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We consider the approximation of solutions of the time-harmonic linear elastic wave equation
by linear combinations of plane waves. We prove algebraic orders of convergence both with
respect to the dimension of the approximating space and to the diameter of the domain. The
error is measured in Sobolev norms and the constants in the estimates explicitly depend on
the problem wavenumber. The obtained estimates can be used in the h- and p-convergence
analysis of wave-based finite element schemes.
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1. Introduction

In order to efficiently discretize the time-harmonic elastic wave equation (Navier
equation), some non-polynomial finite element methods with plane wave basis func-
tions have been designed; see for example the schemes described in [1–5]. A rigorous
convergence analysis of these methods requires the proof of a best-approximation
estimate: a bound on the minimal error infvN∈VN

‖u− vN‖ where u is a given so-
lution of the considered PDE, VN is the discrete trial space, and ‖·‖ is a suitable
norm.

For acoustic wave propagation, governed by the Helmholtz equation, approxima-
tion estimates have been proven in [6] using Vekua’s theory, harmonic polynomial
approximation results, and a careful residual estimate of Jacobi-Anger’s expan-
sion. Here we use the results of [6] to prove similar bounds for solutions of the
time-harmonic Navier equation.

Using a balanced choice of pressure and shear waves, we obtain algebraic or-
ders of convergence both in the diameter of the considered domain and in the
dimension of the approximating space; these parameters are relevant for the h-
and p-convergence of the corresponding finite element methods. The error is mea-
sured in weighted Sobolev norms on a bounded, star-shaped, Lipschitz domain.
The dependence of the constants on the wavenumbers of pressure and shear waves
is made explicit.

The proof follows the corresponding one for the Maxwell problem described in [7,
Sec. 4]. It is based on a potential representation of time-harmonic elastic solutions
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(see Section 2 below), in particular it relies on the approximation of the scalar and
vector potentials using Helmholtz- and Maxwell-type plane waves, respectively.

The final convergence estimate is not expected to be sharp: the displacement
is approximated by first-order derivatives of a (plane wave) approximation of the
potentials. Thus, its approximation error measured in Hj−1-norm is related to the
approximation of the potentials in Hj-norm, that is one algebraic order in h and p
less than what was proved in the acoustic case (compare the indices of the Sobolev
norms in equations (5) and (7)). Sharp bounds might be obtained by adapting
Vekua’s theory to the linear elasticity setting, but it has not been accomplished
yet (see the comments at the end of Section 3).

The purpose of this short paper is not to provide a recipe for finding a plane
wave approximation of the solution of a given a boundary value problem for the
elastic wave equation. Several sophisticated methods capable of this have already
been introduced in the literature, for example the Ultra Weak Variational Formu-
lation (UWVF, see [1, 3]), the Discontinuous Enrichment Method (DEM, see [4, 5])
and the Variational Theory of Complex Rays (VTCR, see [2] and subsequent pa-
pers). As demonstrated by extensive numerical experiment in the cited articles,
they perform very well compared to standard polynomial finite element schemes.
More generally, wave-based methods constitute one of the most promising recent
developments in the area of numerical algorithms for time-harmonic wave problems
at medium frequencies. In particular, their main strength is that the use of oscilla-
tory basis functions permits great accuracy with few degrees of freedom. However,
to the author’s knowledge, for no one of these schemes a complete convergence
analysis is available in the case of elasticity problems. By looking at the similar
analysis for the Helmholtz and Maxwell equations (for the UWVF, see [8, 9] and [7],
respectively), it is clear that one of the most important and technical steps is the
proof of best approximation estimates. This paper aims at filling this gap: the error
bounds proved in Theorem 3.2 can be directly used in the h- and p-convergence
analysis of any of the methods mentioned above.

2. Potential representation

In this section we define Navier’s equation and we briefly study a well-known
special Helmholtz decomposition of the displacement field, sometimes called Lamé’s
solution. For a more comprehensive treatment of potential representations in (time-
dependent) elasticity problems we refer to Sections 1 and 2 of [10]. A different
representation through a single vector potential that is solution of the iterated
Helmholtz equation can be found in [11].

Time-harmonic elastic wave propagation in a homogeneous medium and in ab-
sence of body forces is described in frequency domain by Navier’s equation (cf. [12,
Sec. 5.1.1]):

(λ + 2µ)∇ divu− µ curl curlu+ ω2ρu = 0 in D , (1)

supplemented by appropriate boundary conditions (see for example [1, eq. (2.4)]);
here

D ⊂ R3 is an open domain,

u : D → R3 is the displacement vector field,

ω > 0 is the angular frequency,
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λ, µ > 0 are the Lamé constants, and

ρ > 0 is the density of the medium.

We assume λ, µ, ρ and ω to be constant in D, and define the wavenumber of
pressure (longitudinal) and shear (transverse) waves, respectively, as:

ωP := ω

(
ρ

λ + 2µ

) 1

2

, ωS := ω

(
ρ

µ

) 1

2

.

Remark 1 : Thanks to the identity ∇ div = ∆ + curl curl, ∆ being the vector
Laplacian, equation (1) can be written as

(λ + µ)∇ divu+ µ∆u+ ω2ρu = 0 in D .

We denote by Dv the Jacobian of the vector field v, by DSv = 1
2(Dv +D⊤v)

the symmetric gradient (or Cauchy’s strain tensor), by div the (row-wise) vector
divergence of matrix fields, and by Id the 3× 3 identity matrix. Using the identity
2divDS = ∇ div +∆ = 2∇ div− curl curl, equation (1) can be written in the form

divσ + ω2ρu = 0 ,

where σ = 2µDSu+ λ(divu) Id is the Cauchy stress tensor.

In this section we assume u to be a solution of (1) in the sense of distributions;
we define the scalar and vector potential, respectively, as

χ := −λ + 2µ

ω2ρ
divu = −divu

ω2
P

, ψ :=
µ

ω2ρ
curlu =

curlu

ω2
S

. (2)

From (1), we can use these potentials to represent u:

u = −λ + 2µ

ω2ρ
∇ divu+

µ

ω2ρ
curl curlu = ∇χ + curlψ , (3)

which is a Helmholtz decomposition of the displacement field. Moreover, the scalar
and the vector potentials satisfy Helmholtz’s and Maxwell’s equations, respectively:

−∆χ − ω2
P χ

(2),∆=div∇
= div∇divu

ω2
P

+ divu

(1)
=

1

ω2
P

div
( µ

λ + 2µ
curl curlu− ω2

Pu
)

+ divu
div curl=0

= 0 ,

curl curlψ − ω2
Sψ

(2)
= curl curl

curlu

ω2
S

− curlu

(1)
=

1

ω2
S

curl
(λ + 2µ

µ
∇ divu+ ω2

Su
)
− curlu

curl∇=0
= 0 .

(4)

As a consequence, the vector potential ψ satisfies also divψ = 0 and the vector
Helmholtz equation −∆ψ − ω2

Sψ = 0.

Remark 2 : The potentials χ and ψ defined in (2) are the only couple of scalar
and vector fields such that: (i) they are solution of Helmholtz’s equation with
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wavenumber ωP and Maxwell’s equations with wavenumber ωS, respectively; (ii)

they constitute a Helmholtz decomposition (3) of u. Indeed, if χ̃ and ψ̃ satisfy
conditions (i) and (ii), then

χ̃ = −ω−2
P ∆χ̃ = −ω−2

P div∇χ̃ = −ω−2
P div(u− curl ψ̃) = −ω−2

P divu = χ ,

ψ̃ = ω−2
S curl curl ψ̃ = ω−2

S curl(u−∇χ̃) = ω−2
S curlu = ψ .

3. Approximation by plane waves

From now on, we assume for the domain D:

(D1) D ⊂ R3 is open, Lipschitz and bounded,
(D2) there exists ρ ∈ (0, 1/2] such that the ball with centre in a point x0 and radius

ρh is included in D, where h is the diameter of D,
(D3) there exists ρ0 ∈ (0, ρ] such that D is star-shaped with respect to the ball with

centre in the same point x0 and radius ρ0h.

For instance, every convex polyhedron satisfies these assumptions; this is not a
severe restriction since D is meant to be an element of a finite element mesh.

Given j ∈ N and ω̃ ∈ R, ω̃ > 0, we define the ω̃-weighted Sobolev norm

‖v‖2
j,ω̃,D :=

j∑

j0=0

ω̃2(j−j0) |v|2j0,D ∀ v ∈ Hj(D) ,

where |·|j0,D is the usual Sobolev seminorm in Hj0(D). We use the same notation

for the analogous norm of vector fields in Hj(D)3. We denote the unit sphere inR3 by S2 = {x ∈ R3, |x| = 1}.
We report in the following Lemma the result of Lemma 3.4.6 and Corollary 3.5.5

of [9] concerning the approximation of solutions of Helmholtz equation by linear
combinations of plane waves. The same result with a slightly worse dependence of
the bounding constant on the wavenumber was proved in Lemma 4.5 and Corol-
lary 5.5 of [6].

Lemma 3.1: Let D be a domain satisfying (D1)–(D3), fix

0 < ω̃ ∈ R , k ∈ N , q ∈ N such that q ≥ 2k + 1 , q ≥ 2(1 + 21/λD ) ,

where λD is a positive parameter which depends only on the shape of D, as defined
in [9, Th. 3.2.12].

Then, there exists a set {dℓ}1≤ℓ≤p ⊂ S2 of p = (q + 1)2 different plane wave
propagation directions such that, for every v ∈ Hk+1(D) that is solution of the
homogeneous Helmholtz equation

−∆v − ω̃2v = 0 in D ,

there exist some coefficients α1, . . . , αp ∈ C such that the following bound holds for
every 0 ≤ j ≤ k + 1:

∥∥∥∥∥v −
p∑

ℓ=1

αℓe
iω̃x·dℓ

∥∥∥∥∥
j,ω̃,D

≤ C
(
1 + (ω̃h)j+6

)
e( 7

4
− 3

4
ρ)ω̃h hk+1−j
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·
[
q−λD(k+1−j) +

1 + (ω̃h)q−k+2

(
√

2 ρ q)
q−3

2

M

]
‖v‖k+1,ω̃,D .

(5)

Here, the constant C > 0 depends only on j, k and on the shape of D, and the
constant M satisfies M ≤ 2

√
π p.

The bound on the constant M is given by an “optimal” choice of the directions
which is not explicitly available. A good choice is provided by the system of direc-
tions introduced in [13] and available on the website [14]. In this case, the bound
on M is only slightly weaker, namely, M ≤ 4

√
π pq (cf. [6, Rem. 4.6]).

Our policy is to apply Lemma 3.1 to the potentials χ and ψ. Thus we use two
kinds of plane wave functions to approximate the solutions of Navier’s equation (1):
pressure (longitudinal) waves

wP
d : x 7→ d eiωPx·d d ∈ S2 ,

and shear (transverse) waves

wS
d,A : x 7→ A eiωSx·d d,A ∈ S2, A · d = 0 .

Given d ∈ S2, there exist two linearly independent shear waves propagating along
d (wS

d,A and wS
d,d×A) and only one pressure wave (wP

d ). They satisfy the relations

divwP
d = iωP eiωPx·d , divwS

d,A = 0 , (6)

curlwP
d = 0 , curlwS

d,A = iωSd×A eiωSx·d = iωSw
S
d,d×A ,

∇ divwP
d = −ω2

Pw
P
d , curl curlwS

d,A = −ω2
Sw

S
d,A ,

iωP w
P
d = ∇

(
eiωPx·d

)
.

It is intuitive to guess that the two components of u, namely, ∇χ and curlψ, can
be approximated separately by pressure and shear waves, respectively. This is the
basic idea we will exploit in the proof of Theorem 3.2.

Given p ∈ N distinct unit propagation directions {dℓ}1≤ℓ≤p ⊂ S2, we associate p
unit amplitude vectors {Aℓ}1≤ℓ≤p ⊂ S2 such that dℓ · Aℓ = 0 for 1 ≤ ℓ ≤ p. We
use them to define the linear space

V3p =

{ p∑

ℓ=1

αP
ℓ dℓ eiωPx·dℓ + αS,1

ℓ Aℓ eiωSx·dℓ + αS,2
ℓ (dℓ ×Aℓ) eiωSx·dℓ ,

αP
ℓ , αS,1

ℓ , αS,2
ℓ ∈ C}

= span
{
wP
dℓ

, wS
dℓ,Aℓ

, wS
dℓ,dℓ×Aℓ

}

ℓ=1,...,p
.

Notice that V3p depends on the choice of dℓ’s but not on Aℓ’s, and that dim(V3p) =
3p.

Now we can state our main result.

Theorem 3.2 : Let D ⊂ R3 be a domain satisfying (D1)–(D3), k and q ∈ N,
q ≥ 2k + 1, q ≥ 2(1 + 21/λD ), where λD is the positive parameter that depends only



March 2, 2012 14:42 Applicable Analysis ElasticApproxApplAn-rev2

6 Andrea Moiola

on the shape of D defined in [9, Th. 3.2.12]. Then, there exists a set of p = (q+1)2

propagation directions {dℓ}1≤ℓ≤p ⊂ S2, such that, for every solution u of Navier’s
equation (1) that belongs to

Hk+1(div;D) ∩ Hk+1(curl;D)

=
{
v ∈ Hk+1(D)3 : div v ∈ Hk+1(D), curlv ∈ Hk+1(D)3

}
,

there exists ξ ∈ V3p, namely, a linear combination of p pressure and 2p shear plane
waves, such that, for 1 ≤ j ≤ k + 1,

‖u− ξ‖j−1,ωS,D ≤ C
(
1 + (ωSh)j+6

)
e( 7

4
− 3

4
ρ)ωSh hk+1−j

·
[
q−λD(k+1−j) +

1 + (ωSh)q−k+2

(
√

2 ρ q)
q−3

2

M

]

·
(
ω−2

P ‖divu‖k+1,ωP ,D + ω−2
S ‖curlu‖k+1,ωS,D

)
.

(7)

Here, the constant C > 0 depends only on j, k and on the shape of D, the constant
M is bounded by 2

√
π p.

Proof : This proof follows the lines of the one of Theorem 5.4 in [7].
We fix the directions {dℓ}1≤ℓ≤p to be the ones provided by Lemma 3.1, and

separately approximate the two potentials χ and ψ.
In (4) we have seen that the scalar potential χ is solution of the Helmholtz

equation with wavenumber ωP ; Lemma 3.1 provides a combination of scalar plane
waves ξχ =

∑p
ℓ=1 αχ

ℓ eiωPx·dℓ such that, for 0 ≤ j ≤ k + 1,

|χ − ξχ|j,D ≤ C
(
1 + (ωP h)j+6

)
e( 7

4
− 3

4
ρ)ωP hhk+1−j (8)

·
[
q−λD(k+1−j) +

1 + (ωP h)q−k+2

(
√

2 ρ q)
q−3

2

M

]
‖χ‖k+1,ωP ,D .

The three Cartesian components of the vector potential ψ are solutions of the
Helmholtz equation with wavenumber ωS. For every ℓ ∈ {1, . . . , p}, the three vec-
tors dℓ, Aℓ and dℓ ×Aℓ constitute an orthonormal basis of R3. Thus, according to
Lemma 3.1, ψ can be approximated by a linear combination of 3p vector Helmholtz
plane waves

ξψ =

p∑

l=1

αψ,1
ℓ dℓe

iωSx·dℓ + αψ,2
ℓ Aℓe

iωSx·dℓ + αψ,3
ℓ dℓ ×Aℓe

iωSx·dℓ

with the error bound, for 0 ≤ j ≤ k + 1,

∣∣ψ − ξψ
∣∣
j,D

≤ C
(
1 + (ωSh)j+6

)
e( 7

4
− 3

4
ρ)ωSh hk+1−j (9)

·
[
q−λD(k+1−j) +

1 + (ωSh)q−k+2

(
√

2 ρ q)
q−3

2

M

]
‖ψ‖k+1,ωS,D .

Now we define

ξ = ∇ξχ + curl ξψ
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(6)
= i

p∑

l=1

(
ωPdℓα

χ
ℓ eiωPx·dℓ + ωSαψ,2

ℓ dℓ ×Aℓe
iωSx·dℓ − ωSαψ,3

ℓ Aℓe
iωSx·dℓ

)

which clearly belongs to V3p. This vector field provides the desired approximation
of the displacement u:

‖u− ξ‖j−1,ωS,D =
∥∥∇χ + curlψ −∇ξχ − curl ξψ

∥∥
j−1,ωS,D

≤
j−1∑

j0=0

ωj−1−j0
S

∣∣∇(χ − ξχ) + curl(ψ − ξψ)
∣∣
j0,D

≤
j∑

j1=1

ωj−j1
S

(
|χ − ξχ|j1,D +

∣∣ψ − ξψ
∣∣
j1,D

)

(8),(9)
ωP <ωS≤ C

( j∑

j1=1

ωj−j1
S

(
1 + (ωSh)j1+6

)
hk+1−j1

)
e( 7

4
− 3

4
ρ)ωSh

[
q−λD(k+1−j) +

1 + (ωSh)q−k+2

(
√

2 ρ q)
q−3

2

M

] (
‖χ‖k+1,ωP ,D + ‖ψ‖k+1,ωS,D

)

≤ C
(
1 + (ωSh)j+6

)
e( 7

4
− 3

4
ρ)ωSh hk+1−j

[
q−λD(k+1−j) +

1 + (ωSh)q−k+2

(
√

2 ρ q)
q−3

2

M

]

(
‖χ‖k+1,ωP ,D + ‖ψ‖k+1,ωS,D

)

(2)
= C

(
1 + (ωSh)j+6

)
e( 7

4
− 3

4
ρ)ωSh hk+1−j

[
q−λD(k+1−j) +

1 + (ωSh)q−k+2

(
√

2 ρ q)
q−3

2

M

]

(
ω−2

P ‖divu‖k+1,ωP ,D + ω−2
S ‖curlu‖k+1,ωS,D

)
.

�

Notice that, in order to have convergence in the bound (7), either in h or p, the
potentials divu and curlu have to belong to H2(D).

Since ωP < ωS, the bound (7) holds true also in the case where the norm on
the left-hand side is substituted by ‖u− ξ‖j−1,ωP ,D; on the contrary we can not
substitute the algebraic and exponential terms in ωSh on the right-hand side with
the analogous ones containing ωP h.

The bound proven in Theorem 3.2 shows algebraic orders of convergence both
with respect to the size h of the domain and to the dimension p of the approximating
space. If the solution u can be smoothly extended outside D, the order in p is
exponential, see [8, Rem. 3.14], and [9, Rem. 3.5.8]. The bounding constant depends
on the problem parameters ω, λ, µ and ρ only through ωP and ωS, with the
dependence shown in the estimate.

The approximation results for the Maxwell equations suggest some extensions of
Theorem 3.2. For example, error bounds for elastic spherical waves (i.e., solutions
of (1) defined via vector spherical harmonics and spherical Bessel functions) could
be proved by following the technique used in Section 6.2.2 of [9]. The order of
convergence with respect to the diameter h might be improved, as it was done
in the electromagnetic case in Section 6.3 of [9]: a special Taylor approximation
bound for harmonic functions can be used in the time-harmonic setting thanks
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to a careful use of Vekua’s theory; some lengthy manipulations of vector spherical
harmonics could provide approximating fields which are exact solution of the elastic
wave equation; a special vector Jacobi–Anger formula (see equation 6.34 in [9]) is
then needed to find approximants in the form of vector plane waves. The proof of
improved orders of convergence in p seems to be much harder: it requires better
understanding of the Vekua transform in a vector setting and is not available even
in the electromagnetic case.

In the almost incompressible case, i.e., for very large values of λ, both ωP and
divu go to zero. Therefore, estimate (7) is useful only if ω−2

P ‖divu‖k+1,ωP ,D re-
mains bounded in dependence of λ. In the limit case we recover Maxwell’s equations
and Theorem 3.2 reduces to Theorem 5.4 of [7].
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