result.

Lemma 3.13. L(Y,P)∩K(Y ) ⊆ K(Y,P), with equality if and only if Pn ∈ K(Y )
for all n.

Proof. From Corollary 3.5 and Lemma 3.10 we know that L(Y,P) ⊆ S(Y ). Conse-
quently,

L(Y,P) ∩K(Y ) = L(Y,P) ∩ L(Y,P) ∩K(Y )
⊆ L(Y,P) ∩ S(Y ) ∩K(Y )
⊆ L(Y,P) ∩ SN(Y ) = K(Y,P),

where we used Lemmas 3.7 and 3.12 for the last two steps. Moreover, if Pn ∈ K(Y )
for all n and K ∈ K(Y,P) then PnK ∈ K(Y ) for all n and K = lim PnK ∈ K(Y ).
If Pn 6∈ K(Y ) for some n then Pn is contained in the difference of the two sets
under consideration.

The above lemma has the following refinement in the case when both Pn and
its adjoint converge strongly to the identity.

Definition 3.14. [74] Call P perfect if Pn converges strongly to I and P ∗
n

converges strongly to I∗.

Lemma 3.15. If P is perfect then K(Y ) ⊂ K(Y,P). If also Pn ∈ K(Y ) for
every n, then K(Y ) = K(Y,P) and L(Y ) = L(Y,P).

Proof. That K(Y ) ⊂ K(Y,P) follows from Lemma 3.8, and that K(Y,P) ⊂ K(Y )
if P ⊂ K(Y ) follows from Lemma 3.13. Then L(Y,P) = L(Y ) is immediate from
the definition of L(Y,P).

The class of operators

(3.6) L0(Y ) := {A ∈ L(Y ) : x ∈ Y0 ⇒ Ax ∈ Y0}
will turn out to be of particular interest to us. Recall that Y0 is characterised by
Lemma 2.7.

Lemma 3.16. For A ∈ L(Y ), the condition A ∈ L0(Y ) is equivalent to the
strong convergence QnAPm → 0 as n →∞ for every fixed m.

Proof. Fix an arbitrary m ∈ N. By Lemma 2.7, the strong convergence QnAPm → 0
as n →∞ is equivalent to APmx ∈ Y0 for every x ∈ Y . Clearly, A ∈ L0(Y ) implies
APmx ∈ Y0 for every x ∈ Y , since Pmx ∈ Y0. The reverse implication follows from
Pmx → x for every x ∈ Y0, from the continuity of A, and the closedness of Y0.

As an immediate consequence of Lemmas 3.10 and 3.16 we get the following.

Corollary 3.17. Every operator in L(Y,P) maps Y0 into Y0, i.e. L(Y,P) ⊂
L0(Y ).

We finish this discussion by noting that every A ∈ S(Y ) has a unique extension
to S(Ŷ ).

Lemma 3.18. Every A ∈ S(Y ) has a unique extension to an operator Â ∈ S(Ŷ ),
defined by

(3.7) Âx := lim
n→∞

APnx, x ∈ Ŷ ,
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where the limit is understood in the strict topology. It holds that ‖Â‖ = ‖A‖,
and if A ∈ SN(Y ), L(Y,P) or K(Y,P), then Â ∈ SN(Ŷ ), L(Ŷ ,P) or K(Ŷ ,P),
respectively. Conversely, if Â ∈ S(Ŷ ), SN(Ŷ ), L(Ŷ ,P) or K(Ŷ ,P) and if Â(Y ) ⊂
Y , then A := Â|Y ∈ S(Y ), SN(Y ), L(Y,P) or K(Y,P), respectively.

Proof. It is easy to see that every sequentially continuous linear operator on a TVS
has a unique sequentially continuous extension to the sequential completion of the
TVS. The obvious construction of this extension in our case is (3.7). For x ∈ Y ,
we have APnx

s→ Ax since Pnx
s→ x and A ∈ S(Y ), so that Â|Y = A. Moreover,

for x ∈ Ŷ ,
‖Âx‖ ≤ sup

n
‖APnx‖ ≤ ‖A‖ sup

n
‖Pnx‖ = ‖A‖‖x‖

so that Â is bounded and ‖Â‖ ≤ ‖A‖. Together with Â|Y = A, this gives ‖Â‖ =
‖A‖.

Now let us show that Â ∈ SN(Ŷ ) if A ∈ SN(Y ). For every x ∈ Ŷ and n ∈ N,
we have Pkx

s→ x, and therefore AQnPkx = ÂQnPkx
s→ ÂQnx as k → ∞ since

Â,Qn ∈ S(Ŷ ). Thus, for x ∈ Ŷ with ‖x‖ = 1,

‖ÂQnx‖ ≤ sup
k
‖AQnPkx‖ ≤ sup

k
‖AQnPk‖ ≤ ‖AQn‖ sup

k
‖Pk‖ → 0

as n → ∞, by Lemma 3.3, since A ∈ SN(Y ). Hence Â ∈ SN(Ŷ ), by Lemma 3.3
again.

From the trivial equality ‖QnÂPm‖ = ‖QnAPm‖, together with Â ∈ S(Ŷ ), we
get that Â ∈ L(Ŷ ,P) if A ∈ L(Y,P), by Corollary 3.5 and Lemma 3.10. Finally, it
follows that Â ∈ K(Ŷ ,P) = L(Ŷ ,P)∩ SN(Ŷ ) if A ∈ K(Y,P) = L(Y,P)∩ SN(Y ),
by Lemma 3.12.

3.1. Compactness and Collective Compactness on (Y, s)

A linear operator on a TVS is said to be compact if the image of some neigh-
bourhood of zero is relatively compact. A linear operator is often said to be Montel
if it has the weaker property that it maps bounded sets onto relatively compact sets.
These properties coincide when the TVS is a normed space. Much of the familiar
theory of compact operators on normed spaces generalises to compact operators on
locally convex separated TVS’s, for example the theory of Riesz [77]. In particular,
a compact operator has a discrete spectrum (as an element of the algebra C(Y )),
whose only accumulation point is zero, and all non-zero points of the spectrum are
eigenvalues. By contrast, as we will see below, the spectrum of a Montel operator
may be much more complex.

Let KS(Y ) denote the set of compact operators on (Y, s) and M(Y ) the set of
Montel operators. Then it is standard (and clear) that KS(Y ) ⊂ M(Y ) ⊂ L(Y )
and KS(Y ) ⊂ C(Y ). Also K(Y ) ⊂ M(Y ), since bounded sets coincide in the
strict and norm topologies and relatively compact sets in the norm topology are
relatively compact in the strict topology. Thus, by Example 3.2, it may not hold
that M(Y ) ⊂ S(Y ). (A Venn diagram illustrating the various subsets of L(Y ) that
we have introduced in this chapter is shown in Figure 3.1 below.) By Lemmas 2.11
and 2.14, an operator A is in M(Y ) iff the image of every norm-bounded set is
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relatively sequentially compact in the strict topology. Operators with this property
are termed sequentially compact with respect to the (Y, s) topology in [23]. The
following two lemmas are useful characterisations of M(Y ) in the case when Y is
sequentially complete (which is the case when Y = Ŷ , by Lemma 2.13).

Lemma 3.19. If Y = Ŷ then A ∈ M(Y ) iff A ∈ L(Y ) and PmA ∈ K(Y ) for
every m.

Proof. The lemma follows immediately from the equivalence of (a) and (d) in
Lemma 2.14. This implies that A ∈ M(Y ) iff A(S) is norm-bounded and PnA(S)
is relatively compact in the norm topology, for every n and every norm-bounded
set S.

Remark 3.20 In the case Y = Lp(RN ) of Example 2.4 (in which case Y = Ŷ ),
an operator which satisfies PmA ∈ K(Y ) and also APm ∈ K(Y ) for each m is
termed locally compact in [16, 51, 70, 74]. In the case Y = BC(RN ) of Example
2.5 (in which again Y = Ŷ ) an operator A ∈ L(Y ) is termed locally compact in [38]
if it holds merely that PmA ∈ K(Y ) for every m, i.e. by Lemma 3.19, if A ∈ M(Y ).

Lemma 3.21. If A ∈ M(Y ) then APn ∈ KS(Y ) for every n. Conversely, if
Y = Ŷ , A ∈ S(Y ) and APn ∈ M(Y ) for every n, then A ∈ M(Y ).

Proof. By Lemma 3.3, Pn ∈ SN(Y ), and so, by Lemma 3.9, maps some neighbour-
hood in (Y, s) to a bounded set in (Y, ‖ · ‖). (In fact every neighbourhood in (Y, s)
is mapped to a bounded set.) Thus APn ∈ KS(Y ) if A ∈ M(Y ).

If APn ∈ M(Y ) for every n then, by Lemma 3.19, PmAPn ∈ K(Y ) for every m
and n. If also A ∈ S(Y ) then, by Corollary 3.5, ‖PmA− PmAPn‖ → 0 as n →∞,
so that PmA ∈ K(Y ) for every m. Thus A ∈ M(Y ) by Lemma 3.19.

Many of the arguments we make in this text will deal with families of operators
that have the following collective compactness property.

Definition 3.22. [23] We say that a set K of linear operators on Y is uni-
formly Montel on (Y, s) or is collectively sequentially compact on (Y, s) if, for every
bounded set B, ∪K∈KK(B) is relatively compact in the strict topology.

Remark 3.23 Note that, by Lemma 2.14, ∪K∈KK(B) is relatively compact
in the strict topology iff ∪K∈KK(B) is relatively sequentially compact in the strict
topology, i.e. iff, for every sequence (Kn) ⊂ K and (xn) ⊂ B, (Knxn) has a strictly
convergent subsequence.

That being Montel on (Y, s) is significantly weaker than being compact is very
clear in the case when Pn is compact for all n. The next two results follow from
Corollary 2.17 (the first is also a corollary of Lemma 3.19).

Corollary 3.24. If Y = Ŷ and Pn ∈ K(Y ) for every n then M(Y ) = L(Y ).

Corollary 3.25. If Y = Ŷ and Pn ∈ K(Y ) for every n then a set K of linear
operators on Y is uniformly Montel on (Y, s) iff K is uniformly bounded.

Remark 3.26 Some of our subsequent results will only apply to operators A
of the form A = I + K with K ∈ S(Y ) ∩ M(Y ). It follows from Corollary 3.24
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that, if Y = Ŷ and Pn ∈ K(Y ) for each n, then A − I ∈ S(Y ) ∩M(Y ) whenever
A ∈ S(Y ), so that every A ∈ S(Y ) can be written in this form.

M(Y ) is the set of operators which map bounded sets to relatively compact
sets in (Y, s), and we have seen in Lemma 3.9 that SN(Y ) is precisely the set of
those operators that map some neighbourhood in (Y, s) to a bounded set. On the
other hand, KS(Y ) is the set of those operators that map some neighbourhood to
a relatively compact set. Clearly, if A ∈ M(Y ) ∩ SN(Y ) then A2 ∈ KS(Y ). What
is less clear is that A ∈ KS(Y ), which the next lemma shows.

Lemma 3.27. It always holds that S(Y ) ∩K(Y ) ⊂ SN(Y ) ∩M(Y ) = KS(Y ).
If Pn ∈ K(Y ) for each n then S(Y ) ∩K(Y ) = SN(Y ) = KS(Y ).

Proof. We have seen already that S(Y ) ∩K(Y ) ⊂ SN(Y ) and K(Y ) ⊂ M(Y ).

To show that SN(Y ) ∩M(Y ) = KS(Y ), suppose that K ∈ KS(Y ). Then, as
noted already, it follows that K ∈ M(Y ). Since K maps some neighbourhood of
zero in (Y, s) to a relatively compact set in (Y, s), and relatively compact sets are
bounded, it follows from Lemma 3.9 that K ∈ SN(Y ).

Suppose now that K ∈ SN(Y ) ∩ M(Y ). Then, by Lemma 3.9, there exists
a neighbourhood of zero, U , in (Y, s), for which K(U) is norm bounded and
supx∈U ‖KQnx‖ → 0 as n → ∞. Let a : N → (0,∞) be a null sequence and
let V be the neighbourhood of zero, V := {x ∈ U : |x|a < 1}. Then, for every
n, Pn(V ) ⊂ Y is bounded so that, since K ∈ M(Y ), for every n, the image of
every sequence in V under the mapping KPn has an s−convergent subsequence.
In particular, given a sequence (xm) ⊂ V we can construct a chain of subsequences
(xm) ⊃ (x(1)

m ) ⊃ (x(2)
m ) ⊃ · · · such that KPjx

(n)
m is s−convergent as m → ∞ for

j = 1, ..., n. Then KPjx
(m)
m is s−convergent for every j, to a limit yj ∈ Y . Now,

for each k, j1, j2,

‖Pk(yj1 − yj2)‖ = lim
m→∞

‖PkK(Qj2 −Qj1)x
(m)
m ‖ ≤ sup

x∈V
‖K(Qj2 −Qj1)x‖.

Thus
‖yj1 − yj2‖ = sup

k
‖Pk(yj1 − yj2)‖ → 0

as j1, j2 → ∞, so that, since Y is a Banach space, for some y ∈ Y , yj → y as
j →∞. It follows that Kx

(m)
m

s→ y as m →∞, so that we have shown that K(V ) is
relatively sequentially compact in (Y, s) and so, by Lemma 2.14, relatively compact,
so that K ∈ KS(Y ). To see this last claim, note that K(V ) ⊂ K(U) is bounded
and that, for every k and j,

‖Pk(Kx(m)
m − y)‖ ≤ ‖Pk(KPjx

(m)
m − yj)‖+ ‖Pk(yj − y)‖+ ‖PkKQjx

(m)
m ‖,

which can be made as small as desired by choosing first j and then m sufficiently
large.

The last sentence of the lemma follows immediately from Lemma 3.7 and from
SN(Y ) = S(Y )∩K(Y ) ⊂ K(Y ) ⊂ M(Y ) and therefore SN(Y )∩M(Y ) = SN(Y ).

We finish the section with further examples of operators in S(Y ), KS(Y ), and
M(Y ).
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Figure 3.1. Venn diagram of the operator classes studied in this chapter.
(The gray shaded area represents K(Y,P), and the hatched area is KS(Y ).)

Example 3.28 Let Y = BC(RN ) and Pn be defined as in Examples 2.5 and
2.15, so that Y = Ŷ and Y is sequentially complete in the strict topology. Suppose
that K is a linear integral operator on Y of the form

Kx(s) =
∫

RN

k(s, t)x(t)dt, s ∈ RN ,

with k(s, ·) ∈ L1(RN ) for every s ∈ RN . Then [38] K ∈ S(Y ) iff

(3.8) sup
s∈RN

∫
RN

|k(s, t)|dt < ∞

and

(3.9)
∫

RN

|k(s, t)− k(s′, t)|dt → 0, as s′ → s,

for every s ∈ RN . Conditions (3.8) and (3.9) imply that K maps bounded sets
to bounded equicontinuous sets, that is to sets that are relatively compact in the
strict topology (see Example 2.15). Thus K ∈ M(Y ) ∩ S(Y ) if (3.8) and (3.9)
hold. Conditions (3.8) and (3.9) hold, in particular, if (as in Chapter 8) K is
in the algebra generated by operators of multiplication by bounded continuous
functions and operators of convolution by L1 functions (as in Example 3.6), or in
the closure of this algebra in L(Y ) with its norm topology. (Such operators are
termed convolution-type operators in [74].)

Example 3.29 As a special case of the above example, suppose that K is
defined as in Example 3.6. Then [38] the spectrum of K is {0} ∪ {κ̂(ξ) : ξ ∈ RN},
where κ̂ ∈ BC(RN ) is the Fourier transform of κ. All non-zero points of the
spectrum are eigenvalues (κ̂(ξ) has eigenfunction x(s) := exp(iξ · s)). Since the
spectrum of K is not discrete, K ∈ M(Y ) ∩ S(Y ) but K 6∈ KS(Y ).

Example 3.30 (Cf. [5, 18].) As another special case of Example 3.28, consider
the one-dimensional case N = 1 with K defined by

Kx(s) =
∫ 1

0

exp(ist)x(t)dt, s ∈ R.
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Then K = KPn for all n > 1, so that K ∈ KS(Y ) by Lemma 3.21. But K 6∈ K(Y )
as, defining xn(s) = exp(−ins), s ∈ R, (Kxn) has no norm-convergent subsequence
since Kxn(s) → 0 as s →∞ for every n but Kxn(n) = 1 for each n.

3.2. Algebraic Properties

We will find the algebraic properties collected in the following lemma useful.
These are immediate from the definitions and Lemmas 3.9, 3.21 and 3.27.

Lemma 3.31. Let A and B be linear operators on Y . Then

A ∈ M(Y ), B ∈ L(Y ) ⇒ AB ∈ M(Y )
A ∈ S(Y ), B ∈ M(Y ) ⇒ AB ∈ M(Y )

A ∈ L(Y ), B ∈ SN(Y ) ⇒ AB ∈ SN(Y )
A ∈ SN(Y ), B ∈ S(Y ) ⇒ AB ∈ SN(Y )

A ∈ SN(Y ), B ∈ M(Y ) ⇒ AB ∈ K(Y )
A ∈ M(Y ), B ∈ SN(Y ) ⇒ AB ∈ KS(Y )

A ∈ KS(Y ) ⇒ A2 ∈ K(Y )

S(Y ), SN(Y ), M(Y ), and KS(Y ) are all vector subspaces of L(Y ). It follows
from the above lemma that they are all subalgebras of L(Y ), and that SN(Y ),
M(Y ) ∩ S(Y ), and KS(Y ) are all (two-sided) ideals of S(Y ). Moreover, all these
subalgebras are closed when endowed with the norm topology of L(Y ).

Lemma 3.32. S(Y ), SN(Y ), M(Y ), and KS(Y ) are all Banach subalgebras
of L(Y ), with S(Y ) a unital subalgebra and SN(Y ), M(Y ) ∩ S(Y ), and KS(Y )
two-sided ideals of S(Y ).

Proof. It only remains to show that each subalgebra is closed. If A ∈ L(Y ) is in
the closure of SN(Y ) then, for every B ∈ SN(Y ) and every n,

‖AQn‖ ≤ ‖BQn‖+ ‖(B −A)Qn‖ ≤ ‖BQn‖+ 2‖B −A‖.

Since B can be chosen to make ‖B − A‖ arbitrarily small and, by Lemma 3.3,
‖BQn‖ → 0 as n → ∞ for every B, it follows that ‖AQn‖ → 0 as n → ∞ so that
A ∈ SN(Y ). Thus SN(Y ) is closed.

Since SN(Y ) is closed it follows from Lemma 3.4 that S(Y ) is closed.

As K(Y ) is closed, it follows from Lemma 3.19 in the case Y = Ŷ that M(Y ) is
closed. In the general case, to see that M(Y ) is closed, suppose that (Am) ⊂ M(Y )
and Am ⇒ A ∈ L(Y ). Let (xn) be a bounded sequence in Y . Then, by a diagonal
argument as in the proof of Lemma 3.27, we can find a subsequence, denoted again
by (xn), such that, for each m, there exists a ym ∈ Y such that Amxn

s→ ym as
n → ∞. Arguing as in the proof of Lemma 3.27, we can show that the sequence
(ym) is Cauchy in (Y, ‖.‖) and so has a limit y ∈ Y , and that Axn

s→ y. This shows
that the image of every bounded set under A is relatively sequentially compact and
so relatively compact in (Y, s), by Lemma 2.14, i.e. A ∈ M(Y ).

By Lemma 3.27, KS(Y ) = M(Y )∩SN(Y ), being the intersection of two closed
spaces, is closed itself.
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We will say that A ∈ L(Y ) is invertible if it is invertible in the algebra of linear
operators on Y , i.e. if it is bijective. Automatically, by the open mapping theorem,
it follows that A−1 ∈ L(Y ). An interesting question is whether S(Y ) = C(Y ) is
inverse closed, i.e. whether, if A ∈ S(Y ) is invertible, it necessarily holds that
A−1 ∈ S(Y ). Since (Y, s) is not barrelled [23], this question is not settled by
standard generalisations of the open mapping theorem to non-metrisable TVS’s
[77]. Indeed, it is not clear to us whether S(Y ) is inverse closed without further
assumptions on Y . But we do have the following result which implies that S(Y ) is
inverse closed in the case when Y = Ŷ and Pn ∈ K(Y ) for each n.

Lemma 3.33. Suppose A,B ∈ S(Y ) are invertible and that A−1 ∈ S(Y ) and
A−B ∈ M(Y ). Then B−1 ∈ S(Y ).

Proof. We have that B−1 = D−1A−1, where D = I + C and C = A−1(B −A). By
Lemma 3.31, C ∈ S(Y ) ∩M(Y ). To show that B−1 ∈ S(Y ) we need only to show
that D−1 ∈ S(Y ).

Suppose that (xn) ⊂ Y , x ∈ Y , and xn
s→ x. Let yn := D−1xn. By (2.6), and

since D−1 = B−1A ∈ L(Y ), (xn) and (yn) are bounded. For each n,

(3.10) yn + Cyn = xn.

Since C ∈ M(Y ) there exists a subsequence (ynm
) and y ∈ Y such that xnm

−
Cynm

s→ y. From (3.10) it follows that ynm

s→ y. Since C ∈ S(Y ), it follows
that xnm − Cynm

s→ x − Cy. Thus y = x − Cy, i.e. y = D−1x. We have shown
that yn = D−1xn has a subsequence strictly converging to y = D−1x. By the
same argument, every subsequence of yn has a subsequence strictly converging to
y. Thus D−1xn

s→ D−1x. So D−1 ∈ S(Y ).

Corollary 3.34. If Y = Ŷ and Pn ∈ K(Y ) for all n then S(Y ) is inverse
closed.

Proof. If Y = Ŷ and Pn ∈ K(Y ) for all n, and A ∈ S(Y ) is invertible, then
I −A ∈ M(Y ) by Corollary 3.24, so that A−1 ∈ S(Y ) by the above lemma.



CHAPTER 4

Notions of Operator Convergence

A component in the arguments to be developed is that one needs some notion
of the convergence of a sequence of operators. For (An) ⊂ L(Y ), A ∈ L(Y ), let
us write An ⇒ A if ‖An − A‖ → 0 (as n → ∞) and An → A if (An) converges
strongly to A, in the strong operator topology induced by the norm topology on Y ,
i.e. if Anx → Ax for all x ∈ Y . Following [51, 74] we introduce also the following
definition.

Definition 4.1. We say that a sequence (An) ⊂ L(Y ) P-converges to A ∈
L(Y ) if, for all K ∈ K(Y,P), both

(4.1) ‖(An −A)K‖ → 0 and ‖K(An −A)‖ → 0 as n →∞.

In this case we write An
P→ A or A = P– limAn.

The following lemma is a generalisation of Proposition 1.65 from [51]. It shows
that every P-convergent sequence is bounded in L(Y ) and that, conversely, for a
bounded sequence (An) one has to check property (4.1) only for K ∈ P in order to
guarantee An

P→ A.

Lemma 4.2. Suppose (An) ⊂ L(Y ) and A ∈ L(Y ). Then An
P→ A iff (An) is

bounded in L(Y ) and, for all m,

(4.2) ‖(An −A)Pm‖ → 0 and ‖Pm(An −A)‖ → 0 as n →∞.

Proof. Suppose (An) is bounded and (4.2) holds. Then, for all m ∈ N and all
K ∈ K(Y,P), one has

‖K(An −A)‖ ≤ ‖K‖ ‖Pm(An −A)‖ + ‖KQm‖ ‖An −A‖,

where the first term tends to zero as n → ∞, and the second one is as small
as desired if m is large enough. The first property of (4.1) is shown absolutely
analogously.

Conversely, if (4.1) holds for all K ∈ K(Y,P), then (4.2) holds for all m ∈ N
since P ⊂ K(Y,P). It remains to show that (An) is bounded.

Suppose the converse is true. Without loss of generality, we can suppose that
A = 0. Now we will successively define two sequences: (mi)∞i=1 ⊂ N and (nk)∞k=0 ⊂
N0. We start with m2 � m1 := 1 and n0 := 0.

For every k ∈ N, choose nk ∈ N such that

nk > nk−1 , ‖Ank
‖ > k2 + 3 and ‖Pm3k−1Ank

‖ < 1,

37
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the latter possible since Pm3k−1 ∈ K(Y,P) and An
P→ 0. Then

‖Qm3k−1Ank
‖ ≥ ‖Ank

‖ − ‖Pm3k−1Ank
‖ > k2 + 3− 1 = k2 + 2.

Take uk ∈ Y with ‖uk‖ = 1 and ‖Qm3k−1Ank
uk‖ > k2 + 1, and choose the next

three elements of the sequence (mi) by m3k+2 � m3k+1 � m3k � m3k−1 such
that ‖Pm3k

Qm3k−1Ank
uk‖ > k2, which is possible by (2.2). Then

‖Pm3k
Qm3k−1Ank

‖ > k2 for all k ∈ N.

Now put

K :=
∞∑

j=1

1
j2

Pm3j+1Qm3j−2 .

From mi � mi+1 for all i ∈ N we get that Pm3k
Qm3k−1Pm3j+1Qm3j−2 equals

Pm3k
Qm3k−1 if k = j and 0 otherwise. Consequently,

Pm3k
Qm3k−1K =

1
k2

Pm3k
Qm3k−1 ,

and hence,

‖KAnk
‖ ≥ ‖Pm3k

Qm3k−1KAnk
‖ = ‖ 1

k2
Pm3k

Qm3k−1Ank
‖ >

k2

k2
= 1

for every k ∈ N. On the other hand, K ∈ K(Y,P), which implies ‖KAn‖ → 0 as
n →∞. Contradiction.

The following is a simple but important example of P-convergence that is fun-
damental to the application we study in Chapter 6.

Example 4.3 Generalising Example 2.2, we suppose that Y = `p(ZN , U), for
some p ∈ [1,∞] and N ∈ N where U is some Banach space. The elements of Y are
of the form x = (x(m))m∈ZN with x(m) ∈ U for every m = (m1, ...,mN ) ∈ ZN and
we equip Y with the usual norm. For m ∈ ZN , we define |m| := max(|m1|, ..., |mN |)
and put

(4.3) Pnx(m) =
{

x(m), |m| ≤ n,
0, |m| > n,

for every x ∈ Y and n ∈ N0. Similarly to Examples 2.2 and 2.4, P = (Pn) satisfies
(i) and (ii) with N(m) = m.

For b = (b(m))m∈ZN ∈ `∞(ZN , L(U)) define the multiplication operator Mb ∈
L(Y ) by

(4.4) Mbx(m) = b(m)x(m), m ∈ ZN ,

for x ∈ Y , and note that ‖Mb‖ = ‖b‖. It is a straightforward consequence of this
equation and Lemma 4.2 that, for a sequence bn ∈ `∞(ZN , L(U)),

Mbn

P→ 0 ⇔ sup
n
‖bn‖ < ∞ and bn

s→ 0

⇔ sup
n
‖bn‖ < ∞ and ‖bn(m)‖ → 0, ∀m ∈ ZN .(4.5)

In the above equation by bn
s→ 0 we mean that bn converges to zero in the strict

topology generated by the family P = (Pn), where we are here using the notation Pn

also to denote the operator on `∞(ZN , L(U)) defined by (4.3) for x ∈ `∞(ZN , L(U)).
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We have seen already that S(Y ) and L(Y,P) are Banach subalgebras of L(Y ).
Both are also closed with respect to P−convergence.

Lemma 4.4. S(Y ) and L(Y,P) are sequentially closed with respect to P−con-
vergence.

Proof. First suppose (An) ⊂ S(Y ), A ∈ L(Y ) and An
P→ A. Then, if xn

s→ 0, for
every k and m, we have

‖PkAxn‖ ≤ ‖Pk(A−Am)‖ sup
n
‖xn‖+ ‖PkAmxn‖.

But ‖PkAmxn‖ → 0 as n → ∞ since Am ∈ S(Y ), and ‖Pk(A − Am)‖ can be
made as small as desired by choosing m large. So we get Axn

s→ 0, and therefore
A ∈ S(Y ).

Similarly (see Proposition 1.1.17(a) in [74] for the details) we show that also
L(Y,P) is sequentially closed.

To make use of results from [23] we introduce also the notions of operator
convergence used there. For (An) ⊂ L(Y ) and A ∈ L(Y ), let us write An

s→ A if,
for all (xn) ⊂ Y ,

(4.6) xn
s→ x ⇒ Anxn

s→ Ax.

Call A ⊂ L(Y ) s-sequentially compact if, for every sequence (An) ⊂ A, there exists
a subsequence (Anm

) and A ∈ A such that Anm

s→ A. Note that A
s→ A holds iff

A ∈ S(Y ). It follows that, if A ⊂ L(Y ) is s-sequentially compact, then A ⊂ S(Y ).

A more familiar and related notion of operator convergence is that of strong
(or pointwise) convergence. For (An) ⊂ L(Y ), A ∈ L(Y ), we will say that (An)
converges to A in the strong operator topology on (Y, s), and write An

S→ A, if

(4.7) Anx
s→ Ax, x ∈ Y.

Clearly, the S-limit is unique, that is An
S→ A and An

S→ B implies A = B. Hence
also the s-limit and P-limit are unique, by Lemma 4.5 and Corollary 4.8 below.

Clearly,

(4.8) An → A ⇒ An
S→ A.

The following lemmas explore further properties of and relationships between
the notions of operator convergence we have introduced. We will exhibit this rela-
tionship through Example 4.6.

Lemma 4.5. Suppose (An) ⊂ L(Y ), A ∈ L(Y ). Then

(4.9) An
s→ A ⇒ An

S→ A and A ∈ S(Y ).

Further, An
S→ A as n → ∞ iff (An) is bounded and Pm(An − A) → 0 as n → ∞

for all m ∈ N.

Proof. It is clear from the definitions that An
s→ A implies An

S→ A. That
An

s→ A implies A ∈ S(Y ) is shown in [23, Lemma 3.1]. That An
S→ A implies

Pm(An −A) → 0 is clear from (2.6), and that it also implies that (An) is bounded
is shown in [23, Lemma 3.3]. Conversely, if (An) is bounded and Pm(An −A) → 0
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for each m, then, for every x ∈ Y , (Anx) is bounded and Pm(Anx − Ax) → 0 for
each m, so that Anx

s→ Ax by (2.6).

Example 4.6 Let Y , Pn and the multiplication operator Mb be defined as in
Example 4.3, and suppose that (bn) ⊂ `∞(ZN , L(U)). Then, extending the results
of Example 4.3, we see that

Mbn ⇒ 0 ⇔ ‖bn‖ = sup
m∈ZN

‖bn(m)‖ → 0,

Mbn

P→ 0 ⇔ sup
n
‖bn‖ < ∞ and ‖bn(m)‖ → 0, ∀m ∈ ZN ,

Mbn

s→ 0 ⇔ Mbn

S→ 0

⇔ sup
n
‖bn‖ < ∞ and ‖bn(m)x(m)‖ → 0, ∀m ∈ ZN , x ∈ Y.

Thus Mbn

P→ 0 requires that each component of bn converges to zero in norm, while
Mbn

s→ 0 requires that each component of bn converges strongly to zero. We have
(cf. Corollary 4.14 below) that

Mbn
⇒ 0 ⇒ Mbn

P→ 0 ⇒ Mbn

s→ 0 ⇔ Mbn

S→ 0 ⇐ Mbn
→ 0.

If U is finite-dimensional, then P→, S→ and s→ all coincide. If p = ∞, then → is
equivalent to ⇒. If 1 < p < ∞ and U is finite-dimensional, then → coincides with
P→, S→ and s→.

Lemma 4.7. Suppose (An) ⊂ L(Y ) is bounded, A ∈ S(Y ), and

||Pm(An −A)|| → 0 as n →∞

for each m. Then An
s→ A.

Proof. If the conditions of the lemma hold and xn
s→ x then Axn

s→ Ax and, by
(2.6), supn ||xn|| < ∞, so that (Anxn) is bounded, and, for each m,

||Pm(Anxn −Ax)|| ≤ ||Pm(An −A)xn||+ ||PmA(xn − x)|| → 0

as n →∞. Thus, by (2.6), Anxn
s→ Ax.

As a corollary of Lemmas 4.2 and 4.7 we have

Corollary 4.8. Suppose (An) ⊂ L(Y ), A ∈ S(Y ). Then

(4.10) An
P→ A ⇒ An

s→ A.

Let us say that A ⊂ L(Y ) is s-sequentially equicontinuous if

(An) ⊂ A, xn
s→ 0 ⇒ Anxn

s→ 0.

Clearly, if A is s-sequentially equicontinuous, then A ⊂ S(Y ). The significance
here of this definition is the following result taken from [23].

Lemma 4.9. Suppose (An) ⊂ S(Y ), A ∈ S(Y ). Then An
s→ A iff An

S→ A and
{An : n ∈ N} is s-sequentially equicontinuous.

Let us say that A ⊂ L(Y ) is sequentially compact in the strong operator topology
on (Y, s) if, for every sequence (An) ⊂ A, there exists A ∈ A and a subsequence
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(Anm
) such that Anm

S→ A. Then Lemma 4.9 and other observations made above
imply the following corollary.

Corollary 4.10. Suppose A ⊂ L(Y ). Then A is s-sequentially compact iff
A ⊂ S(Y ) and A is s-sequentially equicontinuous and sequentially compact in the
strong operator topology on (Y, s).

In the case that the strict and norm topologies coincide, in which case C(Y ) =
S(Y ) = L(Y ), it follows from Lemma 4.5, i.e. from the uniform boundedness the-
orem in Banach spaces, that if (An) ⊂ L(Y ) and An

S→ A then {An : n ∈ N} is
s-sequentially equicontinuous. In the case when these topologies do not coincide, in
which case, by Lemma 2.12, (Y, s) is not metrisable, other versions of the Banach-
Steinhaus theorem would apply [82, 77], if (Y, s) were a Baire space or, more
generally, a barrelled TVS, to give that {An : n ∈ N} is s-sequentially equicon-
tinuous if An

S→ A and (An) ⊂ C(Y ). But, by [23, Theorem 2.1], (Y, s) is not
barrelled unless the norm and strict topologies coincide. And in fact the following
example makes it clear that a version of the Banach-Steinhaus theorem, enabling
equicontinuity to be deduced from continuity and pointwise boundedness, does not
always hold for (Y, s) if the strict and norm topologies do not coincide.

Example 4.11 Let Y be defined as in Example 2.2. For n ∈ N define An ∈
L(Y ) by Anx(m) = x(n), for x ∈ Y , m ∈ Z. It is easy to see that (An) ⊂
C(Y ) ⊂ L(Y ), and clearly ||An|| ≤ 1 so that (An) is bounded. But (An) is not
s-sequentially equicontinuous as, defining xn(m) = 1+tanh(m−n), m ∈ Z, n ∈ N,
clearly (xn) ⊂ Y , xn

s→ 0, but Anxn(0) = 1, so Anxn 6
s→ 0.

In the case that Y satisfies an additional assumption, it is shown in [23] that a
sequence (An) ⊂ S(Y ) that is convergent in the strong operator topology on (Y, s)
is s-sequentially equicontinuous. The additional assumption is the following one,
in which Ym ⊂ Y is the subspace defined by (3.3):

Assumption A. For every m ∈ N there exists n > m and Q : Y → Ym such that

(4.11) ||x−Qx + y|| ≤ max(|x|n, ||y||), x ∈ Y, y ∈ Yn.

That Assumption A is satisfied in some applications is illustrated by the following
example.

Example 4.12 Suppose that Y = BC(RN ) and Pn are defined as in Example
2.5. Then (4.11) holds with n = m + 2 and Q = Qm+1, for then ||x − Qx + y|| =
||Pn−1x + y|| = max(||Pn−1x||, ||y||) ≤ max(|x|n, ||y||), for all x ∈ Y and y ∈ Yn.

Lemma 4.13. [23] Suppose that Assumption A holds and that (An) ⊂ S(Y ),
A ∈ S(Y ), and An

S→ A. Then {An : n ∈ N} is s-sequentially equicontinuous.

Combining Lemmas 4.13, 4.9, Corollary 4.8, and (4.8), we have the following
result which shows that, when Assumption A holds, the convergence s→ is weaker
than both ordinary strong convergence and P-convergence.
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Corollary 4.14. Suppose that Assumption A holds and that (An) ⊂ S(Y ),
A ∈ S(Y ). Then

An
P→ A ⇒ An

s→ A ⇔ An
S→ A ⇐ An → A.



CHAPTER 5

Key Concepts and Results

This chapter introduces the key concepts and develops the key results of the
text. We first recall the concepts of invertibility at infinity and Fredholmness and
start to explore their inter-relation. Next, we summarise some main results from
the abstract generalised collectively compact operator theory developed in [23] and
from the abstract theory of limit operators [72, 74, 51]. It then turns out that
the collection of all limit operators of an operator A ∈ S(Y ) is subject to the
constraints made in the operator theory of [23]. Therefore we apply this theory
and derive some new general results which can be used to study the invertibility of
operators and their limit operators. We will illustrate the application of the results
of this chapter throughout the remainder of the text.

5.1. Invertibility at Infinity and Fredholmness

Following [74, 51] we introduce the following definition.

Definition 5.1. An operator A ∈ L(Y ) is said to be invertible at infinity if
there exist operators B ∈ L(Y ) and T1, T2 ∈ K(Y,P) such that

(5.1) AB = I + T1 and BA = I + T2.

Remark 5.2 If A ∈ L(Y,P) then A + K(Y,P) is invertible in the quotient
algebra L(Y,P)/K(Y,P) iff A is invertible at infinity with B ∈ L(Y,P) in (5.1).
Rabinovich et al. [74] call A ∈ L(Y,P) P-Fredholm when this is the case.

The following lemma gives some justification for the name ‘invertible at infinity’.

Lemma 5.3. If A ∈ L(Y ) and (5.1) holds with B ∈ L(Y ) and T1, T2 ∈ SN(Y ) ⊃
K(Y,P), then there exist B′

1, B
′
2 ∈ L(Y ) and n ∈ N0 such that

(5.2) QnAB′
1 = Qn = B′

2AQn.

If B ∈ S(Y ) then we can also choose B′
1, B

′
2 ∈ S(Y ). If B, T1, T2 ∈ L(Y,P) then

also B′
1, B

′
2 can be chosen in L(Y,P).

Proof. Choose m ∈ N0 large enough that ‖T1Qm‖ < 1 and ‖T2Qm‖ < 1, and
take an n ∈ N0 such that QnQm = Qn = QmQn. From (5.1) we get QnABQm =
Qn(I + T1Qm) and BAQn = (I + T2Qm)Qn, proving (5.2) where we put B′

1 :=
BQm(I + T1Qm)−1 and B′

2 := (I + T2Qm)−1B.

The two additional claims follow immediately from the Neumann series formula
and the fact that S(Y ) and L(Y,P) are Banach subalgebras of L(Y ).
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Recall that A ∈ L(Y ) is called semi-Fredholm if it has a closed range, A(Y ),
and if one of the numbers

(5.3) α(A) := dim(kerA) and β(A) := dim(Y/A(Y ))

is finite, and that A is called Fredholm if both α(A) and β(A) are finite (in which
case its range is automatically closed). In the latter case the index of A is defined
as α(A)− β(A).

The following theorem shows that, in some important cases, invertibility at
infinity implies Fredholmness. Since I ∈ S(Y ), one possible choice of C in this
statement is C = I.

Theorem 5.4. Suppose A = C +K, where C ∈ L(Y ) is invertible, with C−1 ∈
S(Y ), and K ∈ S(Y )∩M(Y ). Suppose further that (5.1) holds with B ∈ L(Y ) and
T1, T2 ∈ SN(Y ). Then A is Fredholm.

Proof. We have from (5.1) that CB + KB = I + T1, BC + BK = I + T2, so that

B = C−1(I + T1 −KB), B = (I + T2 −BK)C−1.

Using the first of these equations we see that

AC−1(I −KB) = (I + KC−1)(I −KB) = I −KC−1T1,

and note that KC−1T1 ∈ KS(Y ) by Lemma 3.31, and thus

(5.4) AC−1(I −KB)(I + KC−1T1) = I − (KC−1T1)2,

with (KC−1T1)2 ∈ K(Y ) by Lemma 3.31. Similarly,

(5.5) (I −BK)C−1A = (I −BK)(I + C−1K) = I − T2C
−1K

with T2C
−1K ∈ K(Y ) by Lemma 3.31. We have constructed right and left regu-

larisers for A, so A is Fredholm.

The following is a corollary of the above result and Lemma 3.19. The last
sentence follows from the observation that A = I + (A− I) and that Pn(A− I) ∈
K(Y ) if A ∈ L(Y ) and Pn ∈ K(Y ).

Corollary 5.5. If A ∈ L(Y ) is invertible at infinity and A = I + K, with
K ∈ S(Y ) and PnK ∈ K(Y ) for every n, then A is Fredholm. In the case that
Pn ∈ K(Y ) for all n, A ∈ S(Y ) is Fredholm if it is invertible at infinity.

In the case that P is perfect we will see in Lemma 5.13 that, conversely, Fred-
holmness implies invertibility at infinity. We will, in Chapter 6, also establish this
result for the case Y = `p(ZN , U), for p = 1,∞, and a Banach space U , in which
case P is not perfect.

5.2. A Generalised Collectively Compact Operator Theory

Following [23, Section 4], we let iso(Y ) denote the set of isometric isomorphisms
on Y and call a set S ⊂ iso(Y ) sufficient if, for some n ∈ N it holds that, for every
x ∈ Y there exists V ∈ S such that 2 |V x|n ≥ ‖x‖. The following examples illustrate
this definition:
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Example 5.6 Let Y = BC(RN ) and P as in Example 2.5. Then both S1 =
{Vk : k ∈ RN}, where Vk is the translation operator

Vkx(s) = x(s− k), s ∈ RN ,

and S2 = {Ψk : k ∈ N}, where

Ψkx(s) = x(ks), s ∈ RN ,

are sufficient families of isometric isomorphisms on Y where we can choose n = 1
in both cases.

Example 5.7 Let Y = Lp(RN ) and P as in Example 2.4. If p = ∞ then both
S1 and S2 from Example 5.6 are sufficient with n = 1 for instance.

If p < ∞ then neither S1 nor S2 is sufficient. Although it is true that for every
x ∈ Y there are n ∈ N and Vk ∈ S1 such that 2 |Vkx|n ≥ ‖x‖, there is no universal
n ∈ N which is large enough to guarantee this property for all x ∈ Y .

We say that an operator A ∈ L(Y ) is bounded below if

ν(A) := inf
‖x‖=1

‖Ax‖ > 0.

In that case, we refer to ν(A) as the lower norm of A.

A ∈ L(Y ) is bounded below iff A is injective and has a closed range. Indeed,
necessity is obvious and sufficiency follows from Banach’s theorem on the inverse
operator saying that A−1 : A(Y ) → Y acts boundedly on the range of A if that is
closed. Another elementary result on the lower norm is that it depends continuously
on the operator; in particular, we have

(5.6) |ν(A)− ν(B)| ≤ ‖A−B‖

for all A,B ∈ L(Y ).

If A is invertible then A is bounded below and ν(A) = 1/‖A−1‖. We will say
that a set A ⊂ L(Y ) is uniformly bounded below if every A ∈ A is bounded below
and if there is a ν > 0 such that ν(A) ≥ ν for all A ∈ A, that is

‖Ax‖ ≥ ν‖x‖, A ∈ A, x ∈ Y.

For K ⊂ L(Y ), we abbreviate the set {I −K : K ∈ K} by I −K.

In the following theorem we use the notation K× to denote the set of all sub-
sequences of sequences (K1,K2, ...) ∈ K1 × K2 × · · · for a fixed family of sets
K1,K2, ... ⊂ L(Y ). This theorem is a slight strengthening of Theorems 4.1 and 4.4
in [23] (in [23] the condition (5.7) has ‘I − Kn bounded below’ replaced by the
weaker ‘I −Kn injective’), but an examination of the proof of Theorem 4.4 in [23]
shows that this slightly stronger result follows by exactly the same argument.

Theorem 5.8. Suppose that Y = Ŷ , S ⊂ iso(Y ) is sufficient, K,K1,K2, ... ⊂
L(Y ), and that

(i) ∪n≥1Kn is uniformly Montel on (Y, s);
(ii) for every sequence (Kn) ∈ K×, there exist a subsequence (Kn(m)) and

K ∈ K such that Kn(m)
s→ K as m →∞;

(iii) for all n ∈ N, it holds that V −1KV ∈ Kn for all K ∈ Kn and V ∈ S;
(iv) I −K is injective for all K ∈ K.
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Then:

a) There is an n0 ∈ N such that I − ∪n≥n0Kn is uniformly bounded below, i.e.
there is a ν > 0 such that

‖(I −K)x‖ ≥ ν‖x‖, K ∈ Kn, n ≥ n0, x ∈ Y ;

b) If, in addition, for every K ∈ K, there exists a sequence (Kn) ∈ K× such
that Kn

s→ K and all operators I −Kn have the property

(5.7) I −Kn bounded below =⇒ I −Kn surjective, n = 1, 2, ...

then all operators in I −K are invertible, and

sup
K∈K

‖(I −K)−1‖ ≤ ν−1.

The following special case of the above theorem, obtained by setting K1 = K2 =
· · · = K in Theorem 5.8 is worth noting. We will say that a subset A ⊂ K ⊂ L(Y )
is s-dense in K if, for every K ∈ K, there is a sequence (Kn) ⊂ A with Kn

s→ K.

Theorem 5.9. [23, Theorem 4.5] Suppose that Y = Ŷ , S ⊂ iso(Y ) is sufficient
and K ⊂ L(Y ) has the following properties:

(i) K is uniformly Montel on (Y, s);
(ii) K is s-sequentially compact;
(iii) V −1KV ∈ K for all K ∈ K, V ∈ S;
(iv) I −K is injective for all K ∈ K.

Then:

a) The set I −K is uniformly bounded below;

b) If in I−K there is an s-dense subset of surjective operators then all operators
in I −K are surjective.

Note that in statement b), as in Theorem 5.8, all operators in I −K are conse-
quently invertible, and their inverses are uniformly bounded by 1/ν where ν > 0 is
a lower bound on all lower norms ν(I −K) with K ∈ K which exists by a).

5.3. Limit Operators

Following [74, Section 1.2], let N ∈ N and V = {Vk}k∈ZN denote a group of
linear isometries on Y which are subject to

(5.8) V0 = I and VkVm = Vk+m, k, m ∈ ZN .

Moreover, we impose that V is compatible with P in the following sense:

(5.9) ∀m,n ∈ N ∃k0 ∈ N : PmVkPn = 0 if |k| > k0

and

(5.10) ∀m ∈ N, k ∈ ZN ∃n0 ∈ N : PmVkQn = 0 = QnVkPm if n > n0.

Definition 5.10. [74] We will say that a sequence h = (h(n))∞n=1 ⊂ ZN tends
to infinity if |h(n)| → ∞ as n →∞. If h tends to infinity and A ∈ L(Y ) then

Ah := P− lim
n→∞

V−h(n)AVh(n)



5.3. LIMIT OPERATORS 47

is called the limit operator of A with respect to the sequence h, provided the P−limit
exists.

From what we know about P−convergence it follows that the limit operator Ah is
unique if it exists.

The operator spectrum σop(A) := {Ah} (see e.g. [51, 74]) is the collection of all
limit operators of A where h ⊂ ZN runs through all sequences tending to infinity
such that Ah exists. For certain operators A, invertibility at infinity, as specified in
Definition 5.1, can be characterised in terms of properties of the operator spectrum
(see Theorem 6.28 below). In turn, as we have seen in Corollary 5.5, for a large class
of operators invertibility at infinity implies Fredholmness, so that Fredholmness can
be determined by studying the operator spectrum; indeed, in some cases it is known
that the operator spectrum also determines the index ([70], [71], [74, Section 2.7],
[51, Section 3.3.1]). To establish the most complete results we need to restrict
consideration to rich operators, where A ∈ L(Y ) is referred to as a rich operator if
every sequence h ⊂ ZN tending to infinity has an infinite subsequence g such that
the limit operator Ag exists.

Example 5.11 Let Y = `∞ and define P as in Example 2.2. Define V =
{Vk}k∈Z ⊂ L(Y ) by

Vkx(m) = x(m− k), m ∈ Z.

Then (5.8)-(5.10) hold for every k0 ≥ m + n and n0 ≥ m + k. For b ∈ `∞ let
Mb ∈ L(Y ) denote the multiplication operator defined by

Mbx(m) = b(m)x(m), m ∈ Z.

For S ⊂ Z let χS ∈ `∞ denote the characteristic function of S. Define a ∈ `∞ by

a(m) := b
√
|m| cmod2, m ∈ Z,

where bsc ≤ s denotes the integer part of s, and set A = Ma. Then, where
B := {χ{n,...,+∞}, χ{−∞,...,n} : n ∈ Z},

σop(A) = {0, I,Mb : b ∈ B}.

For example, if h(n) := 4n2 + 3, then

Figure 5.1. Functions a (top) and b = χ{−∞,...,−4} (below) from Example 5.11.
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P− lim
n→∞

V−h(n)AVh(n) = Mb

where b := χ{−∞,...,−4} (see Figure 5.1). The operator A is rich; this can be seen
directly or by applying Lemma 6.21 below.

The following theorem summarises and extends known results on the operator
spectrum σop(A) and on the relationship between A and its operator spectrum.
Statements (i) and (ii) are from [72], (iii) and (iv) are from [74] and statements
(v)-(vii) go back to [49, Section 3.3] and can also be found in [74, Section 1.2].
(Note that the proofs of (iii)-(vii) given in [49, 74] work for all A ∈ L(Y ), although
the results state a requirement for A ∈ L(Y,P) or make a particular choice of Y ,
and note also that (iv) is immediate from (ii) and (iii) and that (vii) is immediate
from (ii), (v) and (vi), see [17].) Thus we include only a proof of (viii) and (ix), in
which Y0 ⊂ Y is as given in Chapter 2.

For brevity, we introduce the notation

(5.11) T (A) := {V−kAVk : k ∈ ZN}

for the set of all translates of an operator A ∈ L(Y ).

Theorem 5.12. For every A ∈ L(Y ), the following statements hold.

(i) If B ∈ σop(A) then ‖B‖ ≤ ‖A‖.
(ii) If B ∈ σop(A) and k ∈ ZN then also V−kBVk ∈ σop(A).
(iii) σop(A) is sequentially closed with respect to P−convergence.
(iv) If B ∈ σop(A) then σop(B) ⊂ σop(A).
(v) A is rich iff T (A) is relatively P−sequentially compact.
(vi) If A is rich then σop(A) is P−sequentially compact.
(vii) If A is rich and B ∈ σop(A) then B is rich.
(viii) If B ∈ σop(A) then ||Bx|| ≥ ν(A)||x|| for x ∈ Y0, so that ν(B) ≥ ν(A) if

Y = Y0.
(ix) If B ∈ σop(A) ∩ L(Y,P) is invertible then ν(B) ≥ ν(A).

Proof. (viii) If B ∈ σop(A) then B = Ah for some sequence h ⊂ ZN . For m ∈ N
and every x ∈ Y we have that

||V−h(n)AVh(n)Pmx|| = ||AVh(n)Pmx|| ≥ ν(A)||||Vh(n)Pmx|| = ν(A)||Pmx||.

Since V−h(n)AVh(n)
P→ B, taking the limit as n →∞ we get

||BPmx|| ≥ ν(A)||Pmx||.

For x ∈ Y0 we have, by Lemma 2.7, that Pmx → x as m →∞, so the result follows.

(ix) For m,n ∈ N and x ∈ Y ,

||PmB−1x|| ≤ ||PmB−1Qnx||+ ||PmB−1Pnx||
≤ ||PmB−1Qnx||+ ||B−1Pnx||.(5.12)

As L(Y,P) is inverse closed [74, Theorem 1.1.9], we have that B−1 ∈ L(Y,P), so
that ||PmB−1Qk|| → 0 and ||QkB−1Pn|| → 0 as k → ∞, the latter implying, by
Lemma 2.7, that B−1Pnx ∈ Y0. Thus from (5.12) and (viii) we have that

ν(A)||PmB−1x|| ≤ ν(A)||PmB−1Qnx||+ ν(A)||B−1Pnx||
≤ ν(A)||PmB−1Qnx||+ ||Pnx||.
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Taking the limit first as n → ∞ and then as m → ∞, noting (2.2), we get that
ν(A)||B−1x|| ≤ ||x||. We have shown that ν(A)||y|| ≤ ||By||, for all y ∈ Y , as
required.

Within the subspace L(Y,P) of L(Y ), for every fixed sequence h tending to
infinity, the mapping A 7→ Ah is compatible with all of addition, composition,
scalar multiplication and passing to norm-limits [72]. That is, the equations

(A + B)h = Ah + Bh, (AB)h = AhBh,

(λA)h = λAh,
(

lim
m→∞

A(m)
)

h
= lim

m→∞
A

(m)
h(5.13)

hold, in each case provided the limit operators on the right hand side exist. By
definition, L(Y,P) is a subalgebra of L(Y ). By Lemma 3.10, (5.10) implies that
V ⊂ L(Y,P). Thus, if A ∈ L(Y,P) then T (A) ⊂ L(Y,P), so that σop(A) ⊂ L(Y,P)
by Lemma 4.4. Similarly, since by Lemma 3.32, S(Y ) ⊃ L(Y,P) is a subalgebra of
L(Y ), if A ∈ S(Y ) then V−kAVk ∈ S(Y ) for all k ∈ ZN , so that σop(A) ⊂ S(Y )
by Lemma 4.4. As a consequence of (5.13) together with a diagonal argument to
see the closedness, the set of rich operators A ∈ L(Y,P) is a Banach subalgebra of
L(Y,P).

We have at this point introduced all the main concepts that we will use in
the rest of the text. The remainder of the text will in large part be focussed on
establishing relationships between the following properties of an operator A ∈ L(Y )
for important operator classes:

(a) A is invertible.
(b) A is Fredholm.
(c) A is invertible at infinity.
(d) All limit operators of A are invertible and the(5.14)

inverses are uniformly bounded.
(e) All limit operators of A are invertible.
(f) All limit operators of A are injective.

Clearly, it always holds that (a)⇒(b) and that (d)⇒(e)⇒(f). In the case that P is
perfect (Definition 3.14) we have also the following result.

Lemma 5.13. If P is perfect then, for all A ∈ L(Y ), (b)⇒(c)⇒(d).

Proof. That (b)⇒(c) follows from Lemma 3.15. That (c)⇒(d) follows as in the
proof of [74, Proposition 1.2.9] noting that this proof applies word for word with
L(Y,P) replaced by L(Y ), provided that we also replace ‘P-Fredholm’ by ‘invertible
at infinity’.

Thus we see that (a)⇒(b)⇒(c)⇒(d)⇒(e)⇒(f) in the case that P is perfect.
Much of the remainder of the text will be concerned with establishing these impli-
cations also in cases when P is not perfect, and in investigating the converse. In
particular, we will see in the next section that the generalised collectively compact
operator theory introduced in the last section sheds some light on the relationships
between (d), (e) and (f). Further, we have met in Section 5.1 conditions on A which
ensure that (c)⇒(b).
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One case in which the connection between the properties (5.14) is evident is
the case in which A is self-similar. Here, following [17] call A ∈ L(Y ) self-similar if
A ∈ σop(A) and, generalising [58], call A ∈ L(Y ) recurrent if, for every B ∈ σop(A),
it holds that σop(B) = σop(A). It is immediate from these definitions and Theorem
5.12 (iv) that if A is recurrent then all limit operators of A are self-similar and
recurrent. In the case when A is self-similar, the following relationship between the
properties (5.14) (a)-(e) of A is immediate from the definitions and Lemma 5.13.

Corollary 5.14. If P is perfect and A ∈ L(Y ) is self-similar then all of (a)-(e)
in (5.14) are equivalent.

That self-similar operators exist, indeed are ubiquitous, is clear from the fol-
lowing lemma. For completeness, we include the proof which is a variation on the
proof of [17, Proposition 3.7]. Proposition 3.7 in [17] is the same statement as
Lemma 5.15, but proved only for the special case when Y = `p(Z, U), for some
p ∈ [1,∞] and some Banach space U .

Lemma 5.15. If A ∈ L(Y ) is rich then some B ∈ σop(A) is self-similar and
recurrent.

Proof. If B ∈ σop(A) then σop(B) ⊂ σop(A) (Theorem 5.12 (iv)) and σop(B) is
non-empty since, by Theorem 5.12 (vii), B is rich. Further, if B is recurrent then
every C ∈ σop(B) ⊂ σop(A) is recurrent and self-similar. Thus it is enough to show
that there exists a B ∈ σop(A) which is recurrent.

Let
A := { σop(B) : B ∈ σop(A) }.

By Theorem 5.12 (iv) this is a partially ordered set, equipped with the order ’⊇’.
Note further that σop(B) is a maximal element in this partially ordered set iff B
is recurrent. So it remains to show the existence of a maximal element. But this
follows from Zorn’s lemma if we can show that every totally ordered subset of A
has an upper bound.

So let B be a totally ordered subset of A, i.e.

B = { σop(B) : B ∈ σ }

where σ ⊆ σop(A) is such that, for any two B1, B2 ∈ σ, we either have σop(B1) ⊇
σop(B2) or σop(B2) ⊇ σop(B1). On X := σop(A) define the following family of
seminorms. Let

%2n−1(T ) := ‖PnT‖, %2n(T ) := ‖TPn‖,

for n = 1, 2, ... and every T ∈ X, and denote the topology that is generated on
X by {%1, %2, ...} by T . Note that, since T is generated by a countable family
of seminorms, the topological space (X, T ) is metrisable, so that sequential com-
pactness in (X, T ) coincides with compactness. Further, by Lemma 4.2 and since
(Theorem 5.12(i)) ‖T‖ ≤ ‖A‖ for every T ∈ X, convergence in (X, T ) is equivalent
to P−convergence in X. Therefore, by Theorem 5.12(vi)-(vii), X itself and all
elements of B are compact sets in (X, T ).

Now put Σ := ∩B∈σσop(B) = ∩C∈BC. It follows, since B is totally ordered
and each element of B is compact (see the proof of [17, Proposition 3.7] for details)



5.4. COLLECTIVE COMPACTNESS AND THE OPERATOR SPECTRUM 51

that Σ is non-empty. But clearly, by Theorem 5.12 (iv) again, for every T ∈ Σ,
σop(T ) ∈ A is an upper bound of the chain B.

We will see an application of this lemma, taken from [17], at the end of Section
6.3, and we will meet concrete examples of self-similar operators in Section 6.1 and
Chapter 7.

5.4. Collective Compactness and the Operator Spectrum

We continue to suppose that V satisfies the constraints (5.8)-(5.10) introduced
in Section 5.3. This being the case, Theorem 5.12 shows how nicely the operator
spectrum fits the conditions made on the set K in Theorem 5.9 if we put S := V.
Indeed, property (iii) of Theorem 5.9 is then guaranteed by Theorem 5.12 (ii). More-
over, if the operator under consideration is rich and in S(Y ) then, by Theorem 5.12
(vi), its operator spectrum is P−sequentially compact, and hence s−sequentially
compact by Corollary 4.8 (recall that we have just seen after Theorem 5.12 that if
A ∈ S(Y ) then σop(A) ⊂ S(Y )).

Bearing in mind these observations, we now apply Theorem 5.9 to the operator
spectrum of an operator A ∈ L(Y ). We set K := I − A and apply Theorem 5.9
with

K := σop(K) = I − σop(A) so that I −K = σop(A),
noting that K is rich iff A is rich.

Theorem 5.16. Suppose Y = Ŷ , A = I − K ∈ S(Y ) is rich, V is sufficient,
σop(K) is uniformly Montel on (Y, s), and all the limit operators of A are injective.
Then σop(A) is uniformly bounded below. If, moreover, there is an s-dense subset
of surjective operators in σop(A) then all elements of σop(A) are invertible and their
inverses are uniformly bounded.

We can express the condition that σop(K) be uniformly Montel on (Y, s) more
directly in terms of properties of the operator K. This is the content of the next
lemma, for which we introduce the following definition: call a sequence (Ak)k∈ZN ⊂
L(Y ) asymptotically Montel on (Y, s) if, for every sequence h = (h(n))∞n=1 ⊂ ZN

tending to infinity and every bounded sequence (xn) ⊂ Y , it holds that Ah(n)xn

has a strictly converging subsequence.

Lemma 5.17. If K ∈ L(Y ) and the sequence (V−kKVk)k∈ZN is asymptotically
Montel on (Y, s), then σop(K) is uniformly Montel. Conversely, if K is rich and
σop(K) is uniformly Montel then (V−kKVk)k∈ZN is asymptotically Montel.

Proof. Suppose (V−kKVk)k∈ZN is asymptotically Montel and pick any sequence
(Kn)n∈N ⊂ σop(K). Then, by definition of the operator spectrum and P−conver-
gence, for every n ∈ N we can find h(n) ∈ ZN with |h(n)| ≥ n and

(5.15) ||Pk(Kn − V−h(n)KnVh(n))|| ≤
1
n

, 1 ≤ k ≤ n.

Now choose any (xn) ⊂ Y with ||xn|| ≤ 1. Then, as (V−kKVk)k∈ZN is asymptot-
ically Montel and h tends to infinity, V−h(n)KnVh(n)xn has a strictly convergent
subsequence. On the other hand, by (5.15),

Pk(Kn − V−h(n)KnVh(n))xn → 0, n →∞,
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for each k ∈ N, so that (Kn − V−h(n)KnVh(n))xn
s→ 0 by (2.6). Thus Knxn has

a strictly convergent subsequence, so that, by Remark 3.23, σop(K) is uniformly
Montel.

Conversely, suppose that K is rich and σop(K) is uniformly Montel. Take an
arbitrary sequence h = (h(n))∞n=1 ⊂ ZN which tends to infinity and an arbitrary
bounded sequence (xn) ⊂ Y . Since K is rich, (h(n)) and (xn) have subsequences,
denoted again by (h(n)) and (xn), such that V−h(n)KVh(n)

P→ Kh ∈ σop(K). Thus

Pk(V−h(n)KVh(n) −Kh)xn → 0, n →∞,

for each k ∈ N, so that (V−h(n)KVh(n)−Kh)xn
s→ 0. On the other hand, Khxn has

a strictly convergent subsequence since Kh is Montel. Thus V−h(n)KVh(n)xn has a
strictly convergent subsequence.

Remark 5.18 Note that, clearly, (V−kKVk)k∈ZN is asymptotically Montel iff
(V−kK)k∈ZN is asymptotically Montel since V = {Vk}k∈ZN ⊂ iso(Y ).

An extension of Theorem 5.16 can be derived by applying Theorem 5.9 to

K := σop(K) ∪ T (K),

with T (K) defined by (5.11), so that I − K = σop(A) ∪ T (A). Properties (ii) and
(iii) of Theorem 5.9 can be checked in a similar way as before. Property (i) of
Theorem 5.9, that K is uniformly Montel on (Y, s), is equivalently characterised by
any of the properties (i)-(iii) of Lemma 6.23 below, which are equivalent even for
arbitrary K ∈ L(Y ). Note that, for a rich operator K, by Lemma 5.17, any of these
properties is moreover equivalent to σop(K) being uniformly Montel on (Y, s) and
K ∈ M(Y ). Then we get the following slightly enhanced version of the first part of
Theorem 5.16, which in addition allows to conclude from A being injective to the
closedness of the range of A.

Theorem 5.19. Suppose Y = Ŷ , A = I −K ∈ S(Y ) is rich, V is sufficient, K
is subject to any of (i)-(iii) of Lemma 6.23, and A as well as all its limit operators
are injective. Then A is bounded below and σop(A) is uniformly bounded below.

Note that Theorems 5.16 and 5.19 are applications of Theorem 5.9 which was
just a special case of Theorem 5.8. We will now apply Theorem 5.8 directly.

Theorem 5.20. Suppose that Y = Ŷ , V is sufficient, A = I − K ∈ L(Y ),
An = I −Kn ∈ L(Y ) for n ∈ N and that:

(a) An
s→ A;

(b) An bounded below ⇒ An surjective, for each n ∈ N;
(c) ∪n∈NT (Kn) = {V−kKnVk : k ∈ ZN , n ∈ N} is uniformly Montel on (Y, s);
(d) there exists a set B ⊂ L(Y ), such that, for every sequence (k(m)) ⊂ ZN

and increasing sequence (n(m)) ⊂ N, there exist subsequences, denoted
again by (k(m)) and (n(m)), and B ∈ B such that

V−k(m)An(m)Vk(m)
s→ B ∈ B as m →∞;

(e) every B ∈ B is injective.

Then A is invertible and, for some n0 ∈ N, An is invertible for all n ≥ n0, and

‖A−1‖ ≤ sup
n≥n0

‖A−1
n ‖ < ∞.
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Proof. Let Kn := T (Kn), n ∈ N, and set K := I − B, S := V. Then (c) and (d)
imply that conditions (i)–(iv) of Theorem 5.8 are satisfied, and (a) and (b) imply
that the condition in Theorem 5.8 b) is satisfied. Thus, applying Theorem 5.8, the
result follows.

Later on, in Chapter 6, this result will be used to derive Theorem 6.37 on the
invertibility of norm-rich/almost periodic band operators. As described at the end
of Section 6.3, this result has also been used to prove Propositions 3.4 and 3.8 in
[17].

Remark 5.21 Note that condition (a) in the above theorem implies that
A ∈ S(Y ) by Lemma 4.5. Moreover, from condition (d) with k(m) = 0 for all
m ∈ N and condition (a) again we get that A ∈ B. Since A ∈ S(Y ) it holds that
σop(A) ⊂ S(Y ) (see discussion at the end of Section 5.3); if also An

P→ A then
condition (d) also implies that σop(A) ⊂ B. To see this last claim, suppose that
Ã ∈ σop(A). Then there exists (k(m)) ⊂ ZN such that V−k(m)AVk(m)

P→ Ã which
implies, in particular, that ‖Pj(Ã − V−k(m)AVk(m))‖ → 0 as m → ∞, for every
j. Choose the sequence (l(m)) ⊂ N such that PnV−k(m)Pl(m) = PnV−k(m), for
n = 1, ...,m, which is possible by (5.10). Then

‖Pj(Ã− V−k(m)AVk(m))‖ = ‖Pj(Ã− V−k(m)Pl(m)AVk(m))‖

for all j and all m > j. Since An
P→ A, for every m we can choose n(m) such that

‖Pl(m)(An(m) −A)‖ < m−1. Then

‖Pj(Ã− V−k(m)An(m)Vk(m))‖ = ‖Pj(Ã− V−k(m)Pl(m)An(m)Vk(m))‖ → 0

as m → ∞, for every j, so that, by Lemma 4.7, V−k(m)An(m)Vk(m)
s→ Ã, and so

Ã ∈ B.

In the case that A = I −K with K ∈ S(Y ) ∩M(Y ), one particular choice of
An which satisfies (a) and (b) is

An = I −KPn.

For, by Lemma 3.21, KPn ∈ KS(Y ) for every n so that, by a version of Riesz
Fredholm theory for TVS’s (see e.g. [77]), assumption (b) holds. Further, by
Corollary 3.5, for every m,

‖Pm(An −A)‖ = ‖PmKQn‖ → 0, n →∞

so that, by Lemma 4.7, An
s→ A. Further, if T (K) = {V−kKVk : k ∈ ZN} is uni-

formly Montel on (Y, s), then so is {V−kK : k ∈ ZN} and hence also {V−kKPnVk :
k ∈ ZN , n ∈ N} = ∪n∈NT (KPn). Thus Theorem 5.20 has the following corollary.

Corollary 5.22. Suppose that Y = Ŷ , V is sufficient, A = I − K with
K ∈ S(Y ), and set An = I − KPn for n ∈ N. Suppose that T (K) is uniformly
Montel on (Y, s), and that there exists B ⊂ L(Y ) such that every B ∈ B is injective
and for every sequence (k(m)) ⊂ ZN and increasing sequence (n(m)) ⊂ N, there
exist subsequences, denoted again by k(m) and n(m), and B ∈ B, such that

I − V−k(m)KPn(m)Vk(m)
s→ B ∈ B.

Then A is invertible and, for some n0 ∈ N, An is invertible for all n ≥ n0, and

‖A−1‖ ≤ sup
n≥n0

‖A−1
n ‖ < ∞.
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Remark 5.23 We note, by Remark 5.21, that, necessarily, A ∈ B and σop(A) ⊂
B.

More concrete statements than Theorems 5.16, 5.19 and 5.20 can be given when
we pass to a more concrete class of spaces Y . This is what we do in Chapter 6.



CHAPTER 6

Operators on `p(ZN , U)

In this chapter we focus on the case, introduced already briefly in Example 4.3,
when Y = `p(ZN , U), where 1 ≤ p ≤ ∞, N ∈ N and U is an arbitrary complex
Banach space. The elements of Y are of the form x = (x(m))m∈ZN with x(m) ∈ U
for every m = (m1, ...,mN ) ∈ ZN . We equip Y with the usual `p norm of the
scalar sequence (‖x(m)‖U ). We also consider the case when Y = c0(ZN , U), the
Banach subspace of `∞(ZN , U) consisting of the elements that vanish at infinity,
i.e. ‖x(m)‖U → 0 as m →∞.

Since the parameter N ∈ N is of no big importance in almost all of what
follows, we will use the abbreviations Y 0(U) := c0(ZN , U) and Y p(U) := `p(ZN , U)
for 1 ≤ p ≤ ∞. If there is no danger of confusion about what U is, we will even
write Y 0 and Y p. Some of our following statements hold for all the spaces under
consideration. In this case we will simply write Y , which then can be replaced by
any of Y 0 and Y p with 1 ≤ p ≤ ∞.

In terms of dual spaces, we have (Y 0(U))∗ ∼= Y 1(U∗), (Y 1(U))∗ ∼= Y ∞(U∗),
and (Y p(U))∗ ∼= Y q(U∗) for 1 < p < ∞ and 1/p + 1/q = 1 (see e.g. [81]).
To give two prominent examples, the space Y p(C) is the usual `p or c0 space of
complex-valued sequences over ZN , and the space Y p(Lp([0, 1]N )) is isometrically
isomorphic to Lp(RN ) for 1 ≤ p ≤ ∞; see Chapter 8 or [43, 74, 51] for a more
detailed discussion of this isomorphism.

For m ∈ ZN , we define |m| := max(|m1|, ..., |mN |) and put

Pnx(m) =
{

x(m), |m| ≤ n,
0, |m| > n,

for every x ∈ Y and n ∈ N0. As observed already in Example 4.3, P = (Pn) satisfies
conditions (i) and (ii) of Chapter 2 with N(m) = m, so that Pn is a projection
operator for each n. In this case ‖Qn‖ = 1 for all n. For p ∈ {0} ∪ [1,∞), we have
(Y p)0 = Y p, while (Y ∞)0 = Y 0. Moreover, for p ∈ [1,∞], we have Ŷ p = Y p (cf.
Example 2.8), whereas Ŷ 0 = Y ∞.

In the setting of this chapter we have the following refinement of Lemma 3.13.

Lemma 6.1. The following two statements hold.

(i) If p ∈ {0} ∪ (1,∞) then K(Y p) ⊂ K(Y p,P).
(ii) If U is finite-dimensional then K(Y,P) ⊂ K(Y ).

Proof. (i) Let p ∈ {0}∪(1,∞). Then Pn → I as well as P ∗
n → I∗, on Y p and (Y p)∗,

respectively, as n →∞, i.e. P is perfect. Thus K(Y p) ⊂ K(Y p,P) by Lemma 3.15.

55
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(ii) If dim U < ∞ then Pn ∈ K(Y ) for all n, and, by Lemma 3.13, we get
K(Y,P) = L(Y,P) ∩K(Y ) ⊂ K(Y ).

Remark 6.2 From Lemma 6.1 and (5.1) we conclude another result, in addition
to Theorem 5.4 and Corollary 5.5, which relates Fredholmness to invertibility at
infinity in the setting of this chapter: For an arbitrary operator A ∈ L(Y p(U)),
Fredholmness implies invertibility at infinity if p ∈ {0} ∪ (1,∞), and invertibility
at infinity implies Fredholmness if dim U < ∞.

If we moreover put, for x ∈ Y ,

(6.1) Vkx(m) := x(m− k), m ∈ ZN

for every k ∈ ZN , then the family V = {Vk}k∈ZN consists of isometric isomorphisms
on Y and satisfies conditions (5.8)–(5.10) so that it is compatible with P.

In the case p = ∞ (but not if 1 ≤ p < ∞) the family V = {Vk}k∈ZN is sufficient
(see Example 5.7). Thus each of Theorems 5.16, 5.19, 5.20 and Corollary 5.22
can be applied in the case Y = Y ∞. Note also that for Y ∞ Assumption A of
Chapter 4 holds with Q = Qm and n = m + 1 so that Corollary 4.14 applies and
that therefore the convergence s→ can be replaced by the formally weaker notion
S→ of convergence in the strong operator topology on (Y ∞, s), defined by (4.7).
Applying Theorem 5.16, for example, we have the following result in which we say
that a subset A ⊂ K ⊂ L(Y ∞) is S−dense in K if, for every K ∈ K, there is a
sequence (Kn) ⊂ A with Kn

S→ K.

Theorem 6.3. Suppose A = I − K ∈ S(Y ∞) is rich, σop(K) is uniformly
Montel on (Y ∞, s), and all the limit operators of A are injective. Then σop(A)
is uniformly bounded below. If, moreover, there is an S-dense subset of surjective
operators in σop(A) then all elements of σop(A) are invertible and their inverses are
uniformly bounded.

Remark 6.4 We have seen in Lemma 5.17 that σop(K) is uniformly Montel
on (Y ∞, s) iff the sequence (V−kKVk)k∈ZN is asymptotically Montel. If the Banach
space U is of finite dimension, then the condition that σop(K) be uniformly Montel
on (Y ∞, s) is even redundant. For U finite-dimensional implies that Pn ∈ K(Y ∞)
for all n, so that σop(K) is uniformly Montel by Corollary 3.25 and Theorem 5.12
(i).

6.1. Periodic and Almost Periodic Operators

With regard to Theorem 6.3 we remark that we know of no examples where
the requirement for an S−dense subset of surjective operators is not redundant.
Precisely, in all the examples we have studied existence of an S−dense subset of
σop(A) of surjective operators can be deduced from injectivity of all the elements
of σop(A). To illustrate Theorem 6.3 we present next an important example of this
type in which even invertibility of A (on Y ∞) follows from injectivity of all limit
operators of A. We will present further examples in sections 6.3 and 6.4.

To introduce this example we require the following definitions. Recall from
Theorem 5.12 (v) that A ∈ L(Y ) is rich iff the set T (A) of all translates of A
(recall (5.11)) is relatively P−sequentially compact. Now call A ∈ L(Y ) norm-rich
or almost periodic if the set T (A) is relatively compact in the norm topology on
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L(Y ) (this is precisely the definition of an almost periodic operator in Kurbatov
[42]). Call A ∈ L(Y ) absolutely rich or periodic if every sequence in T (A) has a
constant subsequence, i.e. iff T (A) is a finite set. It is easy to establish the following
characterisation.

Lemma 6.5. An operator A ∈ L(Y ) is absolutely rich/periodic iff there exist
m1, ...,mN ∈ N such that

V A = AV for all V ∈ ṼA := {Vmje(j)}N
j=1

with e(1), ..., e(N) denoting the standard unit vectors in RN , i.e. e(j)(i) = 1 if i = j
and = 0 otherwise.

Example 6.6 For b = (b(m))m∈ZN ∈ `∞(ZN , L(U)) = Y ∞(L(U)) define the
multiplication operator Mb ∈ L(Y ), as in Example 4.3, by equation (4.4). Then,
for k ∈ ZN ,

(6.2) V−kMbVk = MV−kb and ‖Mb‖ = ‖b‖.

From these identities and (4.5), it is immediate that Mb is rich iff the set

(6.3) {Vkb}k∈ZN

is relatively sequentially compact in the strict topology on Y ∞(L(U)). It can be
shown moreover [74, Theorem 2.1.16] that this is the case iff the set {b(m) : m ∈
ZN} is relatively compact in L(U). Also, it is clear from (6.2) that Mb is norm
rich iff the set (6.3) is relatively compact in the norm topology on Y ∞(L(U)); it is
usual to say (cf. Example 2.10 and [51, Definition 3.58]) that b is almost periodic
if this condition on b holds. The set of all almost periodic sequences b ∈ Y ∞(Z)
with a Banach space Z shall be denoted by Y ∞

AP(Z).

Similarly, Mb is absolutely rich/periodic iff every sequence in (6.3) has a con-
stant subsequence, i.e. iff (6.3) is finite. By Lemma 6.5 this is equivalent to the
requirement that there exist m1, ...,mN ∈ N such that

b(k + mje
(j)) = b(k), k ∈ ZN , j = 1, ..., N,

i.e. to the requirement that b(k) is periodic as a function of each of the components
of k ∈ ZN .

Suppose that A ∈ L(Y ∞) is absolutely rich/periodic. For n ∈ N, let

(6.4) Y ∞
n = Y ∞

n (U) := {x ∈ Y ∞(U) : V nx = x for all V ∈ ṼA}

with ṼA as defined in Lemma 6.5. Then Y ∞
n is a closed subspace of Y ∞ consisting

of periodic elements; x ∈ Y ∞
n iff

x(k + n mj e(j)) = x(k), k ∈ ZN , j = 1, ..., N,

where the integers m1, ...,mN are as in the definition of ṼA in Lemma 6.5. Clearly,
x ∈ Y ∞

n is determined by its components in the box

Cn := {i = (i1, ..., iN ) ∈ ZN : −n
mj

2
< ij ≤ n

mj

2
, j = 1, ..., N}.

Define the projection operator P̃n : Y ∞ → Y ∞
n by the requirement that

(6.5) P̃nx(k) = x(k) for all k ∈ Cn.
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Then, clearly, for each n, P̃nQj = 0 for all sufficiently large j, so that P̃n ∈ SN(Y ∞)
by Lemma 3.3. (Note however that P̃n 6∈ L(Y ∞,P).)

The last part of the following result and its proof can be seen as a generalisation
of Theorem 2.10 in [20]

Theorem 6.7. If A ∈ L(Y ∞) is absolutely rich/periodic then A(Y ∞
n ) ⊂ Y ∞

n

for each n, and

(6.6) σop(A) = {V−iAVi : i ∈ ZN} = {V−iAVi : i ∈ C1}.
If also A = I+K with K ∈ S(Y ∞)∩M(Y ∞) and A is injective then A is invertible.

Proof. If x ∈ Y ∞
n then Ax ∈ Y ∞

n since V n(Ax) = AV nx = Ax for every V ∈ ṼA.
From the definitions and Lemma 6.5 it is clear that (6.6) holds. Suppose now that
K ∈ S(Y ∞)∩M(Y ∞) and that A = I+K is injective. First we show that, for every
n, I + KP̃n is invertible. To see injectivity, suppose x ∈ Y ∞ and (I + KP̃n)x = 0.
Then x = −KP̃nx ∈ Y ∞

n since P̃nx ∈ Y ∞
n and K = A− I is absolutely rich. Now

x ∈ Y ∞
n implies P̃nx = x and therefore 0 = (I + KP̃n)x = (I + K)x = Ax, i.e.

x = 0 by injectivity of A. Now surjectivity of I + KP̃n follows from its injectivity
by the Riesz theory for compact operators in topological vector spaces [77] since
KP̃n ∈ KS(Y ∞) by Lemma 3.31.

Next, note that from (6.6) it follows that A ∈ σop(A) and that, since A is
injective, all the limit operators of A are injective. Further, by (6.6) and Remark
6.4, it follows that σop(K) is uniformly Montel since K ∈ M(Y ∞). Applying
Theorem 6.3 we see that the limit operators of A are uniformly bounded below, in
particular that A is bounded below.

To see finally that A is surjective let y ∈ Y ∞ and set yn = P̃ny ∈ Y ∞
n and

xn = (I + KP̃n)−1yn so that xn + KP̃nxn = yn which implies (as seen above) that
xn ∈ Y ∞

n , that P̃nxn = xn, and hence that Axn = xn + Kxn = yn. Since (yn)
is bounded and A is bounded below, also (xn) is bounded. Since K ∈ M(Y ∞) it
follows that there exists an x ∈ Y ∞ and a subsequence of (xn), denoted again by
(xn), such that Kxn

s→ y − x, so that xn = yn − Kxn
s→ y − (y − x) = x. As

K ∈ S(Y ∞) this implies Kxn
s→ Kx so that Ax = x + Kx = y.

The above result has the following obvious corollary (phrased in the spirit of
Theorem 6.3, which was the starting point of this discussion).

Corollary 6.8. If A = I + K ∈ S(Y ∞) is absolutely rich/periodic and K ∈
M(Y ∞) and if all limit operators of A are injective, then all limit operators of A
are invertible (with uniformly bounded inverses).

Further down, in Theorem 6.38, we will show that, in the case when A is
also band-dominated (as defined in §6.3), this corollary holds more generally with
‘absolutely rich’ replaced by ‘norm-rich’; indeed in the one-dimensional case N = 1
we will show in Theorem 6.31 that this corollary holds even with ‘absolutely rich’
replaced by ‘rich’. We conclude the current section by a collection of results for
the general setting of all norm-rich/almost periodic operators A ∈ L(Y ); a set that
shall be denoted by Ln$(Y ) for brevity. Our first result follows from a slightly more
general result which is Theorem 6.5.2 in Kurbatov [43]. We include a proof here
for the convenience of the reader.
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Lemma 6.9. Ln$(Y ) is an inverse closed Banach subalgebra of L(Y ).

Proof. Let A,B ∈ Ln$(Y ) and take an arbitrary sequence h = (h(1), h(2), ...) ⊂ ZN .
Pick a subsequence g of h such that both V−g(n)AVg(n) and V−g(n)BVg(n) converge
in norm. Then, clearly, also V−g(n)(A + B)Vg(n) and

V−g(n)(AB)Vg(n) = (V−g(n)AVg(n))(V−g(n)BVg(n))

converge in norm. To see that Ln$(Y ) is closed in the operator norm take A1, A2, ... ∈
Ln$(Y ) with Ak ⇒ A ∈ L(Y ) and an arbitrary sequence h = (h(n))∞n=1 ⊂ ZN . Pick
subsequences · · · ⊂ h(2) ⊂ h(1) ⊂ h such that, for every k ∈ N,

(6.7) ‖V−h(k)(m)AkVh(k)(m) − V−h(k)(n)AkVh(k)(n)‖ < 1/k, m, n > k,

and put g(n) := h(n)(n) for all n ∈ N. Then, for all k ∈ N and all m,n > k, noting
that g(n) = h(k)(n′) for some n′ ≥ n > k,

‖V−g(m)AVg(m) − V−g(n)AVg(n)‖ ≤ ‖V−g(m)AkVg(m) − V−g(n)AkVg(n)‖
+ 2‖Ak −A‖

≤ 1/k + 2‖Ak −A‖ → 0

as k → ∞. This shows that the sequence (V−g(n)AVg(n)) is Cauchy and therefore
convergent in L(Y ). Since g ⊂ h, we get that A ∈ Ln$(Y ).

To see the inverse closedness suppose A ∈ Ln$(Y ) is invertible in L(Y ) and
take an arbitrary sequence h = (h(1), h(2), ...) ⊂ ZN . Since A ∈ Ln$(Y ), there is a
subsequence g of h such that An := V−g(n)AVg(n) ⇒ B for some B ∈ L(Y ). Since
‖A−1

n ‖ = ‖V−g(n)A
−1Vg(n)‖ = ‖A−1‖ is bounded independently of n, it follows from

a basic result on Banach algebras (see, e.g. Lemma 1.3 of [51]) that B is invertible
and

A−1
n = V−g(n)A

−1Vg(n) ⇒ B−1,

showing that A−1 ∈ Ln$(Y ).

Theorem 6.10. For A ∈ Ln$(Y ), the following holds.

(i) If, for some sequence h = (h(1), h(2), ...) ⊂ ZN and B ∈ L(Y ),

V−h(n)AVh(n)
P→ B holds, then V−h(n)AVh(n) ⇒ B.

(ii) A ∈ σop(A) (i.e. A is self-similar).
(iii) σop(A) = closL(Y )T (A) is a compact subset of Ln$(Y ).
(iv) A is invertible iff any one of its limit operators is invertible.
(v) ν(A) = ν(B) for all B ∈ σop(A), so that A is bounded below iff σop(A) is

uniformly bounded below.
(vi) If x is almost periodic, then Ax is almost periodic.
(vii) If A is invertible on Y ∞, then it is invertible on Y ∞

AP .

Proof. (i) Since A ∈ Ln$(Y ), every subsequence of V−h(n)AVh(n) ( P→ B) has a
norm-convergent subsequence the limit of which must be B. But this proves norm
convergence of the whole sequence.

(ii) Let h(n) = (n2, 0, ..., 0) ∈ ZN for every n ∈ N. Since A ∈ Ln$(Y ), there is
a subsequence g of h such that V−g(n)AVg(n) converges. But then

‖V−(g(n+1)−g(n))AVg(n+1)−g(n) −A‖ = ‖V−g(n+1)AVg(n+1) − V−g(n)AVg(n)‖ → 0
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as n →∞, showing that A = Af ∈ σop(A) with f(n) = g(n + 1)− g(n) →∞.

(iii) The inclusion σop(A) ⊂ closL(Y )T (A) follows from (i). The reverse in-
clusion follows from (ii), from Theorem 5.12 (ii) and the closedness of σop(A) (see
Theorem 5.12 (iii) above or [51, Corollary 3.96]). The compactness of closL(Y )T (A)
follows from the relative compactness of T (A) in L(Y ). By Lemma 6.9, every op-
erator in closL(Y )T (A) is norm-rich/almost periodic.

(iv) Take an arbitrary limit operator Ah of A and let h = (h(1), h(2), ...) ⊂ ZN

be such that An := V−h(n)AVh(n)
P→ Ah holds. By (i) we have that An ⇒ Ah.

If Ah is invertible, then so is An for every large n, and therefore A is invertible.
Conversely, if A is invertible, then Ah is invertible by a basic result on Banach
algebras (see e.g. [51, Lemma 1.3]) since ‖A−1

n ‖ = ‖A−1‖ is bounded.

(v) If B ∈ σop(A), then, by (i), we have that V−h(n)AVh(n) ⇒ B for some
sequence h(1), h(2), ... in ZN . By (5.6) this implies that ν(V−h(n)AVh(n)) → ν(B)
as n →∞. On the other hand, since every Vh(n) is an isometry, we have that

ν(V−h(n)AVh(n)) = inf
‖x‖=1

‖V−h(n)AVh(n)x‖ = inf
‖y‖=1

‖Ay‖ = ν(A)

for every n ∈ N, so that ν(A) = ν(V−h(n)AVh(n)) → ν(B), i.e. ν(A) = ν(B).

(vi) Let h = (h(1), h(2), ...) ⊂ ZN be arbitrary. If A ∈ Ln$(Y ∞) and x ∈ Y ∞
AP

there is a subsequence g of h such that both Vg(n)AV−g(n) and Vg(n)x converge in
the norm of L(Y ∞) and Y ∞, respectively. But then also

Vg(n)(Ax) = (Vg(n)AV−g(n))(Vg(n)x)

converges in Y ∞, which shows that Ax ∈ Y ∞
AP .

(vii) If A ∈ Ln$(Y ∞) is invertible on Y ∞, then, by Lemma 6.9, also A−1 ∈
Ln$(Y ∞). Now (vi) shows that x ∈ Y ∞

AP iff Ax ∈ Y ∞
AP .

6.2. Dual Space Arguments

In the results we will present below dual space arguments will play a role, in
particular in the cases p = 1 and p = ∞. Temporarily set Y = `∞(ZN , U) so that
Y0 = c0(ZN , U), and set Y1 = `1(ZN , U∗), where U∗ is the dual space of U . Note
that Y1 = Y ∗

0 . Further, Y ∗
1 = Y if U is reflexive, i.e. if U = U∗∗. In the general

case when U is not reflexive we shall see that we can, in a natural way, embed Y
as a closed subspace of Y ∗

1 .

For x ∈ Y , y ∈ Y1, define the bilinear form (·, ·) on (Y, Y1) by

(6.8) (x, y) :=
∑

j∈ZN

yj(xj), for x = (xj)j∈ZN ∈ Y, y = (yj)j∈ZN ∈ Y1,

and note that, equipped with (·, ·), (Y, Y1) is a dual system in the sense e.g. of
Jörgens [38]. If x ∈ Y0 and y ∈ Y1 = Y ∗

0 then (x, y) = y(x). A similar equation
holds if U has a predual space U/, i.e. if there exists a Banach space U/ such that
(U/)∗ = U . Then Y is the dual space of Y /, where Y / := `1(ZN , U/). Denote by
JU the canonical embedding of U/ into its second dual U∗, given by JUu(v) = v(u),
u ∈ U/, v ∈ U , and let J/ : `1(ZN , U/) → `1(ZN , U∗) be the natural embedding
J/x = (JUxj)j∈ZN . Note that both JU and J/ are isometries. Then

(6.9) (x, J/y) = x(y), x ∈ Y, y ∈ Y /.
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An important observation is that, if (xn) ⊂ Y , x ∈ Y , and y ∈ Y1, then

(6.10) xn
s→ x ⇒ (xn, y) → (x, y).

For every A ∈ L0(Y ) (recall the definition (3.6) of L0(Y )) let A0 ∈ L(Y0) be
defined by A0 := A|Y0 . Then its adjoint A∗

0 ∈ L(Y ∗
0 ) = L(Y1). From Corollary 3.17

we recall that, in particular, A ∈ L0(Y ) if A ∈ L(Y,P) ⊂ S(Y ).

Lemma 6.11. If A ∈ S(Y ) ∩ L0(Y ) then

(Ax, y) = (x,A∗
0y), x ∈ Y, y ∈ Y1,

i.e. A is the transpose of A∗
0 with respect to the dual system (Y, Y1).

Proof. For x ∈ Y0, y ∈ Y ∗
0 = Y1,

(Ax, y) = (A0x, y) = (x,A∗
0y).

Thus, for x ∈ Y , y ∈ Y1,
(APnx, y) = (Pnx, A∗

0y).
Taking the limit n → ∞, in view of (6.10) and since A ∈ S(Y ), the result follows.

It follows from Lemma 6.1(i) that if A0 ∈ L(Y0) is Fredholm then it is invertible
at infinity (cf. Remark 6.2). We shall see that under certain conditions the same
implication holds for A ∈ L(Y ). Our tool to establish this will be to relate Fred-
holmness of A to that of A0. To this end a useful tool is to embed Y as a closed
subspace of Y ∗∗

0 = `∞(ZN , U∗∗). Precisely, define J : Y → Y ∗∗
0 by

Jx(y) = (x, y), x ∈ Y, y ∈ Y ∗
0 = Y1.

It is easy to check that J is an isometry, so that Y is isometrically isomorphic to
Y̌ := J(Y ) ⊂ Y ∗∗

0 . For A ∈ L(Y ) define Ǎ ∈ L(Y̌ ) by Ǎ := JAJ−1.

Lemma 6.12. If A ∈ S(Y ) ∩ L0(Y ), then A∗∗
0 (Y̌ ) ⊂ Y̌ and Ǎ = A∗∗

0 |Y̌ , so that

α(A0) ≤ α(A) = α(Ǎ) ≤ α(A∗∗
0 ).

Proof. For x ∈ Y̌ , y ∈ Y1, with z := J−1x ∈ Y ,

Ǎx(y) = (J(Az))(y) = (Az, y) = (z,A∗
0y),

by Lemma 6.11, and

A∗∗
0 x(y) = x(A∗

0y) = (Jz)(A∗
0y) = (z,A∗

0y).

To make full use of the above observation, we need the following characterisa-
tion, for a Banach space Z, of those operators C ∈ L(Z) whose range is closed,
which is a standard corollary of the open mapping theorem (applied to the injective
operator z + ker C 7→ Cz from Z/ ker C to Z, also see [34, Theorem XI.2.1]): that

(6.11) C(Z) is closed ⇔ ∃c > 0 s.t. ‖Cz‖ ≥ c inf
y∈ker C

‖z − y‖, ∀z ∈ Z.

We also need the following consequence of the above characterisation.

Lemma 6.13. Suppose that Z is a Banach space, Z0 is a closed subspace of Z,
C(Z0) ⊂ Z0, and set C0 := C|Z0 . If the range of C is closed and ker C = ker C0

(i.e. ker C ⊂ Z0), then the range of C0 is also closed.
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Proof. If the conditions of the lemma are satisfied then, by (6.11), there exists c > 0
such that ‖Cz‖ ≥ c infy∈ker C ‖z−y‖, z ∈ Z. But, since Z0 ⊂ Z and kerC = kerC0,
this implies that ‖C0z‖ ≥ c infy∈ker C0 ‖z − y‖, z ∈ Z0, so that the range of C0 is
closed.

Corollary 6.14. If A ∈ S(Y )∩L0(Y ) and A0 is semi-Fredholm with α(A0) <
∞, then A is semi-Fredholm and ker A = kerA0.

Proof. If the conditions of the lemma are satisfied then, from standard results on
Fredholm operators (e.g. [38]), we have that A∗

0 and A∗∗
0 are also semi-Fredholm,

and α(A0) = β(A∗
0) = α(A∗∗

0 ). Applying Lemma 6.12, it follows that α(A0) =
α(A) = α(A∗∗

0 ). Further, since α(A0) is finite and kerA0 ⊂ ker A, ker Ǎ ⊂ ker A∗∗
0 ,

it follows that kerA = kerA0 and that ker Ǎ = kerA∗∗
0 . Applying Lemma 6.13,

since the range of A∗∗
0 is closed it follows that the range of Ǎ is closed and so A(Y )

is closed, and A is semi-Fredholm.

We will prove the converse result only in the case when U has a predual space
U/ and A has a preadjoint A/ on Y / := `1(ZN , U/). Recall that, given a Banach
space X, the Banach space X/ is said to be a predual space of X if X is isometrically
isomorphic to (X/)∗. If X has a predual space X/ then B/ ∈ L(X/) is said to be
a preadjoint of B ∈ L(X) if (B/)∗ = B. If the Banach space U has a predual space
U/ then a predual space of Y = `∞(ZN , U) is Y / = `1(ZN , U/). It is well-known
that, if X is a Banach space which has a predual X/ and B ∈ L(X), then the
following statements are equivalent:

(i) B has a preadjoint B/ ∈ L(X/).

(ii) The adjoint B∗ maps X/, understood as a subspace of its second dual
(X/)∗∗ = X∗, into itself.

(iii) B is continuous in the weak∗ topology on X.

Recalling the isometry J/ : Y / → Y1 introduced above, let Y̌ / = J/(Y /) ⊂ Y1 =
Y ∗

0 , so that Y̌ / is isometrically isomorphic to Y /. For A/ ∈ L(Y /) let Ǎ/ ∈ L(Y̌ /)
be defined by Ǎ/ = J/A/(J/)−1.

Lemma 6.15. If A ∈ L0(Y ), U has a predual U/ and A a preadjoint A/ ∈
L(Y /), then A∗

0(Y̌
/) ⊂ Y̌ / and Ǎ/ = A∗

0|Y̌ / , so that ker Ǎ/ ⊂ ker A∗
0.

Proof. For x ∈ Y̌ / and y ∈ Y0, where z := (J/)−1x ∈ Y /, using (6.9),

Ǎ/x(y) = (y, Ǎ/x) = y(A/z) = Ay(z) = (Ay, x).

Also,
A∗

0x(y) = x(A0y) = (A0y, x) = (Ay, x).

Let J1 : Y1 → Y ∗ be defined by

J1x(y) := Jy(x) = (y, x), x ∈ Y1, y ∈ Y.

It is easy to check that J1 is also an isometry. Let Y̌1 := J1(Y1) ⊂ Y ∗, which
is isometrically isomorphic to Y1. For A1 ∈ L(Y1) let Ǎ1 ∈ L(Y̌1) be defined by
Ǎ1 := J1A1J

−1
1 .
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Lemma 6.16. If A ∈ S(Y )∩L0(Y ), then A∗(Y̌1) ⊂ Y̌1 and Ǎ∗
0 = A∗|Y̌1

, so that
ker Ǎ∗

0 ⊂ ker A∗.

Proof. For x ∈ Y̌1, y ∈ Y , where z = J−1
1 x ∈ Y1,

Ǎ∗
0x(y) = J1(A∗

0z)(y) = (y, A∗
0z) = (Ay, z),

by Lemma 6.11. Also,

A∗x(y) = x(Ay) = J1z(Ay) = (Ay, z).

We note that if the conditions of Lemmas 6.15 and 6.16 are satisfied, then

(6.12) α(A/) ≤ α(A∗
0) ≤ α(A∗).

Theorem 6.17. Suppose that A ∈ S(Y )∩L0(Y ), U has a predual U/ and A has
a preadjoint A/ ∈ L(Y /). Then A is Fredholm if and only if A0 is Fredholm and,
if they are both Fredholm, then α(A0) = α(A), β(A0) = β(A), and ker A = kerA0.

Proof. Suppose first that A0 is Fredholm . Then, by Corollary 6.14, A is semi-
Fredholm and kerA = kerA0. This implies that A/ and A∗ are also semi-Fredholm,
and so, and using (6.12),

β(A) = α(A/) ≤ α(A∗
0) = β(A0),

so that A is Fredholm. Moreover,

β(A) = α(A∗) ≥ α(A∗
0) = β(A0)

so β(A) = β(A0).

Conversely, if A is Fredholm then so are A/ and A∗ and α(A/) = β(A) = α(A∗).
Thus, by (6.12), α(Ǎ∗

0) = α(A∗
0) = α(A∗) is finite and so it follows from Lemma

6.16 that ker Ǎ∗
0 = ker A∗. Applying Lemma 6.13 we see that the range of Ǎ∗

0 is
closed, so that the range of A∗

0 is closed and A∗
0 is semi-Fredholm. Thus A0 is also

semi-Fredholm , with β(A0) = α(A∗
0) = α(A∗) < ∞. But also α(A0) ≤ α(A) is

finite, so A0 is Fredholm.

Note that the above theorem and its proof simplifies greatly if the Banach
space U is reflexive, in particular if U is finite dimensional. For then we can choose
U/ = U∗ so that Y / = Y1 and Y ∗∗

0 = Y . Note also that, if the conditions of the
above theorem hold, in particular if A has a preadjoint, then the above theorem
implies that A is invertible if and only if A0 is invertible. But even without existence
of a preadjoint, we can prove this result in some cases; an observation which will
be useful to us later.

Lemma 6.18. If A ∈ S(Y ) ∩ L0(Y ) and A is invertible, then A0 is invertible.

Proof. If A is invertible then A0 is injective and it follows from Lemma 6.13 that
the range of A0 is closed. Further, since A is the transpose of A∗

0 with respect to
the dual system (Y, Y1) it follows (see e.g. [38]) that 0 = β(A) ≥ α(A∗

0) = β(A0).
Thus A0 is surjective.

Lemma 6.19. Suppose that A ∈ L(Y,P) or that A = I + K with K ∈ S(Y ) ∩
M(Y ) ∩ L0(Y ), and suppose that A0 is invertible. Then A is invertible.
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Proof. If the conditions of the lemma apply then, by Corollary 6.14, A is injective.
In the case that A ∈ L(Y,P) then A0 ∈ L(Y0,P) by Lemma 3.18, and since L(Y0,P)
is inverse closed (Theorem 1.1.9 of [74]), we have that A−1

0 ∈ S(Y0). This holds
also by a modification of the proof of Lemma 3.33 in the case that A = I + K with
K ∈ S(Y ) ∩M(Y ) ∩ L0(Y ). For if (xn) ⊂ Y0, x ∈ Y0, and xn

s→ x then, defining
yn := A−1

0 xn,

(6.13) yn + Kyn = xn

holds, and since K ∈ M(Y ) there exists a subsequence (ynm
) and y ∈ Y such that

xnm
−Kynm

s→ y. From (6.13) it follows that ynm

s→ y. Since K ∈ S(Y ), it follows
that xnm−Kynm

s→ x−Ky. Thus y = x−Ky, i.e. Ay = x. Note that, by injectivity
of A, there is only one y ∈ Y with Ay = x and that is y = A−1

0 x ∈ Y0. We have
shown that yn = A−1

0 xn has a subsequence strictly converging to y = A−1
0 x. By

the same argument, every subsequence of yn has a subsequence strictly converging
to y. Thus A−1

0 xn
s→ A−1

0 x. So A−1
0 ∈ S(Y0).

Let B ∈ S(Y ) be the unique extension of A−1
0 from Y0 to Y , which exists by

Lemma 3.18. Then, for every x ∈ Y ,

BAx = s−lim
n→∞

BAPnx = s−limA−1
0 A0Pnx = x

and, similarly, ABx = x. So A is invertible.

Corollary 6.20. For A ∈ L(Y,P) it holds that A is invertible iff A0 is in-
vertible. When both are invertible, then (A0)−1 = (A−1)|Y0 .

Proof. The first sentence follows immediately from the previous two lemmas, and
the equality concerning the two inverses is obvious if both A and A0 are invertible.

6.3. Band-Dominated Operators

Suppose Y is one of the spaces Y p with p ∈ {0} ∪ [1,∞] and V is given by
(6.1). For m ∈ ZN let Em : U → Y and Rm : Y → U be extension and restriction
operators, defined by Emy = (..., 0, y, 0, ...), for y ∈ U , with the y standing at the
mth place in the sequence, and by Rmx = x(m), for x = (x(m))m∈ZN ∈ Y . To
every operator A ∈ L(Y ) we can associate a matrix [A] = [aij ]i,j∈ZN with entries
aij = RiAEj ∈ L(U). For x ∈ Ỹ = ∪n∈NPn(Y ), we have that the ith entry of Ax
is

(6.14) (Ax)(i) =
∑

j∈ZN

aij x(j), i ∈ ZN .

Since Y0 is the norm closure of Ỹ , clearly the entries of [A] determine A|Y0 uniquely,
and so determine A if Y = Y0, i.e. if p ∈ {0} ∪ [1,∞). In the case p = ∞, [A]
determines A if A ∈ S(Y ), for then Ax is given by limn→∞ APnx, the limit taken
in the s sense.

Let BO(Y ) denote the set of all operators A ∈ L(Y,P) such that [A] is a band
matrix, that is, for some w ∈ N0 called the band-width of A, aij = 0 if |i− j| > w.

Recall that, for b = (b(m))m∈ZN ∈ `∞(ZN , L(U)), the multiplication operator
Mb ∈ L(Y ) is defined by (4.4). In terms of multiplication operators, an alternative
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characterisation of BO(Y ) is the following [51]: that A ∈ L(Y ) is a band operator
of band-width w iff

(6.15) A =
∑
|k|≤w

Mbk
Vk,

with some bk ∈ `∞(ZN , L(U)) for every |k| ≤ w. For A given by (6.15) the matrix
representation [A] has aij = bi−j(i) for |i − j| ≤ w and aij = 0, otherwise. Since
V ⊂ L(Y,P) and, clearly, Mb ∈ L(Y,P) for b ∈ `∞(ZN , L(U)), every A of the form
(6.15) is in L(Y,P).

The linear space BO(Y ) is an algebra but is not closed with respect to the
norm in L(Y ). By taking the closure of BO(Y ) in the operator norm of L(Y ) we
obtain the Banach algebra BDO(Y ). We refer to the elements of BDO(Y ) as band-
dominated operators. It should be noted that BDO(Y p) depends on the exponent
p of the underlying space, while BO(Y p) does not. Since L(Y,P) is closed in L(Y ),
and BO(Y ) ⊂ L(Y,P), it follows that BDO(Y ) ⊂ L(Y,P).

As a consequence of (5.13), an operator A ∈ BO(Y ), which has the form (6.15),
is a rich operator iff the multiplication operators Mbk

are rich for all |k| ≤ w, i.e.
iff (see Example 6.6) the set {Vibk : i ∈ ZN} is relatively sequentially compact in
the strict topology on Y ∞(L(U)) for every k. Further, if A ∈ BDO(Y ), in which
case An ⇒ A for some (An) ⊂ BO(Y ), A is rich if each An is rich.

Lemma 6.21. [74, Corollary 2.1.17] If U is finite-dimensional then every band-
dominated operator is rich.

For band-dominated operators the notions of invertibility at infinity (Definition
5.1) and P−Fredholmness (Remark 5.2) coincide.

Lemma 6.22. If A ∈ BDO(Y ), then the following statements are equivalent.

(i) A is invertible at infinity.
(ii) There exist B ∈ BDO(Y ) and T1, T2 ∈ K(Y,P) such that (5.1) holds.
(iii) A is P−Fredholm.

Proof. For Y p with 1 ≤ p ≤ ∞ this is precisely Proposition 2.10 of [51] (the key
idea, written down for Y 2, is from [73, Proposition 2.6]). The proof from [51]
literally transfers to Y 0.

For band-dominated operators we have also the following result; in fact the equiv-
alence of (i), (ii) and (iii) in the next lemma is true even for arbitrary K ∈ L(Y ).

Lemma 6.23. If K ∈ BDO(Y ), with [K] = [κij ]i,j∈ZN the matrix representation
of K, then the following statements are equivalent.

(i) {V−kKVk : k ∈ ZN} ∪ σop(K) is uniformly Montel on (Y, s).
(ii) {V−kKVk : k ∈ ZN} is uniformly Montel on (Y, s).
(iii) (V−kKVk)k∈ZN is asymptotically Montel on (Y, s) and K ∈ M(Y ).
(iv) The set {κij : i, j ∈ ZN} ⊂ L(U) is collectively compact.
(v) The set {κij : i, j ∈ ZN , i − j = d} ⊂ L(U) is collectively compact for

every d ∈ ZN .

If U is finite-dimensional, then (i)–(v) are also equivalent to:

(vi) The set {κij : i, j ∈ ZN , i− j = d} ⊂ L(U) is bounded for every d ∈ ZN .



66 6. OPERATORS ON `p(ZN , U)

Proof. It is clear from the definitions that (i)⇒(ii), (ii)⇒(iii) and that (iv)⇒(v).
By Lemma 5.17, (ii) implies (i).

Suppose now that (iii) holds and that h = (h(n))∞n=1 ⊂ ZN and that (xn) ⊂ Y
is bounded. If h does not have a subsequence that tends to infinity, then h is
bounded, and hence it has a subsequence that is constant. In the case that h has
a subsequence that tends to infinity, (V−h(n)KVh(n)xn) has a strictly convergent
subsequence since (V−kKVk) is asymptotically Montel. In the case that h has
a constant subsequence, (V−h(n)KVh(n)xn) has a strictly convergent subsequence
since K ∈ M(Y ). In either case, we have shown that (ii) holds.

Next suppose that (ii) holds and that i = (i(n))∞n=1 ⊂ ZN , j = (j(n))∞n=1 ⊂ ZN ,
and that (un) ⊂ U is bounded. For n ∈ ZN define (xn) ∈ Y by setting the
i(n) − j(n) entry of xn equal to un and setting the other entries to zero. Then
(xn) is bounded and the zeroth entry of (V−i(n)KVi(n)xn) is κi(n),j(n)un. Since
{V−kKVk : k ∈ ZN} is uniformly Montel, (V−i(n)KVi(n)xn)(0) = κi(n),j(n)un has
a convergent subsequence. Since i, j, and (un) were arbitrary sequences, we have
shown that (iv) holds.

Finally, suppose that (v) holds. Then the set {κij : i, j ∈ ZN , |i − j| ≤ w} is
collectively compact for every w ∈ N. For every M ∈ N, every h = (h(n))∞n=1 ⊂
ZN , and every bounded sequence (xn) ⊂ Y , we have that the ith component of
(V−h(n)KVh(n)PMxn) is ∑

|j|≤M

κi+h(n),j+h(n)xn(j).

Since {κij : i, j ∈ ZN , |i − j| ≤ w} is collectively compact for each w, it follows
that the ith component of (V−h(n)KVh(n)PMxn) has a convergent subsequence
for every M ∈ Z. Thus, by a diagonal argument, (V−h(n)KVh(n)PMxn) has a
strictly convergent subsequence, for every M ∈ N. Again by a diagonal argu-
ment, we can find subsequences of h and (xn), which we will denote again by h
and (xn), such that (V−h(n)KVh(n)Pnxn) converges strictly to some x ∈ Y , so
that PmV−h(n)KVh(n)Pnxn → Pmx as n → ∞, for each m. Now [74], since K is
band-dominated, it holds for every m ∈ N that PmV−kKVkQn ⇒ 0 as n → ∞,
uniformly in k ∈ ZN . Thus PmV−h(n)KVh(n)xn → Pmx, for every m ∈ N, so that
V−h(n)KVh(n)xn

s→ x. We have shown that (ii) holds.

The equivalence of (vi) and (v) under the condition dim U < ∞ is obvious since,
in that case, a subset of U is relatively compact iff it is bounded.

For brevity, and because we will frequently refer to this class of operators in
what follows, let us denote the set of all operators K ∈ BDO(Y ) which are subject
to the (equivalent) properties (i)–(v) of Lemma 6.23 by UM(Y ).

Lemma 6.24. The following statements hold.

(a) The set UM(Y ) is a Banach subspace of BDO(Y ) ∩M(Y ).
(b) In particular, UM(Y ) = BDO(Y ) if U is finite-dimensional.
(c) If K ∈ UM(Y ) and A ∈ BDO(Y ), then KA ∈ UM(Y ).
(d) If Mb is rich and K ∈ UM(Y ), then MbK ∈ UM(Y ).
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Proof. (a): By its definition, we have that UM(Y ) ⊂ BDO(Y ), and from Lemma
6.23 (iii) we get that UM(Y ) ⊂ M(Y ). For the rest of this proof, we will use
property (ii) from Lemma 6.23 to characterise the set UM(Y ).

If S, T ∈ UM(Y ) and λ ∈ C, then clearly λS + T ∈ UM(Y ) since

{V−k(λS + T )Vk : k ∈ ZN} ⊂ λ{V−kSVk : k ∈ ZN} + {V−kTVk : k ∈ ZN}

is uniformly Montel.

If T1, T2, ... ∈ UM(Y ) are such that Tn ⇒ T , then also T ∈ UM(Y ). To see
this, take a sequence k = (k(1), k(2), ...) ⊂ ZN and a sequence (x1, x2, ...) ⊂ Y
with µ := sup ‖x`‖ < ∞. By a simple diagonal argument, we can pick a strictly
monotonously increasing sequence s = (s(1), s(2), ...) ⊂ N such that

V−k(s(`)) Tn Vk(s(`)) xs(`)

converges strictly as ` → ∞ for every n ∈ N. Let us denote the strict limit by yn,
respectively. From

‖yn1 − yn2‖ ≤ sup
`
‖V−k(s(`))(Tn1 − Tn2)Vk(s(`))xs(`)‖ ≤ ‖Tn1 − Tn2‖ · µ

we see that (yn) is a Cauchy sequence in Y and therefore converges, to y ∈ Y , say.
But then V−k(s(`)) T Vk(s(`)) xs(`)

s→ y as ` →∞. Indeed, for all M,n ∈ N,

‖PM (V−k(s(`)) T Vk(s(`)) xs(`) − y)‖
≤ ‖PM (V−k(s(`)) Tn Vk(s(`)) xs(`) − yn)‖ + ‖PM (yn − y)‖

+ ‖PM (V−k(s(`)) (T − Tn) Vk(s(`)) xs(`))‖
≤ ‖PM (V−k(s(`)) Tn Vk(s(`)) xs(`) − yn)‖ + ‖yn − y‖ + ‖T − Tn‖ · µ

holds. But, for every choice of M,n ∈ N, the first term goes to zero as ` →∞, and
the second and third term can be made as small as desired by choosing n sufficiently
large.

(b): If K ∈ BDO(Y ) then property (vi) of Lemma 6.23 is automatically the
case. Since this is equivalent to properties (i)–(v) of the same lemma if U is finite-
dimensional, we get that K ∈ UM(Y ) then.

(c), (d): Let K ∈ UM(Y ), A ∈ BDO(Y ) and b ∈ Y ∞(L(U)) such that
Mb is rich. Take a sequence k = (k(1), k(2), ...) ⊂ ZN and a bounded sequence
(x1, x2, ...) ⊂ Y . Now, for every ` ∈ N, put y` := V−k(`)AVk(`) x`. Since (y`) is
bounded, {V−mKVm : m ∈ ZN} is uniformly Montel and {V−mb : m ∈ ZN} is
relatively sequentially compact in the strict topology on Y ∞(L(U)) (since Mb is
rich, see Example 6.6), we can pick a strictly monotonously increasing sequence
s = (s(1), s(2), ...) ⊂ N such that both V−k(s(`))KVk(s(`))ys(`) and V−k(s(`))b con-
verge strictly as ` →∞. But then V−k(s(`)) (MbKA) Vk(s(`)) xs(`) converges strictly
as ` →∞ since, for every m ∈ N,

Pm V−k(s(`)) (MbKA) Vk(s(`)) xs(`)

= Pm (V−k(s(`))MbVk(s(`))) (V−k(s(`))KVk(s(`))) (V−k(s(`))AVk(s(`)) xs(`))
= MPmV−k(s(`))b Pm (V−k(s(`))KVk(s(`)) ys(`))

converges in norm as ` →∞, i.e. MbKA ∈ UM(Y ).
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The purpose of the following two lemmas is to prove that, for every A ∈
L(Y 1(U)), the operator spectra σop(A) ⊂ L(Y 1(U)) and σop(A∗) ⊂ L((Y 1(U))∗) =
L(Y ∞(U∗)) correspond elementwise in terms of adjoints.

Lemma 6.25. If A ∈ L(Y 1(U)), then

σop(A∗) = {B∗ : B ∈ σop(A)}.

Proof. It is a standard result that B = Ah ∈ σop(A) implies B∗ = (Ah)∗ = (A∗)h ∈
σop(A∗) (see, e.g. [51, Proposition 3.4 e]).

For the reverse implication, suppose C ∈ σop(A∗) ⊂ L(Y ∞(U∗)). Then

(V−h(m)AVh(m))∗ = V−h(m)A
∗Vh(m)

P→ C

as m → ∞ for some sequence h(1), h(2), ... → ∞ in ZN . We will show in Lemma
6.26 that then C = B∗ and V−hm

AVhm

P→ B, i.e. B ∈ σop(A).

Lemma 6.26. The set of operators in L(Y ∞(U∗)) that possess a preadjoint
in L(Y 1(U)) is sequentially closed under P−convergence; that is, if A1, A2, ... ∈
L(Y 1(U)) and A∗

m
P→ C on Y ∞(U∗), then there is a B ∈ L(Y 1(U)) such that

C = B∗; moreover, Am
P→ B on Y 1(U).

Proof. From A∗
m

P→ C in L(Y ∞(U∗)) and Lemma 4.2 we get that there is a M > 0
such that

(6.16) ‖Am‖ = ‖A∗
m‖ ≤ M, m ∈ N.

Moreover, for every k ∈ N, it holds that

(6.17) Pk(A∗
m − C) ⇒ 0 as m →∞.

So we get that (PkA∗
m)∞m=1 is a Cauchy sequence in L(Y ∞(U∗)) and therefore

(AmPk)∞m=1 is one in L(Y 1(U)), for every fixed k ∈ N. Denote the norm-limit of
the latter sequence by Bk ∈ L(Y 1(U)). As a consequence of (6.16) we get that

(6.18) ‖Bk‖ = ‖ lim
m→∞

AmPk‖ ≤ sup
m
‖AmPk‖ ≤ M, k ∈ N.

From AmPk ⇒ Bk we get that BkPk = Bk and, even more than this, that

(6.19) BrPk = lim
m→∞

AmPrPk = lim
m→∞

AmPk = Bk, r ≥ k.

We will now show that the sequence B1, B2, ... strongly converges in Y 1(U). There-
fore, take an arbitrary x ∈ Y 1(U) and let us verify that (Bmx) is a Cauchy sequence
in Y 1(U). So choose some ε > 0. Since Qmx → 0 on Y 1(U), there is an N ∈ N
such that

(6.20) ‖QNx‖ <
ε

2M
.

Now, for all k,m ≥ N , the following holds

‖Bkx−Bmx‖ ≤ ‖(Bk −Bm)PNx‖+ ‖(Bk −Bm)QNx‖
≤ ‖(BkPN −BmPN )x‖+ ‖Bk −Bm‖ · ‖QNx‖
≤ ‖(BN −BN )x‖+ (‖Bk‖+ ‖Bm‖) · ‖QNx‖ < ε
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by (6.19), (6.18) and (6.20). Consequently, (Bmx) is a Cauchy sequence in Y 1(U).
Let us denote its limit in Y 1(U) by Bx, thereby defining an operator B ∈ L(Y 1(U)).
Passing to the strong limit as r →∞ in (6.19), we get

(6.21) BPk = Bk, k ∈ N.

Summing up, we have AmPk ⇒ Bk = BPk, and hence (Am−B)Pk ⇒ 0 as m →∞,
for all k ∈ N. Passing to adjoints in the latter gives Pk(A∗

m−B∗) ⇒ 0 in L(Y ∞(U∗))
as m → ∞. If we subtract this from (6.17) we get Pk(B∗ − C) = 0 for all k ∈ N,
and consequently C = B∗, by Lemma 1.30 a) in [51]. From A∗

m
P→ C = B∗ we

then conclude

‖(Am −B)Pk‖ = ‖Pk(A∗
m −B∗)‖ → 0 as m →∞

and
‖Pk(Am −B)‖ = ‖(A∗

m −B∗)Pk‖ → 0 as m →∞

for every k ∈ N, which, together with (6.16) and again Lemma 4.2, proves Am
P→ B.

Our next statement is similar to Lemma 6.25, but with restriction from Y to
Y0 instead of passing to the adjoint operator.

Lemma 6.27. If A ∈ L(Y,P), then the limit operators of the restriction A0 :=
A|Y0 are the restrictions of the limit operators of A; precisely,

(6.22) σop(A0) = {B|Y0 : B ∈ σop(A)}.

In particular, the invertibility of all limit operators of A0 in Y0 with uniform bound-
edness of their inverses is equivalent to the same property for the limit operators of
A in Y .

Proof. The proof of (6.22) consists of two observations. The first one is that
(V−αAVα)|Y0 = V−αA0Vα for all α ∈ ZN , and the second one is that Am|Y0

P→ A0

on Y0 iff Am
P→ A on Y , for all A1, A2, ... ∈ L(Y,P) since

‖Pk(Am|Y0 −A0)‖ = ‖
(
Pk(Am −A)

)
|Y0‖ = ‖Pk(Am −A)‖

and its symmetric counterpart hold for all k ∈ N by the norm equality in Lemma
3.18. The proof of the second sentence of the lemma now follows from (6.22),
Corollary 6.20 and the norm equality in Lemma 3.18 again.

For the choice of Y , P and V we are making in this section, the operator
spectrum of a rich band-dominated operator A contains enough information to
characterise the invertibility at infinity of A, which is the content of (iii) in the
next theorem. In this theorem, for an operator A ∈ L(Y ), we denote the spectrum
of A, i.e. the set of all λ ∈ C for which λI − A is not invertible, by spec(A). We
denote by specess(A) the essential spectrum of A, i.e. the set of λ for which λI −A
is not Fredholm . We also define, for ε > 0, the ε-pseudospectrum of A, specε(A),
by

specε(A) :=
{
λ ∈ C : λI −A is not invertible or ||(λI −A)−1|| ≥ ε−1

}
.

Theorem 6.28. a) Let A be a rich band-dominated operator on Y = Y p(U)
with a Banach space U and some p ∈ {0} ∪ [1,∞]. Then the following statements
hold.
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(i) If A is Fredholm and p 6= ∞ then A is invertible at infinity;
(ii) If A is invertible at infinity and either U is finite-dimensional or A =

C + K with C ∈ BDO(Y ) invertible and K ∈ M(Y ) then A is Fredholm;
(iii) A is invertible at infinity if and only if all limit operators of A are invert-

ible and their inverses are uniformly bounded;
(iv) The condition on uniform boundedness in (iii) is redundant if p ∈ {0, 1,∞};
(v) It holds that spec(B) ⊂ spec(A) for all B ∈ σop(A), indeed spec(B) ⊂

specess(A), for p 6= ∞;
(vi) It holds that specε(B) ⊂ specε(A), for all B ∈ σop(A) and ε > 0.

b) In the case p = ∞ if, in addition, it holds that U has a predual U/, and A
has a preadjoint, A/ ∈ L(Y /), where Y / = Y 1(U/), then (i) and (v) also apply
for p = ∞; that is, A being Fredholm implies A being invertible at infinity, so that
spec(B) ⊂ specess(A) ⊂ spec(A) for all B ∈ σop(A).

Remark 6.29 This theorem makes several additions and simplifications to
previously known results: (i), and therefore (v), is probably new for p = 1, and
so is statement b). (ii) is a slight extension of Proposition 2.15 (together with the
first column of Figure 4) of [51]. (iii) does not assume the existence of a preadjoint
operator (unlike Theorem 1 in [49] and [51]) if p = ∞. (iv) is probably new for
p = 0. Also note that our Lemma 6.25 fills a gap in the proof of [51, Proposition
3.6 a)] that is used in the proof of [51, Theorem 3.109] to deal with the case p = 1.
(vi) was only known when p = 2 and U is a Hilbert space. For this setting, it
follows from Theorem 6.3.8 (b) of [74] which, in fact, states the stronger result
that the closure of the union of all specε(B) with B ∈ σop(A) is equal to the
ε-pseudospectrum of the coset of A modulo K(Y,P).

Proof of Theorem 6.28. b) Suppose the predual U/ and preadjoint A/ exist
and that A is Fredholm on Y = Y ∞(U). By Theorem 6.17 (note that BDO(Y ) ⊂
L(Y,P) ⊂ S(Y ) ∩ L0(Y )), we have that A0 := A|Y0 is Fredholm on Y0 = Y 0(U).
From Lemma 6.1 (i) (also see Remark 6.2) we get that then A0 is invertible at
infinity on Y0, which, by Lemma 6.22 means that we have A0B0 = I + S0 and
B0A0 = I + T0 for some B0 ∈ L(Y0,P) and S0, T0 ∈ K(Y0,P). If we use Lemma
3.18 to extend both sides of these two equalities to operators on Y , then we get
that A is invertible at infinity on Y .

a) (iii) For p ∈ {0} ∪ (1,∞) we refer the reader to [74, Theorem 2.2.1], and for
p = 1 (and also p ∈ (1,∞)) to [51, Theorem 1]. It remains to study the case p = ∞.
The ‘if’ part of statement (iii) is Proposition 3.16 in [51] (which does not use the
existence of a preadjoint). For the ‘only-if’ part of (iii) we replace Proposition 3.12
from [51] (which needs the preadjoint) by the following argument. Suppose A is
invertible at infinity on Y = Y ∞. By Lemma 6.22, there are B ∈ BDO(Y ) ⊂
L(Y,P) and S, T ∈ K(Y,P) with AB = I + S and BA = I + T . Restricting both
sides in both equalities to Y0 we get that, by Lemma 3.18, A0 := A|Y0 is invertible
at infinity on Y0, which, by our result (iii) for p = 0, implies that all limit operators
of A0 are invertible on Y0 and their inverses are uniformly bounded. From Lemma
6.27 we now get that also all limit operators of A are invertible on Y and their
inverses are uniformly bounded.

Statement (iv) for p ∈ {1,∞} is [51, Theorem 3.109]. Precisely, the part for
p = ∞ follows immediately from [51, Proposition 3.108], and the p = 1 part is a
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consequence of this and Lemma 6.25. Indeed, if all B ∈ σop(A) are invertible on
Y 1(U) then also all their adjoints C = B∗ are invertible on Y ∞(U∗), which, by
Lemma 6.25, are all elements of σop(A∗). Since A∗ ∈ BDO(Y ∞(U∗)) is rich as
well, we know from the results about p = ∞ that

sup
B∈σop(A)

‖B−1‖ = sup
B∈σop(A)

‖(B−1)∗‖ = sup
B∈σop(A)

‖(B∗)−1‖

= sup
C=B∗∈σop(A∗)

‖C−1‖ < ∞

since B ∈ σop(A) iff C = B∗ ∈ σop(A∗), by Lemma 6.25. The statement (iv) for
p = 0 follows immediately from Lemma 6.27 (applied to the extension of A) and
the result for p = ∞.

(i) For p ∈ {0} ∪ (1,∞) this follows immediately from Lemma 6.1 (i) (it was
already pointed out in Remark 6.2). So let p = 1 and suppose A is Fredholm on
Y = Y 1(U). Then A∗ is Fredholm on Y ∞(U∗). From part b) of this theorem it
follows that A∗ is invertible at infinity on Y ∞(U∗). From (iii) we get that all limit
operators of A∗ are invertible on Y ∞(U∗). By Lemma 6.25 this implies that all
limit operators of A are invertible on Y 1(U), which, by (iii) and (iv), shows that A
is invertible at infinity.

(ii) Suppose A is invertible at infinity. If dim U < ∞ then Lemma 6.1 (ii) (also
see Remark 6.2) implies that A is Fredholm. Alternatively, suppose that A = C+K
with C ∈ BDO(Y ) invertible and K ∈ M(Y ). From C ∈ BDO(Y ) ⊂ L(Y,P) we
get, by [74, Theorem 1.1.9], that C−1 ∈ L(Y,P) ⊂ S(Y ). Moreover, K = A−C ∈
BDO(Y ) ⊂ S(Y ) implies that K ∈ S(Y ) ∩ M(Y ) so that A is subject to the
constraints in Theorem 5.4 which proves that A is Fredholm.

(v) For arbitrary λ ∈ C, λI − B ∈ σop(λI − A) iff B ∈ σop(A). So it suffices
to show that Fredholmness of a rich band-dominated operator (for p 6= ∞) implies
invertibility of its limit operators. But this is an immediate consequence of (i) and
(iii).

(vi) From (iii) we know that, if B ∈ σop(A) and λI − B is not invertible then
λI − A is not invertible (not even invertible at infinity). So suppose λI − B is
invertible. If λI −A is not invertible then there is nothing to prove. If also λI −A
is invertible then, by Theorem 5.12 (ix), which applies since B ∈ σop(A) ⊂ L(Y,P)
as A ∈ BDO(Y ) ⊂ L(Y,P), it follows that

‖(λI −B)−1‖ =
1

ν(λI −B)
≤ 1

ν(λI −A)
= ‖(λI −A)−1‖.

Now we will combine the results of Theorems 6.3 and 6.28. Recall that the set
UM(Y ) was introduced just before (and studied in) Lemma 6.24.

Corollary 6.30. Consider Y = Y ∞(U) where U has a predual U/, and
suppose A = I − K ∈ BDO(Y ) is rich, has a preadjoint A/ ∈ L(Y /) where
Y / = Y 1(U/), and that K ∈ UM(Y ). Then the following statements are equivalent.

(a) all limit operators of A are injective (α(Ah) = 0 for all Ah ∈ σop(A))
and there is an S−dense subset, σ, of σop(A) such that β(Ah) = 0 for all
Ah ∈ σ;
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(b) all limit operators of A are injective (α(Ah) = 0 for all Ah ∈ σop(A))
and there is an S−dense subset, σ, of σop(A) such that α(A/

h) = 0 for all
Ah ∈ σ;

(c) A is invertible at infinity;
(d) A is Fredholm.

Proof. Note first that, by Lemma 6.25, each Ah ∈ σop(A) has a well-defined pre-
adjoint A/

h ∈ L(Y /) so that statement (b) is well-defined; in fact, by Lemma 6.25,
{A/

h : Ah ∈ σop(A)} = σop(A/). Since always β(Ah) ≥ α(A/
h) [38], clearly (a)⇒(b).

If (b) holds then, noting that property (i) of Lemma 6.23 implies that σop(K)
is uniformly Montel on (Y, s), applying Theorem 6.3, σop(A) is uniformly bounded
below, which implies that the range of each Ah ∈ σop(A) is closed. This implies
that β(Ah) = α(A/

h) = 0 [38] for each Ah ∈ σ, so that (b)⇒(a) and each Ah ∈ σ is
surjective.

Applying Theorem 6.3 again, we see that all the elements of σop(A) are invert-
ible and their inverses are uniformly bounded. Applying Theorem 6.28 we conclude
that (a)⇔(b)⇔(c).

The implication (c)⇒(d) follows from Theorem 6.28 (ii) with C = I and −K ∈
M(Y ) by property (iii) of Lemma 6.23. Finally, (d)⇒(c) is Theorem 6.28 b).

We note that Corollary 6.30, for operators satisfying the conditions of the corol-
lary, reduces the problem of establishing Fredholmness and/or invertibility at in-
finity on Y ∞(U) to one of establishing injectivity of the elements of σop(A) and a
subset of the elements of σop(A/). In applications in mathematical physics this in-
jectivity can sometimes be established directly via energy or other arguments (e.g.
[14]), this reminiscent of classical applications of boundary integral equations in
mathematical physics where A = I + K with K compact, and injectivity of A is
established from equivalence with a boundary value problem.

In the one-dimensional case N = 1 a stronger version of Theorem 5.16 can
be shown, namely Theorem 6.31 below. This result is shown by establishing, in
the case in which A = I − K ∈ BDO(Y ) is rich, K ∈ UM(Y ), and all the limit
operators of A are injective, the following three statements:

a) If B ∈ σop(A) has a surjective limit operator then B is surjective itself.
b) Every B ∈ σop(A) has a self-similar limit operator.
c) Self-similar limit operators (of A, including those of B) are surjective.

That b) holds is Lemma 5.15. The proofs of a) and c) in [17] are both examples
of the application of Theorem 5.8.

Theorem 6.31. [17] Suppose that Y = `∞(Z, U), that A = I −K ∈ BDO(Y )
is rich, that K ∈ UM(Y ), and that all the limit operators of A are injective. Then
all elements of σop(A) are invertible and their inverses are uniformly bounded.

Combining this result with Corollary 6.30 we have the following simplified ver-
sion of Corollary 6.30 which holds in the one-dimensional case.

Corollary 6.32. Suppose Y = `∞(Z, U) where U has a predual U/, and
suppose A = I −K ∈ BDO(Y ) is rich, has a preadjoint A/ ∈ L(Y /) where Y / =
`1(Z, U/), and that K ∈ UM(Y ). Then the following statements are equivalent:
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(a) all limit operators of A are injective;
(b) all elements of σop(A) are invertible and their inverses are uniformly

bounded;
(c) A is invertible at infinity;
(d) A is Fredholm.

6.4. Almost Periodic Band-Dominated Operators

Recall the classes of all absolutely rich/periodic and all norm-rich/almost pe-
riodic operators as introduced in Section 6.1. We will now look at operators that
are norm-rich/almost periodic and band-dominated at the same time. We first
show that every norm-rich/almost periodic band-dominated operator can be ap-
proximated in the norm by norm-rich/almost periodic band operators. The same
statement holds with ‘norm-rich/almost periodic’ replaced by ‘rich’, as was first
pointed out in [49, Proposition 2.9]. The proof of our lemma is very similar to
that of this related statement. An alternative, less constructive method for approx-
imating a norm rich/almost periodic operator by a norm-rich/almost periodic band
operator is described in step I of the proof of [42, Theorem 1].

Remark 6.33 Note that the norm-approximation of a given band-dominated
operator A by a sequence An of band operators is in general a more involved
problem than it might seem. In particular, it is not always possible to achieve this
approximation by letting [An] be the restriction of [A] to n of its diagonals (see
Remarks 1.40 and 1.44 in [51]). Instead, for a given A ∈ BDO(Y ), in the proof of
[74, Theorem 2.1.6] a sequence of band operators

An =
∑
|k|≤n

ck,n Bk, n ∈ N,(6.23)

with Bk =
∫

[0,2π]N
Met

AMe−t
e−i (t,k) dt, k ∈ ZN(6.24)

is constructed, where ck,n ∈ C and et(m) = ei(t1m1+...+tN mN ) for all m ∈ ZN and
t ∈ RN . This construction is such that each matrix [Bk] is only supported on the
kth diagonal and An ⇒ A as n →∞.

Lemma 6.34. For every band-dominated operator A and the corresponding ap-
proximating sequence (An) of band operators (6.23), the following holds.

(i) If A is norm-rich/almost periodic, then each one of the band operators An

is norm-rich/almost periodic.
(ii) If A is rich and σop(A) is uniformly Montel, then every operator spectrum

σop(An) is uniformly Montel.

Proof. Since the integrand in (6.24) is continuous in t, the integral can be under-
stood in the Riemann sense and therefore Bk can be approximated in norm by the
corresponding Riemann sums

(6.25) R(k)
m =

(
2π

m

)N mN∑
j=1

Metm,j
AMe−tm,j

e−i (tm,j ,k), m ∈ N
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as m → ∞. Here tm,j ∈ Tm,j are arbitrary where {Tm,j : j = 1, ...,mN} is a
partition of [0, 2π]N into hyper-cubes of width 2π/m (also see the proof of [74,
Theorem 2.1.18]).

To prove (i) it suffices, by Lemma 6.9, to show that all Riemann sums R
(k)
m

are norm-rich/almost periodic. Since, as the restriction of an almost periodic (even
periodic) function RN → C to the integer grid ZN , the sequence et is almost
periodic for every choice of t ∈ RN , we get that both Metm,j

and Me−tm,j
are

norm-rich/almost periodic (see Lemma 6.35 below). By Lemma 6.9 again and
A ∈ Ln$(Y ), it follows that then all of the Riemann sums R

(k)
m and consequently,

all operators Bk and An are norm-rich/almost periodic as well.

For the proof of (ii), let A be rich and σop(A) be uniformly Montel. By Lemma
5.17, using that A is rich, we get that A ∈ UM(Y ). Since every Metm,j

is rich (even
norm-rich/almost periodic), we get that Metm,j

AMe−tm,j
∈ UM(Y ) for all m ∈ N

and j ∈ {1, ...,mN}, by Lemma 6.24 (c) and (d). This fact, together with formulas
(6.23)–(6.25) and Lemma 6.24 (a), shows that all R

(k)
m , Bk and An are in UM(Y ).

But the latter implies that σop(An) is uniformly Montel, by Lemma 5.17.

Having reduced the study of norm-rich/almost periodic band-dominated oper-
ators to norm-rich/almost periodic band operators, we will now have a closer look
at the latter class.

Lemma 6.35. A band operator is norm-rich/almost periodic iff all of its diag-
onals are almost periodic; that means

A =
∑
k∈D

Mbk
Vk ∈ Ln$(Y ) iff bk ∈ Y ∞

AP(L(U)), ∀k ∈ D

for all finite sets D ⊂ ZN and bk ∈ Y ∞(L(U)), k ∈ D.

Proof. Let D ⊂ ZN be finite, let bk ∈ Y ∞(L(U)) for all k ∈ D, and put A =∑
k∈D Mbk

Vk. Note that

(6.26) V−mAVm =
∑
k∈D

MV−mbk
Vk

for every m ∈ ZN . We show that a sequence of operators (6.26) converges in the
operator norm iff all of the corresponding diagonals V−mbk converge in the norm
of Y ∞(L(U)).

Suppose A ∈ Ln$(Y ) and take an arbitrary sequence h = (h(n))n∈N ⊂ ZN .
Then there exists a subsequence g of h such that V−g(n)AVg(n) ⇒ C for some
C ∈ L(Y ). Then, for all i, j ∈ ZN , with [C] = [ci,j ] and with the restriction and
extension operators Ri and Ej as introduced at the beginning of Section 6.3, we
have that

‖V−g(n)bi−j(i)− ci,j‖L(U) = ‖Ri(V−g(n)AVg(n) − C)Ej‖L(U)

≤ ‖V−g(n)AVg(n) − C‖L(Y (U)) → 0(6.27)

as n →∞. Now, for every k ∈ ZN , define ck ∈ Y ∞(L(U)) by ck(i) = ci,i−k, so that
ck is the k−th diagonal of C. From (6.27) we get that ‖V−g(n)bk − ck‖Y ∞ → 0, so
that bk ∈ Y ∞

AP(L(U)) for each k ∈ ZN .
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Now, conversely, suppose that bk ∈ Y ∞
AP(L(U)) for all k ∈ D and take an

arbitrary sequence h = (h(n))n∈N. Let {k1, k2, ..., km} be an enumeration of D ⊂
ZN , and choose a subsequence h(1) ⊂ h such that V−h(1)(n)bk1 converges. From this
choose a subsequence h(2) ⊂ h(1) such that also V−h(2)(n)bk2 converges, etc., until
we arrive at a sequence g := h(m) ⊂ h for which all V−g(n)bk with k ∈ D converge.
Denote the respective limits by ck ∈ Y ∞(L(U)). Then we have V−g(n)AVg(n) ⇒∑

k∈D Mck
Vk =: C since

‖V−g(n)AVg(n) − C‖L(Y ) =

∥∥∥∥∥∑
k∈D

(MV−g(n)bk
−Mck

)Vk

∥∥∥∥∥
L(Y )

≤
∑
k∈D

‖V−g(n)bk − ck‖∞ → 0

as n →∞, showing that A ∈ Ln$(Y ).

To establish the main result of this section it is convenient to introduce a
further definition. For 1 ≤ r ≤ N call A ∈ L(Y ) r-partially periodic if there exist
m1, . . . ,mr ∈ N such that

(6.28) Vmje(j)A = AVmje(j) , j = 1, . . . , r.

Then an N -partially periodic operator is precisely an absolutely rich/periodic op-
erator. By a 0-partially periodic operator we shall mean any operator in L(Y ).
Similarly, we shall say that b ∈ Y ∞(L(U)) is r-partially periodic if

(6.29) b(k + mje
(j)) = b(k), k ∈ ZN , j = 1, . . . , r.

Then an N -partially periodic function is periodic. We shall say that every b ∈
Y ∞(L(U)) is 0-partially periodic.

Arguing as in the proof of Lemma 6.35 we can show the following result.

Lemma 6.36. A band operator is r-partially periodic iff all of its diagonals are
r-partially periodic; that means

A =
∑
k∈D

Mbk
Vk is r-partially periodic iff bk is r−partially periodic, ∀k ∈ D,

for all finite sets D ⊂ ZN and bk ∈ Y ∞(L(U)), k ∈ D.

The proof of the following theorem on the invertibility of almost periodic band
operators depends in the first place on results on invertibility of periodic band op-
erators (Theorem 6.7) and, secondly, on the possibility of approximation of almost
periodic by periodic functions (cf. the study of invertibility of elliptic, almost pe-
riodic differential and pseudo-differential operators which dates back to [58, 87]).
This theorem is not new; it is Theorem 1 in [42] (and see [43]); in fact [42] provides
a proof of this result for the general case Y = Y p, 1 ≤ p ≤ ∞, by first reducing it
to the case p = ∞. However, it seems of interest to include our proof which, while
it has similarities with steps IV-VII in [42, Theorem 1], illustrates the application
of Theorem 5.20 which carries a large part of the proof, and differs also in applying
an inductive argument.

Theorem 6.37. If A = I + K, K ∈ BO(Y ∞) is norm-rich/almost periodic,
σop(K) is uniformly Montel, and A is bounded below, then A is invertible.



76 6. OPERATORS ON `p(ZN , U)

Proof. Note first that, since K ∈ σop(K) if K is norm rich (Theorem 6.10 (ii)),
that σop(K) uniformly Montel implies K ∈ M(Y ∞).

We shall establish the theorem by proving, by induction, that, for r = 0, 1, . . . , N ,

if A satisfies the conditions of the theorem and,
additionally, A is r-partially periodic, then A is invertible.(6.30)

Statement (6.30) for r = 0 is precisely the theorem that we wish to prove.

That (6.30) holds for r = N follows from Theorem 6.7. Now suppose that
(6.30) holds for r = s, for some s ∈ {1, . . . , N}, and that A satisfies the conditions
of the theorem and, additionally, is (s − 1)-partially periodic. We will show that
this implies that A is invertible, so that (6.30) holds for r = s − 1, proving the
inductive step. That A is invertible will be proved by applying Theorem 5.20.

First note that, by Lemmas 6.35 and 6.36, for some finite set D ⊂ ZN and
bk ∈ Y ∞(L(U)), k ∈ D, it holds that

K =
∑
k∈D

Mbk
Vk

with each bk ∈ Y ∞
AP(L(U)) and (s− 1)-partially periodic. For n ∈ N let h(n) ∈ ZN

have sth component n2 and all other components zero. Since each bk ∈ Y ∞
AP(L(U))

we can choose a subsequence g of h such that V−g(n)bk is convergent as n →∞ for
each k ∈ D. Thus, defining f(n) = g(n + 1)− g(n),

‖V−f(n)bk − bk‖∞ = ‖V−g(n+1)bk − V−g(n)bk‖∞ → 0

as n →∞. Note that the sth component of f(n) is ≥ 2n + 1 and that all the other
components of f(n) are zero.

For j ∈ N define P̂j ∈ L(Y ∞(L(U))) by

P̂jb(`) = b(`), − j

2
< `s ≤

j

2
,

for ` = (`1, . . . , `N ) ∈ ZN , and by the requirement that

P̂jb(` + je(s)) = P̂jb(`), ` ∈ ZN .

An important observation is that, for j ∈ N, b ∈ Y ∞(L(U)),

(6.31) ‖Pj(P̂jb− b)‖∞ ≤ ‖Vje(s)b− b‖∞ = ‖V−je(s)b− b‖∞.

Using this notation, for each k ∈ D let us define a sequence of increasingly good
approximations to bk, each approximation being s-partially periodic and almost
periodic. In detail, for n ∈ N and k ∈ D, let

b
(n)
k := P̂f(n)bk.

Further, define Kn, an approximation to K, by

Kn =
∑
k∈D

M
b
(n)
k

Vk.

Then it is clear that each b
(n)
k is s-partially periodic. To see that b

(n)
k is also almost

periodic, note that every ` ∈ ZN can be written as ` = ˆ̀+ ˜̀, where ˆ̀= `se
(s) (`s
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the sth component of `). Then V` = Vˆ̀V˜̀ and, for j ∈ N, V˜̀ commutes with P̂j .
Thus, for every n ∈ N and ` ∈ ZN ,

(6.32) V`b
(n)
k = Vˆ̀P̂f(n)V˜̀bk = Vje(s) P̂f(n)V˜̀bk,

for some j ∈ Z with |j| ≤ f(n)/2. From this formula it is clear that {V`b
(n)
k : ` ∈

ZN} is relatively compact if {V`bk : ` ∈ ZN} is relatively compact, so that b
(n)
k is

almost periodic. Moreover it is clear that b
(n)
k

s→ bk as n → ∞ for each k ∈ D, so
that Kn

s→ K and An := I+Kn
s→ A. Further, since each b

(n)
k is s-partially periodic

and almost periodic, it follows from Lemmas 6.35 and 6.36 that Kn is s-partially
periodic and norm rich, and so therefore is An. Note also that, by Lemma 5.17 and
the equivalence of (iii) and (v) in Lemma 6.23, the set {bk(`) : ` ∈ ZN} is collectively
compact for every k ∈ D, so that {b(n)

k (`) : ` ∈ ZN , n ∈ N} ⊂ {bk(`) : ` ∈ ZN} is
collectively compact. Arguing as in the proof that (v) implies (iii) in Lemma 6.23,
we deduce that {V−jKnVj : j ∈ ZN , n ∈ N} is uniformly Montel, so in particular,
by the equivalence of (i) and (ii) in Lemma 6.23, σop(Kn) is uniformly Montel for
each n. By the inductive hypothesis it follows that if An is bounded below then
An is surjective, for each n.

We have shown that conditions (a)-(c) of Theorem 5.20 are satisfied by A and
An. To complete the proof we will show that conditions (d) and (e) of Theorem
5.20 are satisfied with B = σop(A). Since A is bounded below which implies, by (v)
of Theorem 6.10, that B is uniformly bounded below, this choice of B satisfies (e)
of Theorem 5.20.

To see that (d) holds with B = σop(A), suppose that `(j) ∈ ZN and n(j) ∈ N,
for j ∈ N, and that n(j) →∞ as j →∞, and let

Bj := V−`(j)Kn(j)V`(j) =
∑
k∈D

M
c
(j)
k

Vk,

where c
(j)
k := V−`(j)b

n(j)
k . What we have to show is that (Bj)j∈N has a subsequence

that s-converges to an element of σop(K). To see this, first note that, by (6.32),

c
(j)
k = Vp(j)e(s) P̂f(n(j))V−˜̀(j)bk,

for some p(j) ∈ Z with |p(j)| ≤ f(n(j))/2. Since each bk is almost periodic, setting
ˇ̀(j) := −p(j)e(s) + ˜̀(j), we can find a subsequence of ˇ̀, which we will denote again
by ˇ̀, such that, for each k ∈ D, there exists b̂k ∈ Y ∞(L(U)) such that

εj := ‖V−ˇ̀(j)bk − b̂k‖∞ → 0

as j →∞. Then, for m ∈ N and all j sufficiently large such that m ≤ f(n(j))/2,

‖Pm(c(j)
k − b̂k)‖∞ ≤ εj + ‖Pm(c(j)

k − V−ˇ̀(j)bk)‖∞
= εj + ‖PmVp(j)e(s)(P̂f(n(j)) − I)V−˜̀(j)bk‖∞
≤ εj + ‖Pm+|p(j)|(P̂f(n(j)) − I)V−˜̀(j)bk‖∞
≤ εj + ‖Pf(n(j))(P̂f(n(j)) − I)V−˜̀(j)bk‖∞
≤ εj + ‖V−f(n(j))bk − bk‖∞,

by (6.31). Thus ‖Pm(c(j)
k − b̂k)‖∞ → 0 as j →∞, for every m, so that c

(j)
k

s→ b̂k.
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Defining
K̂ :=

∑
k∈D

Mb̂k
Vk,

we have that εj → 0 as j →∞ for each k ∈ D, so that

V−ˇ̀(j)KVˇ̀(j) =
∑
k∈D

MV−ˇ̀(j)bk
Vk ⇒

∑
k∈D

Mb̂k
Vk = K̂.

If ˇ̀ has an unbounded subsequence, this implies that K̂ ∈ σop(K). If ˇ̀ does not
have an unbounded subsequence then it has a constant subsequence, i.e. ˇ̀(j) = ˜̀for
some ˜̀∈ ZN and infinitely many j ∈ N, so that K̂ = V−˜̀KV˜̀. Since K ∈ σop(K)
implies (by Theorem 5.12 (ii)) that V−˜̀KV˜̀ ∈ σop(K), it follows also in this case

that K̂ ∈ σop(K). But c
(j)
k

s→ b̂k for every k ∈ D implies that

Bj =
∑
k∈D

M
c
(j)
k

Vk
s→

∑
k∈D

Mb̂k
Vk = K̂,

so that we have shown that (Bj)j∈N has a subsequence that s-converges to an
element of σop(K).

Now we can finally prove the generalisation of Corollary 6.8 to norm-rich/almost
periodic band-dominated operators. We note that results of this flavour in concrete
cases, in particular showing something close to equivalence of (i) and (iii), date
back at least to Shubin [87] for scalar elliptic differential operators with smooth
almost periodic coefficients, where the analogous statement to (iii) is termed the
Favard condition (and see [17]). Note also that we have already seen, in Theorem
6.31, that in the one-dimensional case N = 1 the equivalence of (iii) and (iv) holds
even when K is only rich rather than norm rich/almost periodic.

Theorem 6.38. If A = I +K with K ∈ BDO(Y ∞) norm-rich/almost periodic
and σop(K) is uniformly Montel, then the following statements are equivalent.

(i) A is invertible;
(ii) A is bounded below;
(iii) all limit operators of A are injective;
(iv) all limit operators of A are invertible with uniformly bounded inverses.

Proof. Let the conditions of the theorem be fulfilled. Implication (iv)⇒(i) follows
by Theorem 6.10 (ii); (i)⇒(ii) is trivial; (ii)⇒(iii) follows by Theorem 6.10 (v); and
it remains to show (iii)⇒(iv).

Suppose (iii) holds. By Theorem 6.3 it follows that σop(A) is uniformly bounded
below, so that, by Theorem 6.10 (v), ν(Ah) = ν(A) > 0 for all Ah ∈ σop(A). Now,
from Lemma 6.34, applied to K in place of A, we know that there exists a sequence
(Kn) of norm-rich/almost periodic band operators with σop(Kn) uniformly Montel
for each n and Kn ⇒ K. From (5.6) it follows that ν(I + Kn) → ν(I + K) =
ν(A) > 0, so that there exists a n0 ∈ N with

ν(I + Kn) >
1
2
ν(A) > 0, n ≥ n0.

Invoking Theorem 6.37, we conclude that, for every n ≥ n0, I + Kn is invertible
and

‖(I + Kn)−1‖ =
1

ν(I + Kn)
<

2
ν(A)

< ∞.
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Since also I + Kn ⇒ I + K = A, we get, by [51, Lemma 1.3], that A is invertible.
From Theorem 6.10 (iv) and (v) it now follows that each limit operator Ah of A is
invertible and

‖(Ah)−1‖ =
1

ν(Ah)
=

1
ν(A)

< ∞.

But this is (iv).

6.5. The Wiener Algebra

If we write of “all spaces Y ” in this section, we always think of the set of spaces
Y = Y p(U) where U is fixed, and only p varies in {0}∪ [1,∞]. For a band operator
A of the form (6.15), one clearly has

‖A‖L(Y ) =

∥∥∥∥∥∥
∑
|k|≤w

Mbk
Vk

∥∥∥∥∥∥
L(Y )

≤
∑

k∈ZN

‖bk‖Y ∞ =: ‖A‖W

for all spaces Y , where we put bk = 0 if |k| > w. By W = W(U) we denote the
closure of BO(Y ) with respect to ‖.‖W . Equipped with ‖.‖W , the setW is a Banach
algebra. Clearly W does not depend on the underlying space Y and we have, for
all spaces Y ,

BO(Y ) ⊂ W ⊂ BDO(Y ).
Both inclusions are proper as the operators A and B with (Ax)(k) = x(−k)/|k|2
and (Bx)(k) = x(−k)/|k| if k 6= 0, (Ax)(0) = 0 = (Bx)(0) show.

W is referred to as the Wiener algebra. Note that this is a natural (non-
stationary) extension of the classical algebra of all matrix operators with constant
diagonals and ‖A‖W < ∞ (which is isomorphic, via Fourier transform, to the alge-
bra of all periodic functions with absolutely summable sequence of Fourier coeffi-
cients that is usually associated with the name ‘Wiener algebra’). As a consequence
of the definition of W we get that

(6.33) ‖A‖L(Y ) ≤ ‖A‖W
for all A ∈ W and all spaces Y . For operators in the Wiener algebra W one has
the following remarkable results (see Theorem 2.5.2 and Proposition 2.5.6 of [74]).

Lemma 6.39. For every A ∈ W, the following holds.

(i) If A is invertible then A−1 ∈ W, so that W is inverse closed.
(ii) If A is rich and h = (h(n)) ⊂ ZN tends to infinity then there is a sub-

sequence g of h such that the limit operator Ag exists with respect to all
spaces Y . This limit operator again belongs to W, and ‖Ag‖W ≤ ‖A‖W .

As a consequence of Lemma 6.39 we get that, if A ∈ W is invertible on one of the
spaces Y then it is invertible on all spaces Y , and ‖A−1‖L(Y ) ≤ ‖A−1‖W . Another
consequence of this lemma is that the operator spectrum σop(A) is contained in the
Wiener algebra W and does not depend on the underlying space Y if A ∈ W. So for
A ∈ W, the statement of Theorem 6.28 (iii) holds independently of the underlying
space Y . Moreover, by Theorem 6.28 (iv), also the uniform boundedness condition
of the inverses is redundant since this is true for p ∈ {0, 1,∞} and consequently,
also for p ∈ (1,∞) by Riesz-Thorin interpolation:



80 6. OPERATORS ON `p(ZN , U)

Theorem 6.40. If A ∈ W is rich then the following statements are equivalent.

(i) A is invertible at infinity on one of the spaces Y .
(ii) A is invertible at infinity on all the spaces Y .
(iii) All limit operators of A are invertible on one of the spaces Y .
(iv) All limit operators of A are invertible on all the spaces Y and

(6.34) sup
p∈{0}∪[1,∞]

sup
Ah∈σop(A)

‖A−1
h ‖L(Y p) < ∞.

Remark 6.41 This theorem is a significant strengthening and simplification
of Theorem 2.5.7 in [74]. Theorem 2.5.7 requires that U is reflexive, and, in the
case that U is reflexive, it implies only a reduced version of our Theorem 6.40 with
the value of Y restricted to Y p, p ∈ {0} ∪ (1,∞), in (i)–(iii).

Proof of Theorem 6.40. (i)⇒(iii) follows from Theorem 6.28 (iii).

(iii)⇒(iv): Suppose (iii) holds. We have observed already that σop(A) ⊂ W is
independent of the space Y by Lemma 6.39 (ii). Applying Lemma 6.39 (i) to the
limit operators of A, it follows that these limit operators are invertible on all the
spaces Y . By Theorem 6.28 (iv),

sp := sup
Ah∈σop(A)

‖A−1
h ‖L(Y p)

is finite for p ∈ {0, 1,∞}. Now, by Riesz-Thorin interpolation (as demonstrated
in the proof of [74, Theorem 2.5.7]), we get that sp ≤ s

1/p
1 s

1−1/p
∞ < ∞ for all

p ∈ (1,∞), which proves (iv).

(iv)⇒(ii) follows from Theorem 6.28 (iii).

Finally, (ii)⇒(i) is evident.

From the above result and the relationship between invertibility at infinity and
Fredholmness, (see Remark 6.2 and Theorem 6.28 a)(i)+(ii) and b)), we can deduce
Corollary 6.43 below, which relates Fredholmness to invertibility of limit operators.
In this corollary we require, for the equivalence of (a)-(d) with (e), the existence
of a predual U/ and, for A considered as an operator on Y ∞, the existence of
a preadjoint A/ ∈ Y 1(U/). The following obvious lemma characterises existence
of a preadjoint in terms of existence of preadjoints of the elements of the matrix
representation of A.

Lemma 6.42. If A ∈ W(U), with [A] = [amn], and U has a predual U/, then A,
considered as an operator on Y ∞(U), has a preadjoint A/ ∈ Y 1(U/) iff each entry
amn ∈ L(U) of the matrix representation of A has a preadjoint a/

mn ∈ L(U/). If
this latter condition holds then a preadjoint is A/ ∈ W(U/) with [A/] = [a/

nm]. In
particular, A has a preadjoint if U is reflexive, given by A/ ∈ W(U∗) = W(U/),
with [A/] = [a∗nm], where a∗nm ∈ L(U∗) = L(U/) is the adjoint of anm.

Corollary 6.43. Suppose A = I −K ∈ W is rich, and K ∈ UM(Y ). Then
the following statements are equivalent.

(a) All limit operators of A are injective on Y ∞ and σop(A) has an S−dense
subset, σ, such that β(Ah) = 0 on Y ∞ for all Ah ∈ σ;

(b) A is invertible at infinity on all the spaces Y ;
(c) A is invertible at infinity on one of the spaces Y ;
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(d) A is Fredholm on all the spaces Y .

In the case that U has a predual U/ and A, considered as an operator on Y ∞(U),
has a preadjoint A/ ∈ Y 1(U/), then (a)–(d) are equivalent to

(e) A is Fredholm on one of the spaces Y .

Proof. For the clarity of our argument we introduce two more statements:

(f) All limit operators of A are invertible on Y ∞;
(g) A is invertible at infinity on Y 2.

Each of these will turn out to be equivalent to (a)–(d).

By Theorem 6.3, statement (a) is equivalent to (f), which, by Theorem 6.40, is
equivalent to each of (b), (c) and (g).

Since K ∈ M(Y ), the implication (b)⇒(d) follows from Theorem 6.28 (ii)
(applied with C = −I).

Since, obviously, (d) implies Fredholmness of A on Y 2, it also implies (g), by
Theorem 6.28 (i). Another obvious consequence of (d) is (e).

Finally, suppose U/ and A/ exist and (e) holds for Y = Y p. If p = ∞, then (c)
follows by Theorem 6.28 b), and otherwise, if p < ∞, then (c) follows by Theorem
6.28 (i).

The above corollary implies, for rich operators in the Wiener algebra which are
of the form A = I−K ∈ W with K ∈ UM(Y ), i.e. K is subject to the (equivalent)
properties (i)-(v) in Lemma 6.23, and which possess a preadjoint, that Fredholmness
on one of the spaces Y implies Fredholmness on all spaces Y . The argument to
show this is indirect: it depends on the connection between Fredholmness and
invertibility at infinity and on the equivalence of (i) and (ii) in Theorem 6.40.

Recently, Lindner [52] has studied directly the invariance of the Fredholm prop-
erty across the spaces Y for general operators in the Wiener algebra, but with a
slight restriction on the Banach space U , that it is either finite-dimensional or
possesses the hyperplane property, meaning that it is isomorphic to a subspace of
U of co-dimension 1. An equivalent characterisation of the hyperplane property
[52] is that there exists a B ∈ L(U) which is Fredholm of index 1. This char-
acterisation suggests that infinite-dimensional Banach spaces which do not have
the hyperplane property are unusual. In [53] Lindner lists many sets of conditions
on U which ensure that U has the hyperplane property, and recalls that it was
a long-standing open problem due to Banach – the so-called hyperplane problem
– whether there exist any infinite-dimensional Banach spaces which do not have
the hyperplane property. An example was finally constructed by Gowers in [35],
for which work, and the resolution of other long-standing open questions posed by
Banach, he received the Fields medal in 1998.

The main result proved by Lindner [52] is the following:

Theorem 6.44. Suppose that U is finite-dimensional or has the hyperplane
property and that A ∈ W(U). Then:

(a) If A is Fredholm on one of the spaces Y p, with p ∈ {0} ∪ [1,∞), then A
is Fredholm on all spaces Y .
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(b) If U has a predual U/ and A, considered as acting on Y ∞, has a preadjoint
A/ ∈ Y 1(U/), then A is Fredholm on one of the spaces Y iff A is Fredholm
on all of the spaces Y .

If A is Fredholm on every space Y then the index is the same on each space.

By combining Theorem 6.40 and Corollary 6.43 we get the following result. In
this result, again, by specess(A) we denote the essential spectrum of A (the set of
λ for which λI −A is not Fredholm) and by spec(A) the ordinary spectrum of A.

Corollary 6.45. Suppose A = I − K ∈ W is rich, K ∈ UM(Y ), U has a
predual U/, and that A, considered as an operator on Y ∞(U), has a preadjoint
A/ ∈ Y 1(U/). Then statements (i)–(iv) of Theorem 6.40 and (a)–(e) of Corollary
6.43 are all equivalent. Further, on every space Y it holds that

(6.35) specess(A) =
⋃

B∈σop(A)

spec(B).

Proof. It remains only to show that, for every λ ∈ C, λI − A = (λ − 1)I + K
is Fredholm iff (λ − 1)I + L is invertible for every L ∈ σop(K). For λ 6= 1 this
follows from the earlier part of the corollary. This is true also for λ = 1 when U is
finite-dimensional (see Corollary 6.46 below). When U is infinite-dimensional and
λ = 1, then (λ−1)I +K = K ∈ UM(Y ) ⊂ M(Y ) and so (λ−1)I +L = L ∈ M(Y ).
This implies that all the entries of the matrix representations of (λ− 1)I + K and
(λ − 1)I + L are compact (in K(U)). Since U is infinite-dimensional, this implies
that (λ− 1)I + K and (λ− 1)I + L are not Fredholm.

In the particularly simple case of a finite-dimensional space U we have the
following extended version of Corollary 6.45.

Corollary 6.46. Suppose A ∈ W and U is finite-dimensional. Then state-
ments (i)–(iv) of Theorem 6.40 and (a)–(e) of Corollary 6.43 are all equivalent.
Moreover, if A is subject to all these equivalent statements then the index of A is
the same on each space Y . Further, on every space Y , (6.35) holds.

Proof. To see that the conditions of Corollary 6.45 are fulfilled, recall Lemma 6.21
and remember that, by Lemma 6.24 (b), K = I −A ∈ UM(Y ) if dim U < ∞. Also
recall that finite-dimensional spaces U are reflexive, so that U/ = U∗ is a predual
and existence of a preadjoint follows from Lemma 6.42.

It remains to show that the index of A is the same on all spaces Y . This follows
from Theorem 6.44 above. More directly, let A be Fredholm on one of the spaces
Y = Y p with p ∈ {0}∪ [1,∞] and denote its index by indp A. From the equivalence
of (d) and (e) in Corollary 6.43 we get that A is Fredholm on Y 2. Now proceed
exactly as in the proof of [78, Lemma 2.1] to arrive at indp A = ind2 A (see the
remark below for some details).

Remark 6.47 a) In [78, Lemma 2.1] the independence of the index just
follows for the spaces Y p with p ∈ {0} ∪ (1,∞) because this is the setting for
which [72, Theorem 8] and [74, Theorem 2.5.7] yield that the Fredholm property
is independent of the underlying space. Thanks to the equivalence of (d) and (e)
in Corollary 6.43, as we proved earlier in Corollary 6.45 (and 6.46), we can now
enlarge this framework to p ∈ {0} ∪ [1,∞].
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b) For simplicity, [78, Lemma 2.1] was only stated for band operators but its
proof actually applies to all operators A ∈ W. We make use of this fact in the proof
of our Corollary 6.46.

c) Also, for simplicity, [78, Lemma 2.1] was only stated for operators on Y p(C)
instead of Y p(U) with n := dim U < ∞. This is not a loss of generality since
these two spaces are isomorphic and the discussed operator properties are preserved
under this isomorphism. Indeed, fix a basis in U and let ϕ : U → Cn refer to the
isomorphism that maps u ∈ U to its coordinate vector ϕ(u) =: (ϕ1(u), ..., ϕn(u)) ∈
Cn with respect to this basis. Then Φ : Y p(U) → Y p(C) with

(Φx)(n ·m1 + k, m2, ... , mN ) = ϕk

(
x(m1, ...,mN )

)
∈ C,

k ∈ {1, ..., n}, m1, ...,mN ∈ Z
for every x ∈ Y p(U) is an isomorphism. On the operator side, roughly speaking,
the matrix representation of an operator on Y p(U) is an infinite matrix the entries
of which are n × n matrices (operators on U ∼= Cn, via ϕ). Via Φ this matrix is
identified, in a natural way, with an infinite matrix with scalar entries, and this is
the setting in which [78, Lemma 2.1] applies. Note that this identification preserves
membership of the Wiener algebra, Fredholmness, and the index of the operator.

Finally, we note that in the one-dimensional case N = 1 we have the following
refinement of Corollaries 6.43, 6.45 and 6.46, as a consequence of Theorem 6.31.

Corollary 6.48. Suppose N = 1 and that A = I − K ∈ W is rich and
K ∈ UM(Y ). Then the following statements are equivalent:

(a) All limit operators of A are injective on Y ∞;
(b) All limit operators of A are invertible on one of the spaces Y ;
(c) All limit operators of A are invertible on all the spaces Y and (6.34) holds;
(d) A is invertible at infinity on all the spaces Y ;
(e) A is invertible at infinity on one of the spaces Y ;
(f) A is Fredholm on all the spaces Y .

In the case that U has a predual U/ and A, considered as an operator on
Y ∞(U) = `∞(Z, U), has a preadjoint A/ on Y 1(U/) = `1(Z, U/), then (a)–(f)
are equivalent to

(g) A is Fredholm on one of the spaces Y ;

and on every space Y it holds that

(6.36) specess(A) =
⋃

B∈σop(A)

spec(B) =
⋃

B∈σop(A)

spec∞point(B).

Here we denote by spec∞point(B) the point spectrum (set of eigenvalues) of B,
considered as an operator on Y ∞.

Corollary 6.49. Suppose N = 1, A ∈ W and U is finite-dimensional. Then
statements (a)–(g) of Corollary 6.48 are equivalent. Moreover, if A is subject to
all these equivalent statements then the index of A is the same on each space Y .
Further, on every space Y , (6.36) holds.



CHAPTER 7

Discrete Schrödinger Operators

In this chapter we illustrate the results of Chapter 6, in particular the results
of Section 6.5, in the relatively simple but practically relevant setting of Y =
Y p = Y p(U) = `p(ZN , U) with p ∈ {0} ∪ [1,∞] and a finite-dimensional space U .
For applications to a class of operators on Y p(U) with U infinite-dimensional, see
Chapter 8.

In this chapter we suppose that our operator A is a discrete Schrödinger oper-
ator on Y in the sense e.g. of [27]. By this we mean that A is of the form

A = L + Mb

with a translation invariant operator L, i.e. V−αLVα = L for all α ∈ ZN , and with
a multiplication operator Mb, given by (4.4), with b ∈ Y ∞(L(U)). A translation in-
variant operator L on Y is often referred to as a Laurent operator , and the sequence
b is typically called the potential of A. The matrix representation of L is a Laurent
matrix [L] = [λi−j ]i,j∈ZN with λk ∈ L(U) for all k ∈ ZN . To be able to apply the
results of the previous subsections we will suppose that A = L + Mb ∈ L(Y p), for
1 ≤ p ≤ ∞, which is the case if L ∈ W, i.e. if

‖L‖W =
∑

k∈ZN

‖λk‖ < ∞.

Discrete (or lattice) Schrödinger operators are widely studied in mathematical
physics (see e.g. [76, §XI.14], [83], [11], [40], [89], [27], [47], [8], [69]). Particularly
common and classical is the case where the Laurent operator takes the form

(7.1) L =
N∑

k=1

(Ve(k) + V−e(k)),

where e(1), ..., e(N) are the unit coordinate vectors in ZN . The operator A = L+Mb

is then a discrete analogue of the second order differential operator −∆ + M where
∆ is the Laplacian and M is the operator of multiplication by a bounded potential,
both on RN .

Let L′ be the Laurent operator with matrix representation [L′] = [λ∗j−i]i,j∈ZN .
Then, identifying U with U∗ (so that U = U∗ = U/), L′ ∈ W and A′ := L′ + Mb ∈
W. Further, in the case p = ∞, when we consider A as an operator on Y = Y ∞,
A′, considered as an operator on Y 1, is the unique transpose of A with respect to
the dual system (Y ∞, Y 1) of Section 6.2 and so the unique preadjoint of A, for it
holds for x ∈ Y , y ∈ Y 1, using equations (6.9), (6.8), and (6.14), that

Ax(y) = (Ax, y) = (x,A′y) = x(A′y).

84
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We will say that A is symmetric if A = A′. For example, this is the case when L is
the classical operator (7.1).

For b ∈ Y ∞(L(U)) let Lim (b) denote the set of limit functions of b, by which
we mean the set of all functions bh ∈ Y ∞(L(U)) for which there exists a sequence
h : N → ZN tending to infinity such that

(7.2) bh(m) = lim
n→∞

b(m + h(n)), m ∈ ZN .

It follows from (4.5) that

σop(A) = {L + Mc : c ∈ Lim (b)}.
Noting that Corollary 6.46 applies to A = L + Mb, we have the following result.
In this result, for an operator B ∈ W we denote by specp(B), specp

ess(B), and
specp

point(B), respectively, the spectrum, essential spectrum, and point spectrum
(set of eigenvalues) of B considered as an operator on Y p.

Theorem 7.1. The following statements are equivalent:

(a) L+Mc is injective on Y ∞ for all c ∈ Lim (b) and, for some s-dense subset,
ς, of Lim (b), L′ + Mc is injective on Y 1 for all c ∈ ς.

(b) L + Mc is invertible, for every c ∈ Lim (b), on one of the spaces Y p;
(c) L + Mc is invertible on Y p for every p and every c ∈ Lim (b) and the

inverses are uniformly bounded (in p and c);
(d) A is Fredholm on one of the spaces Y p;
(e) A is Fredholm on all of the spaces Y p and the index is the same on each

space.

Thus, for every p it holds that

specp
ess(A) =

⋃
c∈Lim (b)

specp(L + Mc)(7.3)

=
⋃

c∈Lim (b)

[spec∞point(L + Mc) ∪ spec1
point(L

′ + Mc)](7.4)

and

specp(A) = spec∞point(A) ∪ spec1
point(A

′) ∪ specp
ess(A)(7.5)

= spec1
point(A) ∪ spec1

point(A
′) ∪ specp

ess(A).(7.6)

Proof. From the equivalence of (a) and (b) in Corollary 6.30 we have that (a) is
equivalent to the statement that α(L+Mc) = 0 for all c ∈ Lim (b) and β(L+Mc) = 0
for all c ∈ ς. By Corollary 6.46 this is equivalent to (b)–(e). So it remains to
prove (7.5)+(7.6). Equality (7.5) follows since, as noted after Lemma 6.39, the
spectrum of A does not depend on p, so that specp(A) = spec∞(A). Further, if
λ ∈ spec∞(A) and λI−A is Fredholm, then either α(λI−A) 6= 0 or β(λI−A) 6= 0,
so that either λ ∈ spec∞point(A) or λ ∈ spec1

point(A
′). To see equality (7.6), note that

spec1
point(A) ⊂ spec∞point(A) since injectivity of λI−A on Y ∞ implies its injectivity

on Y 1 ⊂ Y ∞. Moreover, if λI − A is Fredholm then, by Theorem 6.17, the kernel
of λI −A is a subset of Y 0. Since (λI −A)|Y 0 is Fredholm with the same index on
Y 0 and Y 1 ⊂ Y 0 and since Y 1 is dense in Y 0, it follows from a standard result on
Fredholm operators (e.g. [66]) that the kernel of λI − A is a subset of Y 1. Thus
spec∞point(A) ⊂ spec∞ess(A) ∪ spec1

point(A).
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Remark 7.2 We note that main parts of the above result, namely equality
(7.3) and that the spectrum and essential spectrum do not depend on p ∈ [1,∞],
are well known (see e.g. [74, Theorem 5.8.1]). The characterisation of the essential
spectrum by (7.4) appears to be new.

Clearly, equations (7.3) – (7.6) simplify when L is symmetric, for example
if L is given by (7.1), since we then have that spec1

point(A
′) = spec1

point(A) and
spec1

point(L
′ + Mc) ⊂ spec∞point(L + Mc) for all c ∈ Lim (b). Simplifications also

occur when the potential b is almost periodic, b ∈ Y ∞
AP(L(U)), in which case Lim (b)

is precisely what is often called the hull of b, the set closY ∞(L(U)){Vkb : k ∈ ZN},
the closure of the set of translates of b.

Theorem 7.3. If b is almost periodic then, for all p and all b̃ ∈ Lim (b),

(7.7) specp
ess(A) = specp(A) = specp(L + Mb̃) =

⋃
c∈Lim (b)

spec∞point(L + Mc).

Proof. L is absolutely rich/periodic and so norm rich. Since b is almost periodic, Mb

is norm rich by Lemma 6.35. Thus A is norm rich. Further, σop(A−I) is uniformly
bounded by Theorem 5.12 (i) and so uniformly Montel on Y ∞ by Corollary 3.25,
since dim U < ∞. The result thus follows from Theorem 6.38, Theorem 6.10 (iv),
and the equivalence of statements (b) and (d) in Theorem 7.1.

Remark 7.4 That specp
ess(A) = specp(A) = specp(L + Mb̃) for all b̃ ∈ Lim (b),

the hull of b, is a classical result, see e.g. [83, 89, 74]. The result that specp(A) =⋃
c∈Lim (b) spec∞point(L + Mc) appears to be new in this discrete setting, although

analogous results for uniformly elliptic differential operators on RN with almost
periodic coefficients date back to Shubin [87].

Moreover, note that this result is well-known, as a part of Floquet-Bloch theory
[40, 41, 28], in the case when b is periodic; in fact one has the stronger result in
that case, at least when L is given by (7.1), that λ is in the spectrum of A iff there
exists a solution x ∈ Y ∞(U) of λx = Ax which is quasi-periodic in the sense of [40].
The latter means that x(m) = exp(ik ·m)y(m) for all m ∈ ZN , where y ∈ Y ∞(U)
is periodic and k ∈ RN is fixed, so that if x is quasi-periodic then it is certainly
almost periodic. Thus, if b is periodic then λ is in the spectrum of A iff there exists
a solution x ∈ Y ∞(U) of λx = Ax which is almost periodic.

Natural questions are whether this statement still holds for the case when b
is almost periodic, at least for L given by (7.1), or whether the weaker statement
holds that λ is in the spectrum of A iff, for some c ∈ Lim (b), there exists a solution
x ∈ Y ∞(U) of λx = (L + Mc)x which is almost periodic. The answer is ‘no’ on
both counts. In particular, in the case N = 1 and L given by (7.1), see [26, 65]
and [64, p. 454], there exist almost periodic potentials b for which the spectrum
of A as an operator on Y 2(U) has the property that every solution x ∈ Y ∞(U) of
λx = (L + Mc)x, for some c ∈ Lim (b) decays exponentially at infinity.

To illustrate the application of the above theorem in the 1D case (N = 1)
we consider a widely studied class of almost periodic operators obtained by the
following construction. For some d ∈ N let B : Rd → L(U) be a continuous
function satisfying

B(s + m) = B(s), s ∈ Rd, m ∈ Zd.
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Let α = (α1, . . . , αd) ∈ Rd and, for s ∈ Rd let bs : Z → L(U) be given by

(7.8) bs(n) = B(αn + s), n ∈ Z.

If α1, . . . , αd are all rational, then bs is periodic. Whatever the choice of α1, . . . , αd,
bs is almost periodic (bs ∈ Y ∞

AP(L(U))).

For s ∈ Rd let [s] denote the coset [s] = s + Zd in Rd/Zd. An interesting
case is that in which 1, α1, α2, . . . , αd are rationally independent, in which case
{[αm] : m ∈ Z} is dense in Rd/Zd. Then it is a straightforward calculation to see
that

(7.9) Lim (bs) = {bt : t ∈ Rd}.
Thus, for this case, (7.7) reads as

(7.10) specp
ess(L + Mbs

) = specp(L + Mbs
) =

⋃
t∈Rd

spec∞point(L + Mbt
).

As a particular instance, this formula holds in the case when U = C, d = 1,
and B(s) = λ cos(2πs), s ∈ R, for some λ ∈ C. Then

(7.11) bs(n) = λ cos(2π(αn + s)), n ∈ Z,

and (7.10) holds if α is irrational, in which case bs is the so-called almost Mathieu
potential.

We next modify the above example to illustrate the application of Theorem 7.1
in a particular 1D (N = 1) case.

Example 7.5 Define bs ∈ Y ∞
AP(L(U)) by (7.8) and suppose that 1, α1, α2, . . . , αd

are rationally independent. Suppose that f : Z → Rd satisfies

lim
|n|→∞

|f(n + 1)− f(n)| → 0.

Define b ∈ Y ∞(L(U)) by

b(n) = B(αn + f(n)), n ∈ Z.

Then it is straightforward to see that Lim (b) ⊂ {bs : s ∈ Rd}. Since [51, Corollary
3.97], bs ∈ Lim (b) implies that Lim (bs) ⊂ Lim (b), we have, by (7.9), that

Lim (b) = {bs : s ∈ Rd}.
Thus, applying Theorem 7.1 and (7.10), we see that, for every s ∈ Rd and every
p ∈ {0} ∪ [1,∞],
(7.12)
specp

ess(L + Mb) = specp
ess(L + Mbs

) = specp(L + Mbs
) =

⋃
t∈Rd

spec∞point(L + Mbt
).

We note that, in the special case that L is given by (7.1) (with N = 1), U = C,
and B is real-valued, the statement that

spec2
ess(L + Mb) = spec2(L + Mbs)

for all s ∈ Rd is Theorem 5.2 of Last and Simon [47] (established by limit operator
type arguments). As a specific instance where (7.12) holds, let us take U = C,
d = 1, and B(s) = λ cos(2πs), s ∈ R, for some λ ∈ C. Then bs is given by (7.11)
and, taking (as one possible choice), f(n) = |n|1/2, one has

b(n) = λ cos(2π(αn + |n|1/2))
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(cf. [47, Theorem 1.3]).

As a further example we consider the case when b is pseudo-ergodic in the sense
of Davies [27]. Following [27], we call the function b ∈ Y ∞(ZN , U) pseudo-ergodic,
if, for every ε > 0, every finite set S ⊂ ZN and every function f : S → Σ :=
closU b(ZN ), there is a z ∈ ZN such that

‖f(s)− b(z + s)‖U < ε, s ∈ S.

One can show [51, Corollary 3.70] that b is pseudo-ergodic iff Lim (b) is the set ΣZN

of all functions c : ZN → Σ. In particular, b ∈ Lim (b) if b is pseudo-ergodic.

Theorem 7.6. If b is pseudo-ergodic then, for all p,

specp
ess(A) = specp(A) =

⋃
c∈ΣZN

specp(L + Mc) =
⋃

c∈ΣZN

spec∞point(L + Mc).

Proof. The first two ‘=’ signs follow from (7.3) and the fact that b ∈ Lim (b) = ΣZN

.
For the proof of the remaining equality, we refer to the following s-dense subset of
Lim (b) = ΣZN

: Let m1 = m2 = ... = mN = 1, and let ς stand for the set of all
periodic functions x : ZN → Σ, that is

ς :=
⋃
n∈N

Y ∞
n (Σ)

with Y ∞
n (Σ) defined as in (6.4) (with the slight abuse of notation by writing Y ∞(Σ)

for ΣZN

, i.e. the set of all functions x : ZN → Σ). Then ς is s-dense in ΣZN

as every
x ∈ ΣZN

can be strictly approximated by the sequence (P̃nx) ⊂ ς with P̃n as defined
in (6.5). If λ ∈ C and all limit operators λI − (L+Mc) of λI −A = λI − (L+Mb),
including those with c ∈ ς, are injective, then, by Theorem 6.7, we have that
λI − (L + Mc) is surjective for every c ∈ ς. By the equivalence between (a) and (d)
in Theorem 7.1, this shows that λI −A = λI − (L + Mb) is Fredholm.

Remark 7.7 It is shown that

spec2
ess(A) = spec2(A) =

⋃
c∈ΣZN

spec2(L + Mc)

in [27]. The result that specp(A) =
⋃

c∈ΣZN spec∞point(L + Mc) appears to be new.

The above theorems show that, in each of the cases L symmetric, b almost
periodic, and b pseudo-ergodic, it holds that

(7.13) specp
ess(A) =

⋃
c∈Lim (c)

spec∞point(L + Mc).

We conjecture that, in fact, this equation holds for all c ∈ Y ∞(L(U)). For N = 1
this is no longer a conjecture, as we showed in Corollary 6.49 (which follows from
our more general results in [17], also see Theorem 6.31 above). For N ≥ 2 however,
this is an open problem.

We finish this chapter with an example demonstrating how Theorem 7.6 can
be used to compute spectra of Schrödinger operators with random potential b.

Example 7.8 Let N = 1, p ∈ [1,∞], U = C and take a compact set Σ in
the complex plane. We compute the spectrum of A = L + Mb as an operator on
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Y = Y p(U) = `p(Z) where L = V−1 is the backward shift and the function values
b(k), k ∈ Z, of the random potential b are chosen independently of each other from
the set Σ. We assume that, for every σ ∈ Σ and ε > 0, P(|b(k)−σ| < ε) > 0. Then
it is easy to see (the argument is sometimes called ‘the Infinite Monkey Theorem’
and it follows from the Second Borel Cantelli Lemma, see [12, Theorem 8.16] or
[25, Theorem 4.2.4]) that, with probability 1, b is pseudo-ergodic.

For the calculation of the point spectra in Theorem 7.6, let c ∈ ΣZ and take
λ ∈ C. If x : Z → C is a nontrivial solution of (L + Mc)x = λx then x(n0) 6= 0 for
some n0 ∈ Z and x(k + 1) = (λ − c(k))x(k) for all k ∈ Z. Note that λ 6= c(k) for
all k < n0 since otherwise x(n0) = 0 and, w.l.o.g., suppose that x(n0) = 1. As a
consequence we get that

(7.14) x(n) =


n−1∏
k=n0

(λ− c(k)), n ≥ n0,

n0−1∏
k=n

(λ− c(k))−1, n < n0

for every n ∈ Z. Now put, for r > 0,

Σr
∪ :=

⋃
σ∈Σ

(σ + rD) and Σr
∩ :=

⋂
σ∈Σ

(σ + rD)

with D denoting the open unit disk in C and D its closure.

Clearly, if λ 6∈ Σ1
∪ then |λ− σ| > 1 for all σ ∈ Σ and hence, for every nontrivial

eigenfunction x of L+Mc, we have that |x(n)| → ∞ in (7.14) as n → +∞, regardless
of c : Z → Σ.

Similarly, if λ ∈ Σ1
∩ then |λ − σ| < 1 for all σ ∈ Σ and hence, for every

nontrivial eigenfunction x of L + Mc, |x(n)| → ∞ in (7.14) as n → −∞, regardless
of c : Z → Σ. (Note that n0 in (7.14) depends on c and λ.)

So in both cases, (L + Mc)x = λx has no nontrivial solution x ∈ Y ∞, so
λ 6∈ spec∞point(L + Mc) for all c ∈ ΣZ. Now it remains to look at λ ∈ Σ1

∪ \ Σ1
∩. In

this case, let σ, τ ∈ Σ be such that |λ − σ| ≤ 1 ≤ |λ − τ |, which is possible by the
choice of λ, and put c(k) := τ for k < 0 and c(k) := σ for k ≥ 0. Then c ∈ ΣZ and

x =
(
· · · , (λ− τ)−2 , (λ− τ)−2 , 1 , (λ− σ)1 , (λ− σ)2 , · · ·

)
∈ Y ∞,

with the 1 at position n0 = 0, is an eigenvector of L + Mc w.r.t. λ.

Summarising and using Theorem 7.6, we get that, with probability 1,

(7.15) specpA = specp
essA =

⋃
c∈ΣZ

spec∞point(L + Mc) = Σ1
∪ \ Σ1

∩,

which confirms, in a simpler and more straightforward way, a result of Trefethen,
Contedini and Embree [90, Theorem 8.1] (and see [91, Section VIII]). Equation
(7.15) is illustrated, for two particular cases, in Figure 7.1. By a simple scaling
argument, it moreover follows from (7.15) that, with probability 1,

specp(εL + Mb) = specp
ess(εL + Mb) = Σε

∪ \ Σε
∩.

Thus
specp(εL + Mb) = Σε

∪ = specε(Mb)
for all ε > 0 small enough that Σε

∩ = ∅, e.g. for ε ∈ (0, diam Σ/2).
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Figure 7.1. The left image shows, as a gray shaded area, specpA when Σ
is the black straight line of length 1.5. In the right image, one more point (the

centre of the lower circle) has been added to Σ which results in Σ1
∩ = ∅.



CHAPTER 8

A Class of Integral Operators

In this chapter, we apply the results of Chapter 6 to study a class of operators
on

Y = Y p(U) =
{

`p(ZN , U), p ∈ [1,∞],
c0(ZN , U), p = 0

with U = Lq([0, 1]N ) for some fixed q ∈ (1,∞]. In a natural way (cf. [43, §1.6.3])
we identify elements x ∈ Y with equivalence classes of scalar-valued functions on
RN via

(8.1)
(
x(m)

)
(t) = f(m + t), m ∈ ZN , t ∈ [0, 1]N ,

and denote the set of all of these (equivalence classes of) functions f with

‖f‖p,q := ‖x‖Y < ∞

by Lp,q(RN ) or just Lp,q. Note that Lq,q(RN ) = Lq(RN ). Equipped with the norm
‖.‖p,q, Lp,q is a Banach space, and (8.1) yields an isometric isomorphism between
Lp,q and Y p(U). We will freely identify these two spaces and the notions of strict
convergence, limit operators, as well as the operators Pm, Vk ∈ L(Y p(U)) with the
corresponding notions and operators on Lp,q (cf. [51, (1.3)]).

The operators we are going to study on Y alias Lp,q are composed, via addition
and composition, from two basic ingredients:

• For b ∈ L∞ := L∞(RN ), define the multiplication operator Mb ∈ L(Lp,q)
by

Mbf(t) = b(t) f(t), t ∈ RN

for all f ∈ Lp,q. Via the identification (8.1) between Lp,q and Y , we can
identify Mb with the multiplication operator Mc on Y as defined in (4.4),
where c ∈ `∞(ZN , L(U)) is such that (c(m)u)(t) = b(m + t)u(t) for all
m ∈ ZN , u ∈ U = Lq([0, 1]N ) and t ∈ [0, 1]N . Recall from Example 6.6
that Mb is rich iff {b(·+ k)}k∈ZN is relatively sequentially compact in the
strict topology on L∞, in which case we write b ∈ L∞$ . It is easy to check
that L∞$ is an inverse closed Banach subalgebra of L∞.

• For κ ∈ L1 := L1(RN ), define the convolution operator Cκ ∈ L(Lp,q) by

Cκf(t) = (κ ? f)(t) =
∫

RN

κ(s− t) f(s) ds, t ∈ RN

for all f ∈ Lp,q (cf. Example 3.6). As demonstrated in [51, Example 1.28],
the convolution operator Cκ on Lp,q corresponds to a Laurent operator

91
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L on Y , where every entry λk of [L] = [λi−j ]i,j∈ZN is the operator of
convolution by κ(·+ k) on U . By Young’s inequality, we get that

‖λk‖ ≤ ‖κ|k+[−1,1]N ‖1

for every k ∈ ZN , and by κ ∈ L1(RN ) it follows that L ∈ W = W(U).

We denote by Ao the smallest algebra in L(Lp,q) containing all operators of
these two types; that is the set of all finite sum-products of operators of the form
Mb and Cκ with b ∈ L∞$ and κ ∈ L1. From the above considerations it follows
that every operator A ∈ Ao, if identified with an operator on Y , is contained in
the Wiener algebra W. By A we denote the closure of Ao in the norm ‖.‖W . Note
that, by (6.33), the closure of a set S ⊂ W in the W-norm is always contained in
the closure of S in the usual operator norm.

Lemma 8.1. The predual space U/ exists and, if p = ∞, then every A ∈ A has
a preadjoint operator A/ on L1,q′ with 1/q + 1/q′ = 1.

Proof. By the choice q ∈ (1,∞], it is clear that the predual space U/ of U =
Lq([0, 1]N ) exists and can be identified with Lq′([0, 1]N ), where 1/q + 1/q′ = 1,
including the case q′ = 1 if q = ∞. Now suppose p = ∞. Then the predual Y 1(U/)
of Y = Y ∞(U) exists and corresponds to L1,q′ in the sense of (8.1). By [51,
Proposition 1.10] and the fact that both multiplication and convolution operators
have a preadjoint operator (indeed, M/

b = Mb and C/
κ = Cκ(−·) for all b ∈ L∞ and

κ ∈ L1), we see that indeed A/ exists for every A ∈ A.

Now let

J o :=
{∑

AiCκiBi : Ai, Bi ∈ Ao, κi ∈ L1
}

,

with the sum being finite, denote the smallest two-sided ideal of Ao containing all
convolution operators Cκ with κ ∈ L1, and let J be its closure in the norm ‖.‖W ,
hence the smallest W-closed two-sided ideal of A containing all Cκ.

Lemma 8.2. It holds that J ⊂ UM(Lp,q). In particular, every operator in J
is Montel.

Proof. The inclusion J ⊂ UM(Lp,q) follows from Lemma 6.24 (a),(c),(d) and the
fact that Cκ ∈ UM(Lp,q) for all κ ∈ L1 since the set {V−kKVk : k ∈ ZN} in Lemma
6.23 (ii) is just a singleton if K = Cκ.

It can be shown that, in the same way as every A ∈ Ao clearly can be written
as the sum of a multiplication operator and an operator in J o, also every A ∈ A
can be uniquely written as

(8.2) A = Mb + K with b ∈ L∞$ and K ∈ J .

This follows from [51, Proposition 4.11] with A and J there replaced by the current
meaning. As a consequence, we get that the factor algebra A/J is isomorphic to
L∞$ , and the coset A + J of A ∈ A is represented by the function b ∈ L∞$ from
(8.2).

Theorem 8.3. The operator (8.2) is Fredholm iff it is invertible at infinity and
b is invertible in L∞.
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Proof. If A ∈ A is invertible at infinity and b from its representation (8.2) is invert-
ible in L∞, then A is Fredholm by Theorem 6.28 (ii) and Lemma 8.2. Conversely,
let A ∈ A be Fredholm. By Theorem 6.28 (i) and b), together with Lemma 8.1, we
get that A is invertible at infinity. It remains to show that b from (8.2) is invertible
in L∞. To see this, take B ∈ L(Lp,q) and S, T ∈ K(Lp,q) such that AB = I + S
and BA = I + T . Then, for every k ∈ N, we get that

PkMbBPk + PkKBPk = PkABPk = Pk + PkSPk,

and hence
(PkMbPk)(PkBPk) = Pk + S′

with S′ = PkSPk − PkKBPk ∈ K(Lp,q([−k, k]N )) by Lemmas 8.2 and 3.19. From
the last equality and its symmetric counter-part, we conclude that MPkb = PkMbPk

is Fredholm on Lp,q([−k, k]N ), implying that the function Pkb is invertible in
L∞([−k, k]N ), by a standard argument (see e.g. [51, Lemma 2.42]). Since this
holds for every k ∈ N, we get that b is invertible in L∞.

As invertibility of b in L∞ turned out to be necessary for Fredholmness of (8.2),
we will now, without loss of generality, suppose that b is invertible, therefore write

A = Mb + K = Mb(I + K ′) with K ′ = Mb−1K ∈ J ,

and then merely study Fredholmness of I + K ′. For this setting we can show the
analogous result of Theorem 7.1.

Theorem 8.4. For A = I + K with K ∈ J , the following statements are
equivalent.

(a) All limit operators of A are injective on L∞,q and σop(A) has an S−dense
subset of injective operators on L1,q;

(b) All limit operators of A are invertible on one of the spaces Lp,q with p ∈
{0} ∪ [1,∞];

(c) All limit operators Ah of A are invertible on all the spaces Lp,q with p ∈
{0} ∪ [1,∞] and the inverses are uniformly bounded (in p and h);

(d) A is Fredholm on one of the spaces Lp,q with p ∈ {0} ∪ [1,∞];
(e) A is Fredholm on all the spaces Lp,q with p ∈ {0} ∪ [1,∞].

Thus, for every p ∈ {0} ∪ [1,∞] it holds that

specp
ess(A) =

⋃
Ah∈σop(A)

specp(Ah)

=
⋃

Ah∈σop(A)

[spec∞point(Ah) ∪ spec1
point(Ah)](8.3)

and

specp(A) = spec∞point(A) ∪ spec1
point(A

′) ∪ specp
ess(A)

= spec1
point(A) ∪ spec1

point(A
′) ∪ specp

ess(A).

Proof. We start by showing that A is subject to the conditions in Corollary 6.45.
Clearly, A = I + K is contained in the Wiener algebra and it is rich, by (5.13) and
since all generators Mb and Cκ of A are rich. Predual U/ and preadjoint A/ exist
by Lemma 8.1, and K ∈ UM(Lp,q) by Lemma 8.2.
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The rest of this proof proceeds exactly as that of Theorem 7.1 with one differ-
ence: Unlike Theorem 7.1, which rests on Corollary 6.46, we here have an infinite-
dimensional space U and therefore we use Corollary 6.45.

Example 8.5 The spectra of limit operators of A = I + K can be written
down explicitly when K ∈ J is composed of convolution operators Cκ with κ ∈ L1

and multiplication operators Mb with a slowly oscillating function b ∈ L∞. By the
latter we mean that

ess sup
t∈[0,1]N

| b(x + t)− b(x) | → 0 as |x| → ∞.

In this case, the multiplication operator Mb is rich and all of its limit operators
are multiples of the identity. (In a sense, even the reverse statement is true [51,
Proposition 3.52].) As a consequence, every limit operator Ah of A = I + K is of
the form I + Cκ with some κ ∈ L1, in which case the set specp(Ah) is the range of
the function 1 + Fκ with F being the Fourier transform on L1.

One can now proceed similarly to Chapter 7 to get rid of the second injectiv-
ity condition in Theorem 8.4 (a) and the second point-spectrum in formula (8.3):
Clearly, if N = 1, then Corollary 6.48 does exactly this for us. Otherwise, if N ≥ 2,
one way to go is to restrict ourselves to symmetric operators in A. We will illus-
trate another way, that is restricting the generating multiplication operators Mb of
A to norm-rich/almost periodic ones, i.e. to work with a type of almost periodic
functions b ∈ L∞.

Let b ∈ L∞ and put c = (b|k+[0,1]N )k∈ZN ∈ Y ∞(L∞([0, 1]N )). From Example
6.6 we know that the following are equivalent:

• The set {Vkb : k ∈ ZN} is relatively compact in L∞.
• The set {Vkc : k ∈ ZN} is relatively compact in Y ∞(L∞([0, 1]N )).
• c is almost periodic, i.e. c ∈ Y ∞

AP(L∞([0, 1]N )).
• Mc is norm-rich/almost periodic (and therefore rich) on Y p(U).

When this is the case, then we will say that b ∈ L∞ is Z-almost periodic and write
b ∈ L∞AP. The set of Z-almost periodic functions on RN is not to be confused with
the much smaller subset of almost periodic functions on RN . Unlike almost periodic
functions, the functions in L∞AP do not need to be continuous (see [51, §3.4.8] for
more detail).

So let AAP ⊂ A denote the W-closure of the smallest algebra in L(Lp,q) that
contains all Mb with b ∈ L∞AP and all Cκ with κ ∈ L1. Analogously, JAP be the
smallest W-closed two-sided ideal in AAP containing all convolution operators Cκ

with κ ∈ L1. It is not hard to see that JAP = J ∩ AAP.

As seen before for operators in A, the study of Fredholmness in AAP can be
reduced to studying operators of the form I +K with K ∈ JAP. In this case, in full
analogy to Theorem 7.3, we have the following improved version of formula (8.3):

Theorem 8.6. If A = I + K with K ∈ JAP then, for all p ∈ {0} ∪ [1,∞] and
all Ah ∈ σop(A),

specp
ess(A) = specp(A) = specp(Ah) =

⋃
B∈σop(A)

spec∞point(B).



8. A CLASS OF INTEGRAL OPERATORS 95

Proof. First of all, A is norm-rich/almost periodic, by Lemma 6.9 and since the
generators of AAP are norm-rich/almost periodic. Secondly, σop(K) is uniformly
Montel, by Lemmas 8.2 and 5.17. Consequently, we may use Theorems 6.38 and
6.10 (iv), which, together with the equivalence of statements (b) and (d) in Theorem
8.4, prove this formula.



CHAPTER 9

Some Open Problems

We conclude with a small list of open problems the solutions of which, we
believe, could be crucial in extending the picture that we have tried to draw in this
text. We would like to see this list as both a future agenda for ourselves as well as
an invitation for the interested reader.

1. Is a version of the limit operator theory possible with L(Y,P) and K(Y,P)
replaced by S(Y ) and SN(Y )? We know from Lemma 3.3, Corollary 3.5, (3.5)
and Lemma 3.10 that S(Y ) and SN(Y ) are “one-sided versions” of L(Y,P) and
K(Y,P). Moreover, SN(Y ) is a closed two-sided ideal in S(Y ) – just like K(Y,P)
is in L(Y,P). The ideal K(Y,P) shapes the theory presented here in two ways:
It defines the notion of invertibility at infinity (see Definition 5.1) and that of P-
convergence (see Definition 4.1). How do these properties change if one works with
the ideal SN(Y ) instead and what is the connection between the new notions of
‘invertibility at infinity’ and ‘limit operator’?

2. A related but rather different question is the following: To what extent
is a version of the limit operator theory possible with what we termed ‘weak limit
operators’ in our discussion of the papers [59, 60] on page 8? To be precise, to what
extent is a version of the limit operator theory possible replacing P-convergence ( P→)
in Definition 5.10 of a limit operator by the weaker s→ convergence of operators
introduced in (4.6) in Chapter 4? This question is of interest because weakening
the concept of a limit operator widens the class of operators that are rich, and
so potentially widens the applicability of the results in this text. Indications that
versions of at least some of our results of Chapter 6 may hold in this context are:
the results of Muhamadiev [59, 60] that we discuss on page 8; and that it is the
weaker s→ convergence rather than P→ which is required in the theorems in Section
5.4.

3. Is S(Y ) inverse closed in L(Y )? We just mentioned that S(Y ) is a “one-
sided version” of L(Y,P) and we know from [74, Theorem 1.1.9] that L(Y,P) is
inverse closed. Looking back to problem 1, it seems a sensible question to ask
whether also S(Y ) is inverse closed. In Section 3.2 we were able to prove that if
A is invertible in S(Y ) and B = A + K ∈ S(Y ) is a Montel perturbation that is
invertible in L(Y ) then B−1 ∈ S(Y ). This fact implies inverse closedness of S(Y )
in cases where Y = Ŷ and Pn ∈ K(Y ) for all n.

4. Is the condition of existence of a predual U/ and preadjoint A/ redundant
in Theorem 6.17? ...and hence in Theorems 6.28 and 6.44 and Corollaries 6.32,
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6.43, 6.45 and 6.48? Recall that we use the existence of predual and preadjoint to
conclude Fredholmness of A0 = A|Y0 from that of A on Y ∞, including preservation
of the index.

5. Is the hyperplane condition redundant in Theorem 6.44? This possibility
has been discussed in the final section of [52]. The answer is positive if the following
conjecture holds: ϕ(Y p(U)) = ϕ(U), where ϕ(X) denotes the smallest positive
integer κ for which a Fredholm operator of index κ exists on the Banach space X
(with ϕ(X) = 0 if all Fredholm operators on X have index zero).

6. Is there a version of Theorem 6.31 in arbitrary dimensions N ≥ 1? As we
sketched briefly in the intro to Theorem 6.31, the proof [17] of this result consists
of three steps. In two of these steps we use the fact that N = 1 and it is not clear to
us whether and how this condition could be removed. However, we are optimistic
that the result also holds for N ≥ 1.

7. What does Theorem 5.20 have to say about the stability of classical approxi-
mation methods for operator equations (e.g. finite section and discretisation meth-
ods)? We have not tackled this topic in this text, but some results in this direction
are in [13, 20, 56, 18] (and see [5, 80, 66, 36, 72, 73, 37, 48, 74, 54, 51, 16, 79]).

And finally the classic:

8. Is the uniform boundedness condition in Theorem 6.28 (iii) also redundant
for p ∈ (1,∞)? This question is as old as the first versions of Theorem 6.28 (iii).
For p ∈ {0, 1,∞} the redundancy was shown in [49, 51] and in this text. For the
remaining cases p ∈ (1,∞) the question remains open. See [49, Section 3.3] and
[51, Section 3.9] for a little survey on this question and some humble attempts to
tackle it.
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