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Abstract: A supramolecular polymer blend, formed via π-π interactions between a π-electron rich pyrenyl endcapped 
oligomer and a chain-folding oligomer containing pairs of π-electron poor naphthalene-diimide (NDI) units, has been 
reinforced with cellulose nanocrystals (CNCs) to afford a healable nanocomposite material. Nanocomposites with varying 
weight percentage of CNCs (from 1.25 to 20.0 wt.%) within the healable supramolecular polymeric matrix have been 
prepared via solvent casting followed by compression molding, and their mechanical properties and healing behavior have 
been evaluated. It is found that homogeneously dispersed films can be formed with CNCs at less than 10 wt.%. Above 10 
wt.% CNC heterogeneous nanocomposites were obtained. All the nanocomposites formed could be re-healed upon 
exposure to elevated temperatures although, for the homogeneous films, it was found that the healing rate was reduced with 
increasing CNC content. The best combination of healing efficiency and mechanical properties was obtained with the 7.5 
wt.% CNC nanocomposite which exhibited a tensile modulus enhanced by as much as a factor of 20 over the matrix 
material alone and could be fully re-healed at 85 °C within 30 minutes. Thus it is demonstrated that supramolecular 
nanocomposites can afford greatly enhanced mechanical properties relative to the unreinforced polymer, while still allowing 
efficient thermal healing. 

Introduction 

Polymers with the capability to undergo healing have enjoyed significant attention in recent 

years,1,2,3,4,5,6 due to the potential advantages they offer including greatly extended application 

lifetimes and reduced maintenance.7 A variety of approaches have emerged over the last decade 

to access healable materials and they can be broadly classified as either autonomous self-healing 

systems, which include methods using encapsulated monomers that are released and polymerized 
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upon material damage,8,9 or stimuli-responsive re-healable systems, such as thermally-reversible 

covalent bond-forming moieties engineered into the polymer backbone.10  Of primary interest 

here are materials that utilize reversible, non-covalent interactions to elicit a healing response. 

Generally, in such supramolecular systems low molecular weight molecules self-assemble into 

polymeric aggregates through specific non-covalent bonds. Two properties of supramolecular 

polymers (and also of dynamic covalent systems)11,12,13,14,15,16 that lend themselves to rapid and 

controllable healing are the stimuli-responsiveness of the reversible (dynamic) bond17 and the 

high diffusion constants of oligomeric species.18 Given the variety of reversible interactions that 

can be used in the design of a supramolecular healable material, many elegant and creative 

solutions have been explored including materials that respond to external stimuli such as 

heat,19,20 pressure,19,21,22 water23 or light.24  

However, a leading drawback with the current generation of healable supramolecular 

materials is their generally low mechanical strength. In previous studies, we have explored 

dynamic motifs that utilize supramolecular π-π-stacking interactions in a number of different re-

healable materials.25,26,27 In particular, we have utilized the interaction between an oligomer 

terminated at both ends by π-electron rich pyrenyl moieties and a second, chain-folding oligomer 

having a series of “tweezer” moieties based on pairs of π-electron poor naphthalene-diimide 

(NDI) units separated by a simple triethyleneoxy residue.28 In these studies, we have shown that 

at equimolar ratios of the two binding motifs, blends of polydiimide (1) and the pyrene end-

capped polyamide (2) form stable, compatible, freestanding films with the ability to undergo 

rapid and complete healing when annealed above 50 °C.25b Initial tensile testing of 1·2 revealed 

an extensible material with failure typically occurring at around 75% strain. However, this 

ductility is accompanied by a relatively low tensile modulus (< 10 MPa).  
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In subsequent studies we have found that increasing the strength of the supramolecular 

binding motif (primarily by increasing the number of π-π interactions) results in enhanced 

mechanical properties.26 However, in such systems, improved mechanical behavior comes at the 

expense of increased time and temperature required to achieve 100% recovery in tensile strength 

on healing. An alternative approach that is commonly used to enhance the mechanical properties 

of a polymer is to use a reinforcing (nano)filler.29,30,31 However, to date, data reporting the use of 

nanofillers to mechanically reinforce a healable supramolecular polymer has not been described 

in the literature. In the present study we have investigated nanocomposites of a healable, 

supramolecular polymer matrix and examined the effect that the nanofiller has on both the 

mechanical strength and the healing properties of this system.  

Nanocomposites utilizing cellulose nanocrystals (CNCs or cellulose whiskers) are another 

burgeoning area of research.32 CNCs are attractive as reinforcing fillers because of their high 

tensile stiffness (up to ca. 140 GPa), relative abundance in nature, and low density.33 They can be 

obtained from a range of biosources (e.g. cotton, wood, wheat straw or sea creatures known as 

tunicates) and can vary in aspect ratio (ca. 10 to 100) depending on the biosource.34 A wide range 

of polymer matrices have been shown to be reinforced by CNCs from soft matrices such as 

ethylene oxide-co-epichlorohydrin35 and low density polyethylene36 to hard epoxy resins.37 All 

these systems exhibited greatly improved stiffness values over the corresponding matrix 

materials, which has been related, in part, to the strong interactions (i.e. hydrogen bonding) 

exhibited between the fibers. Herein we detail the production, mechanical properties, and healing 

behavior of a series of nanocomposites comprised of the healable polymer blend 1·2 (1:3 w/w 

ratio) reinforced with varying weight percentages of CNC nanofiller. It is expected that there will 
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also be significant matrix-fiber interactions given the presence of a number of hydrogen bond 

accepting moieties in the matrix polymer blend. 

 

 

Figure 1.  Molecular structure of healing polymer blend 1·2 (1:3 w/w ratio).23 

Experimental 

Materials. All solvents and reagents were purchased from Aldrich Chemical Co. and used 

without further purification. The healable polymer blend 1·2 (1:3 w/w ratio) was prepared 

according to literature procedures.25 

Instruments and Procedures. CNCs were isolated from the cellulose mantles of sea 

tunicates after hydrolysis with sulfuric acid, using established techniques.38,39 Two stock 

suspensions of CNCs (2.0 mg/mL) and 1·2 (1:3 weight ratio, 50 mg/mL) were prepared by 

adding N,N-dimethylformamide (DMF) to the solid and then sonicating until stable suspensions 

were achieved (ca. 2 hrs). Nanocomposite samples were produced by mixing appropriate ratios 

of the two stock suspensions and then sonicating for a further ca. 30 min before casting into 

PTFE dishes. The DMF was fully removed by placing samples in a vacuum oven under reduced 

pressure (75 torr) at room temperature for 24 hours. Pressure was further reduced to 20 torr and 

the co-suspensions were then heated to 40 °C for 120 hours. Thermogravimetric analysis (TGA) 
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of the resulting films confirmed that all the DMF had been removed. After casting, films were 

compression molded between two PTFE sheets in a Carver Model C laboratory press at 85 °C 

under 200 kPa of pressure, with PTFE spacers of 150 µm around all samples to ensure uniform 

thickness. 

Uniaxial tensile deformation and healing studies were performed at room temperature on a 

Zwick-Roell Z0.5 TM Materials Testing Machine with 500 kN load cell and polyurethane 

sample grips (ca. sample geometry [length × width × thickness]: 30.0 × 3.3 × 0.150 mm). 

Samples were submitted to stress-controlled testing at 100 mN/s with 0.05 N preload force. 

Tensile moduli were calculated from the slopes of the linear region between 0.5 and 1.0 % strain. 

Reprocessing/Healing Procedures. Nanocomposite films were evaluated for their healing 

ability via two different reprocessing/healing procedures monitored by tensile testing 

experiments and a third rheological evaluation.  

In the first set of experiments the films were cleanly broken during initial tensile testing and 

were mended by overlapping the broken edges by ca. 5 mm and compression molding at 200 kPa 

between PTFE sheets at 85 °C for 5 minutes with 150 µm PTFE spacers around the samples. 

Since these conditions also represent the original processing conditions (i.e. relatively long time 

and high pressure), samples mended in this way are referred to as “reprocessed”. The 

reprocessed films (3 trials per formulation) were then subjected to the same tensile testing 

conditions described previously. 

A second set of experiments was conducted on a series of freshly processed nanocomposites 

that were designed to see if the materials could be thermally healed. The process here is a slight 

variation of the procedure used previously to examine the healing ability of the neat film 1·2.25b 

Except for controls, samples were bisected with a razor blade cross-wise and arranged with a 5 



 

 

6 

mm overlap on a PTFE sheet. Samples (including intact control samples) were then heated for 2, 

5, 10 or 20 minutes in an oven at 85 °C. After removal from the oven, each sample was quickly 

cooled on a water-chilled aluminum heat sink and subjected to tensile testing. Three samples of 

each nanocomposite at each time period (12 rehealed samples total plus three controls) were 

prepared and tested. 

For the rheological study, nanocomposite films were punch-pressed into 8 mm disks. All 

rheological measurements were conducted with a strain control rheometer ARES-G2 (TA 

Instruments) using 8 mm parallel plates. In order to ensure good contact between samples and 

plates, all samples were heated to 100 °C at either 1N (for 1·2 and the 1.25wt.% nanocomposite), 

3N (for the 2.5, 10 and 20 wt.% nanocomposites) or 5 N (for the 7.5 wt.% nanocomposite) of 

force for 5 minutes prior to testing. 

Scanning Electron Microscopy (SEM) studies: Fractured samples were heated 

progressively from room temperature to 200 °C in the SEM, at a heating rate of 5 °C min-1, on 

the variable temperature (VT)-stage of an FEI Quanta FEG 600 Environmental Scanning 

Electron Microscope, with images recorded at 20 °C intervals. 

Results and Discussion 

For this study, we chose to utilize CNCs isolated from the sessile sea creatures known as 

tunicates (styela clava). CNCs from this biosource have high stiffness values (tensile modulus of 

ca. 140 GPa33), and one of the highest aspect ratios of the naturally available CNCs (length (l)/ 

diameter (d) ≈ 80).40 At this aspect ratio, nanocomposite percolation theory41 predicts that a 

sample-spanning network of CNCs can be achieved at a concentration of less than 1% v/v. The 

CNCs were obtained using previously published procedures,38,39 via sulfuric acid hydrolysis of 

the tunicate mantles, and as a consequence the CNC surface is decorated with negatively charged 
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sulfate groups. Transmission Electron Microcopy (TEM) (See Supporting Information, Figure 

S1) confirms that these isolated CNCs have dimensions (ca. 25 nm × 2.1 µm) similar to those 

obtained from tunicate mantles previously reported.35 Conductometric titrations of the CNCs 

used in this study revealed their average surface charge to be 130 mmol/kg (see Supporting 

Information, Figure S2). 

It is important to produce nanocomposites with a homogeneous dispersion of CNCs within 

the polymer matrix (1·2) in order to achieve the greatest enhancement in mechanical properties 

across the whole film. The best way to achieve this would be to use a common solvent for both 

the CNCs and the matrix polymer that is subsequently removed to produce a homogenous 

blend.42 However, 1·2 is only soluble in a limited range of solvents (e.g. trichloroethanol, or 

solvent mixtures containing hexafluoroisopropanol).25 Unfortunately CNCs do not disperse well 

in such solvent systems.  It has previously been shown that CNCs are easily dispersed in dipolar 

aprotic solvents such as DMF upon sonication.35,43 While 1·2 does not dissolve in DMF it does 

form finely-dispersed suspensions suitable for solvent casting of the CNC/1·2 mixtures (Figure 

2). After removal of the DMF (vacuum oven over 6 days, see Supporting Information, Figure S3) 

the films were compression molded at 85 °C and 200 kPa for ca. 5 minutes to obtain a uniform 

thickness (ca. 150 µm) across the range of samples tested. It was noticeable that heat treatment 

of the solvent-cast films resulted in a change in their mechanical properties (see Supporting 

Information, Figure S4). This is not a matter of concern since the films are subjected to thermal 

treatment during the healing process, and is necessary to erase the effects of solvent casting to 

establish a uniform thermal history for the series of nanocomposites. Applying this procedure, 

films containing 1.25, 2.50, 5.00, 7.50, 10.0, and 20.0 wt% CNC in 1·2 were prepared. However, 

it should be noted that while we could obtain free-standing, stiff nanocomposite films containing 
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20 wt% of CNCs (tensile modulus, E = 460 MPa) via solvent casting, compression molding of 

these materials using the conditions described above led to macroscopic phase segregation and a 

dramatic decrease in the mechanical stability of the films (see Supporting Information, Figure 

S5). Thus the 20 wt.% samples were not investigated further in the tensile testing studies.  

 

Figure 2. Processing of the nanocomposites begins with (a) mixing and sonication of DMF 

suspensions of CNC and 1·2 followed by (b) film casting under vacuum and (c) compression 

molding to yield six nanocomposites (d) containing CNCs at 1.25, 2.5, 5.0, 7.5, 10.0, and 20.0 

wt.%. Images of 2.50 wt.% film (e) after solution casting (left, ca. 250 µm thick) and after 

compression molding (right, ca. 150 µm thick). 

Tensile data and reprocessing of the nanocomposites. A series of stress-strain experiments 

was carried out to examine the degree of mechanical enhancement imparted by incorporation of 

the CNC filler into the healable matrix. Figure 3 and Table 1 show the typical stress-strain curves 

and resulting tensile moduli (Eo, original tensile moduli), respectively, for the matrix polymer 

and five of the nanocomposites produced via the compression molding process described above. 

Increasing the percentage of CNC filler within the matrix results in dramatic increase in the 
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value of E (from ca. 8 MPa for the neat matrix to ca. 260 MPa for the 10 wt.% CNC 

nanocomposite) along with a significant decrease in extension to break values. 

 

Figure 3. Stress-strain curves across the range of nanocomposites. 

 
Table 1. Tensile Moduli of Original (EO) and Reprocessed (ER) Films and Nanocomposites 

 
Sample EO (MPa) ER (MPa) 

1·2  8.0 ± 3.2 8.2 ± 3.6 

1·2 + 1.25 wt.% CNC 15.4 ± 2.2 13.0 ± 2.1 

1·2 + 2.50 wt.% CNC 32.7 ± 6.2 29.8 ± 11.9 

1·2 + 5.00 wt.% CNC 78.6 ± 22.8 64.6 ± 25.2 

1·2 + 7.50 wt.% CNC 149 ± 33 169 ± 39 

1·2 + 10.0 wt.% CNC 261 ± 162 341 ± 184 

 

The data are consistent with the mechanical reinforcement in these nanocomposites resulting 

from the formation of a rigid, percolating network of CNCs within the matrix. To examine this 

more quantitatively, we compared the data in Table 1 with values based on a Percolation 

model,44,45,46 to see if the degree of mechanical property enhancement matches that predicted for 

a homogeneously dispersed nanocomposite. By incorporating the measured tensile modulus of 

the matrix material (8 MPa), the known modulus (ca. 5 GPa35) of a sheet of the tunicate CNCs, 
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the aspect ratio of a single CNC of ca. 80, and the known volume fraction of CNC in the 

nanocomposite, the mechanical properties of the nanocomposites can be predicted. Figure 4 

shows the results of this calculation (blue line) along with tensile moduli of the nanocomposites 

(blue diamonds). Gratifyingly, the measured Eo values of the nanocomposite match very well 

(within error) with those predicted by the percolation model. This suggests the nanocomposites 

have material properties consistent with a uniform dispersion of CNCs within the healable 

polymer that effectively transfer stress across the films through filler-filler interactions.  

It is worth noting, however, that the 10 wt.% nanocomposite has a tensile modulus with an 

error much larger than the other nanocomposites. During the compression molding process, the 

matrix used in these nanocomposites is known to undergo a dramatic decrease in viscosity,25 

which presumably allows some rearrangement and partial phase separation of the filler within 

the high volume fraction CNC nanocomposites. An uneven dispersion of CNCs within the 

nanocomposite will naturally result in variability of mechanical properties across the film. This 

hypothesis is further supported by the macroscopic phase separation visible in the 20 wt.% 

nanocomposite after it has been subjected to the compression molding procedure. This suggests 

that there are limitations to the amount of nanofiller that can be homogeneously incorporated into 

the 1·2 matrix using the processing technique outlined in Figure 2.  

Having demonstrated that the mechanical properties of the healable supramolecular polymer 

are greatly enhanced upon incorporation of CNCs, the next step was to investigate whether 

broken nanocomposite films can recover their mechanical properties after appropriate thermal 

treatment. We have shown previously that the matrix (1·2) can heal quickly (within seconds) at 

80 °C.25 Thus our initial “healing” procedure for the nanocomposites involved simply taking 

films which were broken during tensile testing and reprocessing them by compression molding at 
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200 kPa at 85 °C for 5 minutes. Stress-strain experiments on the reprocessed films showed that 

(within experimental error) the films fully recovered (ER) their original tensile moduli (Table 1 

and Figure 4, red squares).  

 

Figure 4. Tensile moduli (E) of undamaged and reprocessed nanocomposite films, along 

with reinforcement predictions calculated according to the Percolation model.44 

Tensile healing study. While the above data show that we can restore the original mechanical 

properties of the nanocomposites via reprocessing, using such a procedure for in situ healing 

would not be very practical. Thus, to further probe the healing process of the nanocomposites, a 

second set of experiments was performed which closely followed the healing procedure that we 

previously reported for the matrix materials 1·2.25b For each nanocomposite formulation, a 

number of tensile samples were bisected cross-wise with a razor blade and arranged with ca. 5 

mm of overlap on a PTFE sheet (Figure 5). These samples were then heated in an oven at 85 °C 

for time periods between 2 and 20 minutes. After cooling, the samples were subjected to tensile 

testing and compared with undamaged control specimens. It is interesting to note that the large 

majority of the completely healed films broke outside of the overlap region during the tensile 

tests. However, it should be pointed out that the thickness of the film in the overlap region will 
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be approximately double that of the rest of the film. Furthermore, the dimensions used to 

calculate the tensile modulus are that of the films non-overlapped region and as such the 

modulus values obtained with this experiment should not be consider as standard tensile moduli. 

None-the-less as all the films were overlapped to the same extent comparisons of the rate of 

healing between the different nanocomposites can be made.  Figure 5 and Table 2 summarize the 

results of these experiments and give an estimate of the rate of healing of the nanocomposite 

series at 85 °C. While all films can be healed to give ≥ 90% of their original tensile modulus, 

marked differences in the healing rates are observed. As a general trend, the tensile data show 

that increasing the proportion of CNCs in the nanocomposite slows the rate of healing, with the 

7.50 wt.% sample requiring the longest time (ca. 20 minutes) to recover 90% of its original 

modulus. The only outlier in this data set is the 10.0 wt.% CNC sample which displays a faster 

recovery than the 7.50 wt.% film. This observation, however, is consistent with the previous data 

suggesting the onset of phase segregation at the higher (≥ 10 wt%) CNC loadings. Thus, in a 

phase segregated sample the areas containing lower amounts CNC will possess a lower viscosity 

and heal more quickly, resulting in a faster observed healing rate. 
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Figure 5. Samples were bisected then overlapped by 5 mm and placed on a PTFE sheet for 

various times in an oven before being cooled and tested. Percentage recovery of tensile modulus 

is shown as a function of healing time at 85 °C.  

 

Table 2. Tensile moduli, E (MPa), as a function of healing time for the pure film and the 
nanocomposites 

Sample 2 min 5 min 10 min 20 min 

1·2 8.03 ± 3.20* --- --- 8.64±3.64 

1·2 + 1.25 wt.% CNC 12.8 ± 2.0 14.6 ± 2.3 14.2 ± 2.3 14.7 ± 2.4 

1·2 + 2.50 wt.% CNC 20.8 ± 4.0 26.8 ± 5.1 29.4 ± 5.6 29.2 ± 5.5 

1·2 + 5.00 wt.% CNC 41.9 ± 8.8 52.1 ± 10.9 64.1 ± 13.5 64.3 ±13.5 

1·2 + 7.50 wt.% CNC 68.4 ± 17.8 93.4 ± 24.3 113 ± 29 137 ± 35 

1·2 + 10.0 wt.% CNC 150 ± 63 215 ± 90 241 ± 101 270 ± 113 

* Sample 1·2 recovered its full modulus after less than 1 minute at 85 °C. 

Rheological healing study. To achieve a more detailed understanding of the healing of these 

nanocomposites, we carried out rheological analyses at 65 °C on all of the samples (including the 

20.0 wt.% CNC nanocomposite). First, the initial moduli of the nanocomposite films were 

probed at a frequency of 0.1 rad/s and 0.1% of strain. Small frequency and strain values were 

utilized in order to minimize the deformation and frequency effect on the storage modulus, G′. 

The results of these experiments are shown in Figure 6, where the initial storage modulus values 
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(blue diamonds) are plotted against CNC weight fraction. As expected from tensile studies, the 

moduli of the nanocomposites increased with CNC loading up to 7.50 wt.%. The nanocomposite 

with 7.50 wt% CNC showed an order of magnitude higher value of G' (at 65 °C) when compared 

to 1.25 wt% CNC nanocomposite films. However, a decrease in the mechanical properties of the 

films was observed at the higher CNC loading of 10 and 20 wt%, again consistent with phase 

separation occurring in these films at 65 °C. 

After these initial studies the nanocomposite films were deformed via a strain sweep, 

applying strains from 1% to 100% at 10 rad/s (for the 5.0, 7.5, 10.0 and 20 wt.%) or 100 rad/s 

(for the 1.25 and 2.5 wt.%). This deformation process resulted in modulus reduction of 2 to 4 

orders of magnitude - consistent with sample breakage. At such large strains, stress-strain 

responses were in the non-linear visco-elastic regimes. After the strain sweep, the re-healing 

ability of the nanocomposites was monitored by a time sweep experiment using a frequency of 

0.1 rad/s and a strain of 0.1% in order to minimize the effect of shear on the self-healing process. 

The time sweep experiment was stopped when the G′ value reached a plateau. 

 

Figure 6. Shear storage modulus versus weight fraction of CNC at 65 °C as determined by 

rheological analysis. 
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As shown in Figure 6 (red squares) the final, healed, modulus values match very well with 

the original mechanical properties of all the nanocomposite films at 65 °C. However, the rate of 

healing of the samples varied considerably as a function of CNC content, which is to be expected 

given that that higher storage modulus values are also indicative of a higher viscosity of the 

nanocomposites. While 1.25 wt.% and 2.50 wt.% CNC nanocomposites healed within a minute 

at 65 °C, the 5.00 wt.% CNC sample took about 20 minutes for complete re-healing to occur. 

Consistent with the tensile healing data, re-healing of the 7.50 wt.% CNC nanocomposite (shown 

in Figure 7) required the longest time span (80 minutes) for full recovery. The measured 

rheological healing time at 65 °C was about 4 times longer than the time required for healing at 

85 °C in tensile studies, highlighting the thermo-responsive nature of this nanocomposite system. 

The long time required for re-healing of 7.50 wt.% CNC nanocomposite may originate from the 

slow polymer dynamics resulting from a high nanocomposite viscosity. Consistent with 

macroscopic phase segregation of the nanofiller, as postulated from the tensile healing results, a 

decrease in both the modulus and re-healing time was observed at CNC loadings greater than 

7.50 wt%. The 10.0 wt.% and 20.0 wt.% CNC samples required about 60 minutes and 1 minute 

respectively for complete re-healing to occur. Overall, the nanocomposite films recovered their 

initial storage modulus after the healing process and reconstructed the linear stress-strain 

response (see Supporting Information, Figure S6). 
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Figure 7. Modulus recovery, as measured by rheometry (ω=0.1 rad/s, γ=0.1 %) at 65°C of a 

broken sample of 7.50 wt% nanocomposite. The initial modulus (red line) was measured at 65°C 

at low strain (γ=0.1%). The sample was then broken using a high frequency strain sweep (ω=10 

rad/s); recovery of the shear storage modulus was monitored at 65°C over a period of time. 

 

Electron microscopy.  Finally, we also examined the healing process by SEM. In these studies 

fractured samples were heated from room temperature to 200 °C, at 5 °C min-1, in an 

environmental scanning electron microscope. In these studies progressive healing with 

temperature was observed for nanocomposites with the lowest concentration of filler (1.25 wt.%; 

Figure 8, see also supporting information Figure S6). At higher CNC concentrations healing 

rates were too slow due to the dramatic increase in the nanocomposite viscosity for this 

technique to give useful results. None-the-less the SEM of the 1.25 wt.% nanocomposite are 

consistent with the matrix polymer depolymerizing, reducing its viscosity which in turn allows it 

to heal. 
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Figure 8. False-color SEMs images of the 1.25 wt.% CNC/1·2 composite at 29 and 170 °C. The 

sample was fractured and then heated to 200 °C, at 5 °C min-1, in an environmental scanning 

electron microscope (FEI Quanta FEG 600). Original micrographs are reproduced in the 

Supporting Information Figure S6. 

 

Conclusion 

We have demonstrated reinforcement of a relatively weak but thermally responsive polymer 

using rigid, biosourced cellulose nanocrystals (CNCs). Nanocomposites were obtained using 

solvent-based dispersion techniques followed by compression molding, and their mechanical and 

stimuli-response properties were measured as the concentration of reinforcing filler was varied. 

Increasing the amount of CNC filler dramatically increased the tensile modulus of the films at 

room temperature (over 30 fold for the 10 wt.% CNC nanocomposites). Phase separation does 

occur above a filler loading of 7.5 wt.%, and this has a negative impact on the performance of 

the composites, resulting in diminished high temperature properties. None-the-less the healable 

matrix 1·2 fully maintained its healability with incorporation of CNC nanofiller as shown 

conclusively by tensile and rheological measurements. It is important to note that the healing rate 

does depend on the amount of evenly dispersed CNC (the more CNC the slower the healing rate) 

and the degree of phase separation (the higher the degree of phase separation the faster the 
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healing rate). These phenomena can be related to the melt viscosity of the nanocomposite with 

more and evenly dispersed CNC resulting in higher melt viscosities slowing the ability of the 

material to fill in cracks and deformations.  
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