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The assimilation of observations with a forecast is often heavily influenced by
the description of the error covariances associated with the forecast. When a
temperature inversion is present at the top of the boundary layer (BL), a significant
part of the forecast error may be described as a vertical positional error (as opposed
to amplitude error normally dealt with in data assimilation). In these cases, failing
to account for positional error explicitly is shown to result in an analysis for which
the inversion structure is erroneously weakened and degraded.

In this article, a new assimilation scheme is proposed to explicitly include the
positional error associated with an inversion. This is done through the introduction
of an extra control variable to allow position errors in the a priori to be treated
simultaneously with the usual amplitude errors. This new scheme, referred to as
the ‘floating BL scheme’, is applied to the one-dimensional (vertical) variational
assimilation of temperature. The floating BL scheme is tested with a series of idealised
experiments and with real data from radiosondes.

For each idealised experiment, the floating BL scheme gives an analysis which has
the inversion structure and position in agreement with the truth, and outperforms
the assimilation which accounts only for forecast amplitude error. When the
floating BL scheme is used to assimilate a large sample of radiosonde data, its
ability to give an analysis with an inversion height in better agreement with that
observed is confirmed. However, it is found that the use of Gaussian statistics is
an inappropriate description of the error statistics of the extra control variable.
This problem is alleviated by incorporating a non-Gaussian description of the new
control variable in the new scheme. Anticipated challenges in implementing the
scheme operationally are discussed towards the end of the article. Copyright c© 2011
Royal Meteorological Society and British Crown Copyright, the Met Office
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1. Introduction

An important feature of a numerical weather forecast is the
temperature inversion near the top of the boundary layer
(BL). This is often present during anticyclonic conditions
and acts to separate the moist BL air from the drier free-
tropospheric air above. When stratocumulus cloud (Sc) is
present in the BL, the cloud is capped by the inversion and
prevented from rising into the free troposphere (Stull, 1988),
making the height of the inversion an important aspect for
cloud forecasts.

One of the factors that strongly influences the quality
of a forecast of the BL capping inversion is its accurate
representation in the initial conditions of the forecasting
model. The height of the inversion, for instance, is frequently
misrepresented by previous forecasts valid for the present
time (referred to hereafter as the background) which can lead
to fundamental errors in the inversion height and structure
in a future forecast, even after data assimilation.

The importance of the inversion for diagnosing cloud
means that an inaccurate inversion in the initial conditions
may also lead to errors in the prediction of maximum and
minimum temperatures, and hence the possibility of fog
and ground frost, which are of particular public interest. An
accurate inversion is also important for forecasting pollutant
transport. The height can determine the extent to which the
pollutants can rise (e.g. Stull, 1988) and the intensity of the
inversion (the difference in potential temperature between
the inversion top and bottom) is also directly proportional
to its ability to inhibit the vertical movement of pollutants
(Milionis and Davies, 1992), which is of interest for air
quality forecasts.

In this article we do not consider cloud, but first look at the
basic problem of how to allow for and reduce displacement
errors of a quantity that has large vertical gradients (the
BL temperature inversion). Part of this article shows that
standard data assimilation techniques can fail to correct
for BL inversion features that are at the wrong height in
the background state, even when assimilated observations
give sufficient information about the true inversion height.
Standard variational data assimilation (Var) works by
minimising the cost function

J(x) =1

2
(x − xb)TB−1(x − xb)

+ 1

2
{y − H(x)}TR−1{y − H(x)},

(1)

where xb is the background vector, y is the observation vector
and B and R are their respective error covariance matrices
(square, symmetric and positive-definite by definition). The
Ide et al. (1997) notation is used where possible. The value
of the state vector, x, at the minimum of J is hoped to be a
‘best’ estimate of the current state of the atmosphere. This
is referred to as the analysis, xa, which we wish to compute.
In this work, x represents a 1D vertical profile of potential
temperature. The observation operator, H, allows x to be
compared with y (here observations are also of potential
temperature) and so J evaluates the disagreement of x with
xb (first term), and with y (second term) each weighted by the
inverse of their respective error covariances. The minimum
of J at x = xa can be shown to be the most probable state of
the atmosphere, providing the background and observation
errors are correctly defined, and are Gaussian and non-
biased (Bouttier and Courtier, 1999). When H is linear, J is

quadratic and the minimum can be calculated with practical
algorithms. In reality, these criteria (Gaussianity, unbiased
and linear operator) are rarely met and so the minimisation
of (1) will be sub-optimal, although in practice the minimum
may still give a useful analysis state.

A study of the characteristics of the background-error
statistics for vertical temperature profiles was performed
by Fowler et al. (2010). This study showed that the height
of the inversion may be subject to a significant positional
error. When there is a discrepancy between the height of
the inversion in the observations and in the background,
data assimilation can be problematic. As we show in this
article, large vertical gradients present can mean that the
observations and the equivalent background temperature
values can differ well in excess of the error statistics specified
by B and R. This can make it difficult to find an estimate
of the state that agrees with both. The standard 1D-Var
framework (Eyre et al., 1993) is otherwise successful at
combining a background and observations, but in the case
of a BL height discrepancy, it can lead to anomalously large
analysis increments in the vicinity of the inversion, which are
smoothed out by the otherwise correct B-matrix. Thus, in the
attempt to correct for the height of the inversion, important
information about the structure of the BL, including the
inversion, can be washed out and anomalous spreading of
information from the BL to the free atmosphere above can
occur. An incorrect inversion is then likely to continue
to propagate forward with the forecast model without the
observations being able to bring the forecast back in line
with the truth.

The assimilation of the BL-top inversion when a positional
error is present was highlighted as one of the most important
problems in numerical weather prediction at the UK Met
Office (MO) at the end of 2006 when fog led to large
disruptions at Heathrow during the Christmas period
(Lorenc, 2007). In this instance, radiosonde observations
were not able to improve the analysis of the inversion and so
the fog was not accurately forecast. This will also adversely
impact on the utility of the high-resolution models currently
being developed at the MO.

Since then, little progress has been made on this specific
problem, however the difficulty in assimilating features
exhibiting positional errors has been highlighted in previous
literature. Such features include fronts, thunderstorms,
squall lines, hurricanes and precipitation, the height of
the tropopause, and wild fires (e.g. Thiebaux et al., 1990;
Jones and MacPherson, 1997; Alexander et al., 1998; Beezley
and Mandel, 2008; Michel, 2010). A few attempts to include
the positional error in the assimilation have been made.
One such proposed technique developed by Alexander
et al. (1998), for the improvement of forecasts of features
associated with marine cyclones, is based on manually
identifying corresponding features. A warping technique was
then used to warp the entire field to match the observations.
Mariano (1990) used contour analysis to calculate the
average position of contours which was shown to avoid the
weakening and smearing of geophysical features. Inclusion
of position errors has also been used by Brewster (2003) for
the assimilation of thunderstorms. Brewster (2003) defined
a field of translation vectors in order to shift and distort the
forecast field to match the observations, the aim being to
minimise a displacement-based cost function and a penalty
term based on the inverse of a second-order autoregressive
term to prevent displacing too far from the original position.
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Ravela et al. (2007) also developed a similar method making
use of displacement vectors but without the autoregressive
constraint. Because this method involves defining a field of
displacement vectors for the entire field (the statistical error
covariances for which are not known), it is very expensive
and so the positional and amplitude adjustments were done
separately. However, this will not find the optimal balance
between the amplitude and positional error adjustment.
Other work in this area has been performed by Hoffman
et al. (1995), with later development by Nehrkorn et al.
(2003). Within these two articles, a feature calibration
and alignment technique was used in order to characterise
forecast errors. Beezley and Mandel (2008) have also looked
at the possibility of representing a positional error within
the Ensemble Kalman filter with applications in wildfire
modelling.

The idea of a change of co-ordinates (as proposed by
Hoffman et al., 1995; Brewster, 2003; Ravela et al., 2007,
and others) is used here to allow only the vertical grid
to distort to allow a feature (the BL inversion) to move
vertically to match the observations. This is done while
preserving the underlying background-error covariance
structure associated with the inversion. This is particularly
useful when a state-dependent B-matrix is available that
recognises the inversion in the background. Such a B-
matrix may be obtained from studying the variability in an
ensemble of forecasts of the BL temperature profile (Fowler
et al., 2010).

This paper follows on from Fowler et al. (2010), who
showed that there is a pressing need to account for positional
errors in the BL, and who suggested this method for
the purposes of data assimilation. The structure of this
article is as follows. In section 2, the new assimilation
method is introduced. In section 3, results of experiments
involving idealised cases are presented. In this idealised set-
up, the truth, background and observations are generated
in such a way that the background errors are consistent
with the proposed amplitude plus positional error model.
This comprises the basic assimilation tests (section 3.1),
the sensitivities to certain parameters introduced within this
scheme (section 3.2), an assessment of whether an equivalent
conventional (amplitude-only) scheme could be modified
to do the same job as the new scheme (section 3.3), and a
study of the impact of the nonlinear observation operator
(section 3.4). In section 4, the method is applied to a large
sample of real cases, with discussion of statistics of the
positional error of the background inversion (section 4)
and the effect of modelling the positional error as non-
Gaussian (sections 4.2 and 4.3). Finally in section 5 the
key findings of this article are summarised and ideas for
future work are given. Special consideration is given to
the method of implementation in operational 3D- or 4D-
Var.

2. Method

Hoffman et al. (1995) demonstrated that splitting the
forecast errors into amplitude and displacement errors for
certain features can give valuable information. It has been
shown by Fowler et al. (2010) that a significant part of the
error in the background inversion may be described by
the vertical displacement of the inversion height. Therefore
within the assimilation scheme it is not only the level-by-
level temperatures (the amplitudes) that need to be varied

in order to give the ‘best fit’ (as in standard Var (1)), but
also the height of the inversion in the background (the
displacement).

Fowler et al. (2010) used an ensemble of background states
to study the flow-dependence of the vertical B-matrix in the
presence of strong and weak boundary-layer inversions
(strong being defined as a significant rise in temperature
through the inversion). They found that there is a sudden
drop (to near zero) in temperature correlation between
those levels below and above the inversion top when the
inversion is strong (Figure 1 of their paper). In our new
data assimilation method, which includes the correction of
displacement errors, it is important for such correlations
to be preserved with the inversion structure as it moves up
or down, as the assimilation tries to correct its positional
error. This conservation is achieved here by shifting the
vertical positions of the underlying vertical levels themselves.
Since the state vectors and the B-matrix are represented on
these levels, changing level heights of some levels during the
assimilation will not affect the background-error covariances
between those levels.

One way of allowing the levels to shift in height is to
assign one extra control variable per level, each describing
how the level height is perturbed by the assimilation.
However, this may lead to the possibility of interchanging
levels or levels moving below the ground. In this work, only
one new control variable is introduced, denoted a. This single
variable, to be described in section 2.1, allows the coherent
movement of a range of levels in the region of the inversion
in such a way that the allowed shift fades to zero away
from the inversion, ensuring levels near the ground remain
fixed. Moving the levels in this way allows the inversion
in the background to move without undesirable distortion.
From now on, this scheme will be referred to as the ‘floating
BL scheme’ (dealing with amplitude and position errors),
as opposed to the ‘standard scheme’ (dealing with only
amplitude errors).

2.1. A cost function described in terms of floating levels

In order to utilise a, a new cost function is written in terms
of a new augmented control vector, ṽn. In the following, a
tilde indicates that the information in a vector or matrix
is carried on levels that are ‘floating’ (that they are able to
change their heights), and the subscript n indicates the Var
iteration index.

J (̃vn) =1

2
(̃vn − ṽb)TB̃−1

v (̃vn − ṽb)

+ 1

2
{y − Hn(̃vn)}TR−1{y − Hn(̃vn)},

(2)

where ṽn is the new control vector comprising the level-by-
level values, x̃n, and an:

ṽn =
(

x̃n

an

)
. (3)

The quantities stored in the x̃n part of ṽn are potential
temperature (θ) on each level. (Unlike temperature, θ

is conserved as the levels move, assuming adiabatic
conditions.) The a priori value of ṽ is

ṽb =
(

x̃b

a0

)
=

(
x̃b

0

)
, (4)
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where x̃b has the same numerical values as in xb, the
ordinary background state on fixed levels. The background-
error covariance matrix for ṽb is B̃v and is also described on
the floating levels

B̃v =
(

B̃ 0
0 σ 2

a

)
, (5)

where B̃ is numerically the same B-matrix as in (1).
This contains the error covariances associated with θ on
each model level–but now applied to floating rather than
fixed levels. σ 2

a is the variance of the extra variable. For
convenience, it is assumed in (5) that the errors in x̃b and
a are uncorrelated. In practice, it is difficult to separate out
these errors in order to calculate what the correlations should
be. Since amplitude errors are represented in terms of θ , it
is reasonable to assume that these are less correlated with
errors in a than for temperature if cross-correlations between
errors in θ and a are dominated by adiabatic effects. Some
attempt to calculate these correlation have been made using
the Met Office Global and Regional Ensemble Prediction
System (MOGREPS Bowler et al., 2008) ensemble data. Due
to difficulties in separating out the amplitude and positional
errors and the strong state-dependence, these results are
not included but they did suggest that the correlations may
indeed be non-negligible (of the order of a half). This is
not investigated further within this article and it is possible
to argue that these correlations are small in comparison
to those commonly neglected between control variables
in operational schemes (Bannister et al., 2008). However
this assumption may be relaxed in (5) if required and
may be beneficial when observations of the inversion are
unavailable.

In order to minimise (2), both amplitude and position
adjustments to the background are made simultaneously.
If the background does not contain an inversion which is
present in the observations, or vice versa, then no reduction
in (2) will be achieved by varying a and so only amplitude
adjustments will be made.

2.2. How a controls the level heights

Let the heights of the fixed model levels be zi and the heights
of the floating levels (for iteration n) be z̃ i

n. These are related
by

z̃ i
n = zi + anD(zi). (6)

Here D(zi) is a prescribed function of model level height that
we call the ‘displacement function’. This tells the assimilation
which levels are allowed to move (and to what degree) and
which are not. It is chosen such that it is unity within
the centre of the background inversion and tends to zero
away from the inversion. Then, only those levels around
the inversion have the potential to move. This is the means
by which a group of levels can be moved coherently with
the single extra control variable, a. Within this framework
the value of anD(zi) is interpreted as the adjustment of the
height of model level i, and an is the adjustment at the level
where the displacement function has value unity. Each level
i now has a vertical position error equal to σaD(zi). Within
this work, a mixed uniform and triangular function is used
which has the desired characteristics described above; it is

given by

D(z) =


1 + z−zb

r for zb − r < z ≤ zb ,

1 for zb < z < zt ,

1 − z−zt
r for zt ≤ z < zt + r ,

0 elsewhere,

(7)

where zt and zb are the height of the top and bottom of
the background inversion respectively and r defines the
lengthscale in which D(z) linear decreases from 1 to 0.
Therefore for the depth of the inversion in the background,
the displacement is equal to 1, ensuring that the inversion is
not distorted in any way as it is moved vertically. The gradual
linear decrease in the displacement function either side of
the inversion helps to prevent levels from interchanging
which could lead to discontinuities within the temperature
profile.

The assimilation is performed in floating level space,
but once the analysis, ṽa, is calculated, values can be
interpolated to the fixed model levels if necessary. As with
any interpolation, this will introduce a degree of error
dependent on the resolution of the model and the depth of
the inversion. In general, if the resolution of the model has
high enough resolution to capture the inversion, then the
interpolation error should not be significantly large.

2.3. The observation operator

Point observations of potential temperature (at fixed
heights) are considered here and so the observation operator,
which computes the model’s version of the observations,
consists of interpolation. The introduction of an means
that as J is minimised iteratively, z̃ i

n must be recalculated
with each iteration (using (6)). This in turn alters the
observation operator from iteration to iteration. Even with
linear interpolation, H becomes a nonlinear function of
elements of ṽn, due to the presence of a (this issue is
explored further in section 3.2).

The value of the jth element of Hn acting on ṽn can be
expressed by linear interpolation as a weighted combination
of the values of ṽn either side of the jth observation level:

Hn(̃vn)j =
(

z̃II
n − z

j
o

z̃II
n − z̃I

n

)
x̃I

n +
(

z
j
o − z̃I

n

z̃II
n − z̃I

n

)
x̃II

n , (8)

where z
j
o is the height of the jth observation, and x̃I

n and x̃II
n

are the values of ṽn either side of the jth observation level
and z̃I

n and z̃II
n are their heights respectively. As a is varied,

the floating heights z̃I
n and z̃II

n used to calculate Hn(̃vn)j will
change and so the levels needed may be different. This is
illustrated in Figure 1 for the case when the assimilation
has decided to move a floating level across an observation
location between two iterations. In the (n + 1)th iteration,
the level used to define x̃II

n+1 was previously used to define
x̃I

n.

3. Results involving idealised data

3.1. An idealised example

Background and observation profiles are produced which
are consistent with their specified error covariances. The
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686 A. M. Fowler et al.

Figure 1. Schematic of how the floating model levels (full lines) can change
between iterations respective to an observation level (dashed lines). The
two floating levels that are used in the interpolation for the location of the
observation are shown in bold. The interpolation formula is (8).

background and truth differ in two ways: firstly by noise
drawn from the normal distribution with error covariance
B on the model levels, and secondly by a vertical shift to
simulate the error for a (see below). The observations are a
subset of the truth with added noise drawn from the normal
distribution with error covariance R. These profiles are then
used to test the floating BL scheme.

In this example, the background gives a measure of
potential temperature at level spacing of 40 m within the
lowest 3 km of the atmosphere and then a spacing of 200 m
between 3 and 8 km giving a total of 100 levels. Observations
of potential temperature are made at the heights of every
fifth model level.

The B-matrix is calculated from the spread in an ensemble
(e.g. Bannister, 2008) about its mean using

Bij = 1

M − 1

M∑
k=1

{
(xb)i

k −
〈
(xb)i

〉}{
(xb)

j
k −

〈
(xb)j

〉}
, (9)

where i and j represent elements of the state vector, M is
the number of ensemble members, k represents an ensemble
member and

〈
(xb)i

〉
is the average value of the ith element of

xb over all ensemble members. In this study, the ensemble
is provided by MOGREPS. MOGREPS has only 20 vertical
levels in the lowest 8 km of the Earth’s atmosphere, so linear
interpolation is used to give the higher resolution described
above necessary for this study. The resulting B-matrix is
valid for the mean of the ensemble which we take to be
the background, xb. For this example the B-matrix used
is plotted in Figure 1A of Fowler et al. (2010), which was
there considered without any vertical shift. We consider
this amplitude part of B close to optimal since it is derived
explicitly from an ensemble. From this background, we
calculate a state xt which is considered the truth for this
idealised case. xt is calculated in three steps:

1. First, produce a profile, xt∗, which removes error
consistent with B on the fixed model levels.

xt∗ = xb − L�
1
2 ex, (10)

where L is the matrix of eigenvectors of B, � is the
diagonal matrix of eigenvalues and ex is a vector
of 100 random numbers, each taken from Gaussian
distribution with mean zero and variance 1, N(0, 1).

2. Second, shift the levels of xt∗ according to the
standard deviation of the error for a, σa, and a chosen
displacement function, D(z). This gives a new set of
heights, z̃

z̃ i = zi + σaezD(zi), (11)

where ez is a scalar taken from N(0, 1). σa here is
chosen as 200 m (this is consistent with the error
statistics of a based on real data to be discussed in
section 3.4). The profile describing the truth generated
in the first step, xt∗, is now described on the shifted
levels, z̃.

3. Third, this profile is interpolated back to the original
model levels, z, to give xt.

This procedure gives background and truth states which
contain a relative vertical positional error which is not
thought to be unusual for a real data assimilation situation.

The imposed observation errors are chosen to be
Gaussian, unbiased and uncorrelated in the vertical and
so can be described solely by their variances. Observations
can then be simulated from the truth by

y = H(xt) + R1/2ey, (12)

where ey is an observation space vector of random numbers,
each generated from N(0, 1). In this case H(xt) gives a vector
of xt, but on every fifth model level.

An example of background and observation profiles
generated in this way can be seen in Figure 2. Although
potential temperature is used in the assimilation, temper-
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Figure 2. Illustration of how the standard 1D-Var scheme reacts to a
disagreement between the background (dashed) and the observation (stars)
temperature inversion height. The true temperature profile is shown by
the thin grey line. The resulting analysis is shown in thick grey. Error bars
denote the standard deviations (amplitude only).

Copyright c© 2011 Royal Meteorological Society and

British Crown Copyright, the Met Office

Q. J. R. Meteorol. Soc. 138: 682–698 (2012)



A Floating Boundary-Layer Scheme 687

ature is plotted to highlight the inversion structure. This
shows a clear shift between the observations (stars) and the
background (dashed) profiles.

The particular parameters chosen to define D(z) in (7) in
this example were zt = 1560 and zb = 1280, chosen to match
the background temperature structure and r = 460. The
random shift chosen in this experiment was σaez = +240 m.
Due to the upward shift of the background inversion with
respect to the truth, the background values are systematically
too cool in the inversion region. This simulated shift is
comparable to the difference seen between the inversion
height as measured by radiosondes and a collocated forecast
(section 3.4).

Performing the standard 1D-Var (1) for this case gives the
analysed (thick grey) profile in Figure 2. The analysis does
not sufficiently warm the background in the region of the
inversion as the assumed background errors are too small
(dashed error bars). The spreading of analysis increments is
limited in this example due to the use of a state-dependent
B-matrix which has very low correlation between levels in
the inversion and elsewhere. If a static B-matrix were used,
which is unaware of the inversion, the analysis increments
would be spread vertically and the inversion would be
weakened (Fowler et al., 2010). In the case of Figure 2, the
analysed inversion appears to be significantly broader in
height than it should be. The resulting analysis has been
unable to correct the height of the inversion or to retain
the structure of the inversion present in the observation
and the background profiles. It is also inconsistent with the
error statistics (shown as error bars). This analysis could
consequently alter the properties of any BL Sc diagnosed
and subsequently forecast and would also impact on the
evolution of the BL structure.

Now the new floating BL scheme is tested with the
same background, observations and displacement function
as above by minimising (2) instead of (1). The result is
shown in Figure 3. In this analysis, a has been minimised
to a value of −243 m, which is close to the magnitude
random value 240 m used in (11), causing the background
inversion structure to move down in order to agree with
the observed structure. This shift downwards means that
the displacement error has been reduced with the extra
variable a and not by making large analysis increments to
the amplitudes. This means that, unlike in the standard
scheme, the spreading of the (large, in the case of the
standard scheme) analysis increments has not washed out
some of the inversion structure present in the background.

The movement of the levels, and the shape of the
displacement function chosen are shown in Figure 4. In
Figure 4(a), the black line shows the standard deviations of
the errors of the background level heights which are found
from σaD(zi) for level i. These are the vertical error bars
shown in Figure 3 around the background. Similarly the grey
line gives the standard deviations of the errors of the analysis
level heights (derived from the inverse Hessian of the cost
function). The presence of the vertical error bars in this
scheme allows the background and observation profiles to
agree with greater consistency than in the standard scheme,
despite the height shift. This consistency is seen in the value
of J at the analysis. If all assumptions about the errors are
correct, we would expect J to equal half the number of
observations (Bennett, 1992, 2002). In these experiments,
there are 20 observations and so J has an expected value
of 10. Using the standard scheme J = 19.9 and using the
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Figure 3. Analysis (thick grey) recalculated for the floating BL scheme.
Observations (stars) and background (dashed) are the same as in Figure 2.
This scheme has minimised the cost function by moving the background
inversion down 243 m as well as varying the values of temperature on each
model level. Error bars denote the standard deviations. For the background
and analysis, these include height error standard deviations associated with
the floating BL scheme.
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Figure 4. (a) shows the standard error associated with the heights of the
model levels (black) and the heights of the final levels for the analysis (grey).
Only the levels which are within the range of influence of the displacement
function are associated with an error and so are free to move, as seen in
(b). Since the error for the analysis is much smaller than the background,
we have more confidence in the height of the inversion as diagnosed by the
analysis temperature profile. In (b), the floating levels for the final iteration
of Figure 3 (grey) have been plotted alongside the original model levels
(dashed). Only one in five levels has been plotted for each field to allow for
easy visual comparison.

floating BL scheme J = 9.08. This suggests that, not only
has the floating BL scheme produced a better analysis than
the standard scheme, it has done it in a way that is more
consistent with the statistics.
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Figure 5. (a) The rms error as a function of the width of the region where
the displacement function, Diw, is unity. (b) a at the analysis as a function of
Diw. (c) The analysis minus truth temperature profiles for each value of Diw.
The black bold line gives the analysis which has used the true displacement
function and the continuous black line is the true temperature profile. (d)
D(z) for each value of Diw. The thick line is the ‘true’ displacement function
corresponding to the larger marker in (a) and (b). In all panels, the line
shade helps to distinguish the different experiments.

In these examples, low-resolution observations have been
used to illustrate the standard and floating BL schemes to
highlight the potential problems with the standard scheme.
Access to high-resolution observations could indeed reduce
some of the issues seen with the standard scheme, as the
observations reinforce one another giving the analysis a
greater trust in them. However the analysis will still be
inconsistent with the given errors and prone to spreading
the large increments vertically.

Throughout this article, in all cases, incremental
Gauss–Newton minimisation of the cost function is
used.

3.2. Sensitivity to D(z) and σ 2
a

The choice of the displacement function, although chosen
subjectively, is essential to the success of the floating BL
scheme. In the idealised experiments, the true displacement
function, given by (7), and positional error variance, σ 2

a , are
known (and used), but in the case of real data these would
be unknown. We can test the sensitivity of the scheme to
changes in the displacement function and σ 2

a . The following
four figures (Figures 5–8) show how the floating BL assimi-
lation is sensitive to changes in aspects of the displacement
function. Note that the background and observation states
are the same as those used in Figures 2 and 3. Shown in each
figure is (a) the root-mean-square (rms) error of the poten-
tial temperature analysis, (b) the analysed value of a, (c) the
resulting truth minus analysis temperature profiles and (d)
the displacement functions used. The four parameters of the
displacement function that are varied (Figure 4) are:
the width of the region where the displacement function is
unity, Diw(= zt − zb for the optimal D(z)) (Figure 5);
the overall width of the displacement function,
Dtw(= Diw + 2r for the optimal D(z), i.e. where it is non-
zero) (Figure 6);
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Figure 6. As Figure 5, but for the overall width of the displacement
function, Dtw, greater than zero.
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Figure 7. As Figure 5, but for the height of the centre of the displacement
function, Dh.

the height of the centre of the displacement function, Dh(=
0.5(zt + zb) for the optimal D(z)) (Figure 7);
and σa (Figure 8).
In each figure the other variables are kept constant.

From these figures, we see that the analysis is relatively
insensitive to the exact shape of the displacement function.
Figure 5 shows that the floating BL scheme works well even
when the displacement function is triangular (Diw is zero).
In Figure 6 we see that the floating BL scheme is not as
effective if D(z) is uniform (i.e. Dtw = Diw–the leftmost
point in Figure 6(a, b)) where a is equal to only 130 m,
approximately half the necessary shift. This also results in
an increased rms error. This is not surprising as the range of
levels that are allowed to move in this case is very narrow.
Conversely in Figure 7, it is seen that the analysis is sensitive
to the position of the displacement function. If the function
centre is too high (> 2 km) or too low (< 1 km), then a = 0
in the analysis and, for the set of observations used, the
floating BL scheme in effect reverts back to the standard
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Figure 8. As Figure 5, but for the value of σa. D(z) is equal to the true
function for each experiment.

scheme and only amplitude adjustments are made. When
no positional adjustments are made, the rms error is largest
at approximately 1 K. In Figure 8, we see that the floating
BL scheme is insensitive to the exact value of σa within the
range tested.

In conclusion, it is important that the displacement
function is centred on the inversion in the background
but the width and shape of the displacement function
need only be sensible. Therefore when real data are used
in section 4, an adaptive displacement function is used
which is calculated from the background temperature profile
before the assimilation has begun. This ensures that the
displacement function is positioned accurately. The mixed
uniform and triangular function was seen to give a good
description of the necessary displacement correlations for a
wide range of non-idealised situations.

Only elevated inversions which correspond to the top
of the BL are considered when assigning the displacement
function. In the cases when no inversion is present in the
background state, the displacement function is set to zero
everywhere letting the assimilation effectively revert back to
the standard amplitude-only scheme.

Potential sensitivities to the correlation length-scales in
the amplitude part of B in the standard scheme are discussed
in Fowler et al. (2010). However, the floating BL scheme has
a decreased need to add large-amplitude increments to
minimise the cost function, so it is reasonable to expect
that the floating BL scheme will be less sensitive to these
correlation length-scales. Since the amplitude part of B is
derived explicitly from an ensemble, we consider it to be
close to optimal in this work and so we do not investigate
this here.

3.3. Inflated and implied background-error covariances

The extra degree of freedom of a allows the floating BL
scheme to give an analysis which is capable of keeping
the structure of the inversion seen in the background, but
has allowed it to be moved to a height more in keeping
with the observations. It may be thought that a similar
result may be gained with the standard scheme but by

first inflating the background-error variances in the vicinity
of the inversion. This will allow the observations to pull
the background more effectively towards the truth. We
have tested this idea by deriving a new B-matrix from
the ensemble with the modification that each ensemble
member is shifted using (11), each with a different random
number ez. In Fowler et al. (2010), this was shown to give
a clear increase in the background-error variances within
the inversion region. Using the B-matrix generated in this
way with the standard scheme gives an analysis which is in
good agreement with the observations, but with a loss of
the BL inversion structure present in the background (not
shown). This is undesirable in general as the background
inversion structure is often accurate (even if it has the wrong
height). This is a particularly significant drawback of this
intermediate scheme when observations are noisy or are of
a low vertical resolution.

A second method for producing amplitude-only errors
which includes the positional error implicitly is to calculate
the so-called implied background-error covariances. The
matrix B̃v used in the floating BL scheme can be transformed
to give these implied background-error covariances in the
fixed level space by

Bimplied = ZB̃vZT, (13)

where Z represents the Jacobian of the interpolation from
floating to fixed model space, and has been calculated using
the value of a in the analysis of Figure 3. If the state vector
ṽ has N + 1 elements, B̃v is an (N + 1)×(N + 1) matrix
and Z is an N×(N + 1) matrix giving Bimplied to be an
N×N matrix. We propose that Bimplied is the effective
B-matrix that should be used in the standard scheme
if the background inversion height were to be corrected.
The implied background-error standard deviations (square
roots of diagonal elements Bimplied) for the example given
in Figure 3 are plotted in Figure 9 (compared to the
standard deviations taken from the ordinary B-matrix used
by the standard scheme). The result shows an increase of
the standard deviations for xb in the region between the
background inversion and the true inversion. Hence this
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Figure 9. Background-error standard deviations on fixed levels as would
be used in standard 1D-Var (continuous line) and the implied standard
deviations derived from (13) (dashed line). The implied errors have been
calculated using the value of a given by the analysis in Figure 3.
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Figure 10. The background-error correlation matrix (a) used in the floating BL scheme calculated from the spread in an ensemble of forecasts, and (b)
the correlation matrix implied on the original fixed model levels. Dashed contours represent negative correlations. The axes are given in metres.

effective error increase is dependent upon knowledge of
the true inversion height which is intrinsic to the value of
a at the analysis and hence differs from the first method
discussed.

In Figure 10, the correlation structure for potential
temperature errors derived from B̃v (Figure 10(a)) and from
Bimplied (using the analysed a as in Figure 3) (Figure 10(b))
are shown. As B̃v is calculated from the spread in a set of
ensembles (each valid at the same time), the correlations
shown are state-dependent and it is possible to see the
decoupling between the air above and below the BL for the
position and structure of the inversion in this specific case
(the BL top is at approximately 1 km). In the analysis of
Figure 3, the assimilation has moved the inversion down
by approximately 240 m and so the BL is shallower and the
region of strong positive correlation seen in B̃v has shrunk in
Bimplied. An increase in the correlation length-scale can also
be seen between 800 m and 2 km, caused by the displacement
function.

We now test whether Bimplied is suitable for use as a B-
matrix in standard 1D-Var. We wish to test this because
the inflated standard deviations around the inversion will
allow potentially large analysis increments, allowing the
observations to have more relative weight. However, unlike
in the first method, the correlations are now based on the
necessary displacement provided by minimising the cost
function for the floating BL scheme (2). The resulting
analysis is poor, as shown in Figure 11. The strong
correlation structure of Bimplied means that using this as
the background-error covariance matrix in standard 1D-
Var does not give a realistically smooth analysis. Thus, even
with the larger background-error variances and adjusted
correlations, the standard 1D-Var is still unable to effectively
‘move’ the background inversion whilst retaining its shape.
It can be concluded that the extra variable, a, and the
nonlinear observation operator are necessary to solve this
problem.

This result is consistent with Lawson and Hansen (2005)
and Ravela et al. (2007), who stated that the presence of a
large positional error means the use of Gaussian amplitude
errors only is no longer appropriate. Applying the results of
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Figure 11. Assimilation using the standard scheme (as in Figure 2), but
with the implied B-matrix given by (13). The cost function J = 8.33 at the
analysis.

Lawson and Hansen (2005) to our problem, the total error,
η, as assumed by the floating BL scheme may be written as

η(zi) = xb(zi − ηD(zi)) − xb(zi) + ηA(zi). (14)

Here zi represents the original gridpoint height and ηD(zi)
represents the adjustment to this gridpoint given by
ηinvD(zi), where ηinv is the error in the inversion height
itself. ηA(zi) is the amplitude error which can then be added
to the displaced background values to give the truth. Fields
in (14) are written in function notation, rather than vector
notation, to show the shift explicitly. Expansion of (14)
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about ηD = 0 and ηA = 0 leads to the following expression
for the total error

η(zi) ≈ ηA(zi) − ηD(zi)
∂xb(zi)

∂z
+ η2

D

2

∂2xb(zi)

∂z2
, (15)

with the assumption that ηinv∂D(zi)/∂z � 1 for simplicity.
The first two moments of η can be expressed as

〈
η(zi)

〉 ≈ 1

2

∂2xb(zi)

∂z2

〈
η2

D(zi)
〉
, (16)

assuming amplitude and displacement errors are unbiased
and

〈
η(zi)η(zj)

〉 ≈ Bij+ ∂xb(zi)

∂z

〈
ηD(zi)ηD(zj)

〉 ∂xb(zj)

∂z
, (17)

assuming the amplitude and displacement errors are
independent as in (5). The covariance in (17) is that between
levels i and j. Equations (16) and (17) show that in general a
positional error can lead to:
a bias in the total error, violating one of the key assumptions
in deriving the cost function;
an increase in the variances; and
a change in the correlation length-scales in the region where
ηD is non-zero (Michel, 2010) i.e. in the region of the
inversion as seen in Figures 9 and 10.

Lawson and Hansen (2005) showed that, for non-biased
Gaussian amplitude and displacement errors which are
independent, η is adequately Gaussian i.e. terms involving
η2

D and above in (15) are small compared to first-order terms
if

ηinv

2L
� 1, (18)

where L is the typical length-scale of the feature. In our case,
this is the depth of the inversion and is approximately 200 m.
Therefore if ηinv is anything greater than about 40 m, say, the
ratio (18) is not significantly less than one and so η cannot be
described as Gaussian and hence impossible to represent in
a Gaussian amplitude error framework. In section 4, we will
see that the value of ηinv can be as large 600 m. This implies
that any assimilation scheme based on Gaussian statistics,
such as Var and the ensemble Kalman filter, would fail to
coherently shift the inversion structure. An assessment of
the ensemble Kalman filter when a positional error is present
is given by Beezley and Mandel (2008).

There may be ways of avoiding the need to shift, e.g.
assimilating observations more frequently to prevent the
wrong inversion height in the forecasts, but this is not
studied here because this is not a flexibility that is generally
available operationally. A primitive assimilation technique,
e.g. nudging, may be used instead to correct for large-
amplitude errors without the anomalous smoothing effects
seen in Figure 2, but nudging does not consider important
uncertainty statistics, nor can it deal with other kinds of
observation (such as those remotely sensed).

The result implied by (18) for the inversion is illustrated
in Figure 12. In Figure 12(a), an ensemble of temperature
profiles (truth plus different realisations of the full
error–amplitude plus position (14)), are plotted. These
errors are consistent with those used to simulate the idealised
data in section 3.1, i.e. the same B-matrix and displacement

function. At the levels marked, a histogram of the ensemble is
given by the bars in Figure 12(b). The dashed lines represent
a Gaussian distribution in which only amplitude errors are
present. In the region of the inversion, these curves are
far too narrow as only the statistics of the first term in
(15) are represented. The solid lines represent a Gaussian
distribution in which both the amplitude and positional
error variances are present. Within this region, it is clear
that a Gaussian approximation of the shape of the PDF is
inaccurate. The distributions associated with the levels with
the largest displacement error appear to be highly skewed as
predicted by (18).

3.4. Issues of nonlinearity

As already mentioned in section 2.1, the presence of a makes
the observation operator, H, nonlinear. A linearised estimate
of H is introduced for the Gauss–Newton minimisation of
the cost function. Let H represent the matrix of partial
differences of H with respect to the state vector ṽ evaluated
at a current estimate of ṽ. The linearisation error introduced
when approximating perturbations in H by Hδ̃v can be
quantified as

linearisation error=H(̃vn)−{H(̃vn−1) + Hδ̃vn}. (19)

When D = 0 there is no linearisation error. The magnitude
of the linearisation error tends to zero as δ̃v tends to zero so,
once the solution has converged to the minimum of J, the
linearisation error will be small.

A nonlinear observation operator leads to a non-quadratic
cost function, which can make it more difficult to find
its minimum. In Figure 13, the cost function has been
calculated for the set-up in Figure 3 as a function of a with
the rest of the elements in ṽ equal to their background
values. JB (the background part of the cost function
(̃v − ṽb)TB̃−1(̃v − ṽb)) and JO (the observation part of the
cost function {y − H(̃v)}TR−1{y − H(̃v)}) are also plotted
separately.

The quadratic nature of JB is unaffected by the
introduction of a. The shape of J is dominated by the JO

contribution and its minimum is clearly seen to be shifted
towards a = −240 m. This is the vertical shift between the
inversion heights of the background and truth states in the
set-up of Figure 3. Within this region of a-space, there are
no other significant maxima or minima confirming that the
floating BL scheme is working satisfactorily in this case.

It is possible for double minima to appear in J with the
introduction of the floating BL scheme, especially when the
resolution of the observations is not adequate to represent
the true position of the inversion. In such cases, it is possible
in the assimilation for the background inversion to be
moved to the wrong position as a result of fitting to the
observations. This can make it questionable whether the
particular analysis calculated is truly the most probable state
of the atmosphere. This can be demonstrated by assimilating
just one observation (at 1160 m) as shown in Figure 14. In
Figure 14(a) the truth (grey line), the background (dashed
line) and the observation (star). The true and background
profiles are the same as in Figures 2 and 3. The floating BL
scheme now has a choice to move the inversion either up
or down to fit the observation. J, JB and JO as a function
of a have been plotted in Figure 14(b). The ambiguity in
which way the background should be shifted introduces a
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Figure 12. (a) An ensemble of temperature profiles generated by adding an error consistent with B̃v (i.e both amplitude and positional error). At each
level marked, a bar plot of the distribution in temperature given by the sample is shown in (b), where dashed lines represent the assumed distribution
given by B (i.e. amplitude error only), and solid lines give a Gaussian approximation to the sample.

local minimum at approximately +200 m in J, while the
global minimum is still at a = −240 m. This could result in
the scheme moving the levels in the wrong direction and
giving a worse analysis than the standard 1D-Var scheme.
In this example, the maximum value of J separating the two
minima is at a = −100 m whilst the background value of
a is 0 and hence the starting point of the minimisation is
within the well of the (wrong) local minimum.

Although this is a contrived example, it does highlight
the importance of an adequate observation density and/or a
minimisation method that looks for the global minimum to
remove ambiguities. In fact we find no occurrences of such
ambiguities when assimilating real data (section 4.3).

4. Results involving real data

4.1. The error statistics of the new control variable, a, derived
from real observations

The standard deviation of a, σa, describes the likely range
of distances that the inversion found in the background

may be allowed to move vertically in order to give a fit
to the observed inversion. σa may then be thought of as
the standard deviation of the error in the height of the
background inversion. This can be estimated by comparing
the heights of the inversion in a population of collocated
actual forecasts and radiosonde observations.

The error in the height of the inversion in the background,
ηinv, is the difference between the true height of the inversion,
zt

inv, and the background height of the inversion, zb
inv:

ηinv = zt
inv − zb

inv. (20)

In these results, the inversion is calculated as the lowest
level of an elevated temperature inversion. If we assume
that the positional error is intrinsic to errors within the
forecast model and so the cause of the positional error in the
background data is not present within the observed data,
we can substitute the true inversion height, zt

inv, for the
observed inversion height, z

y
inv. This gives an expression for

ηinv in terms of knowable quantities:

ηinv = z
y
inv − zb

inv. (21)
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Figure 13. Cost functions plotted as a function of a: J, JB and JO.

However, in general, the observations themselves are subject
to measurement errors, which could lead to an error in the
observed inversion height. In (21), we have assumed that
radiosondes measure the inversion height with error that is
negligible compared to the resolution of the data. This is not
easily testable objectively since we do not have co-located
radiosondes to check against. However, we do believe this
to be a fair assumption for measurements by radiosondes in
which the resolution of the data is high compared to that of
the model, and subject to only a small measurement error.
For noisy or low-resolution observations, there is likely to
be a significant source of error, η

y
inv:

η
y
inv = zt

inv − z
y
inv. (22)

The difference then between the observed and background
inversion heights, instead of (21) is

z
y
inv − zb

inv = ηinv − η
y
inv, (23)

using definitions (20) and (22). The error statistics of (23)
are 〈

(z
y
inv − zb

inv)2
〉
= 〈

(ηinv)2
〉 + 〈

(η
y
inv)2

〉
, (24)

where the background and observation errors are assumed
to be uncorrelated. The left-hand side (LHS) of (24) is
calculable from a given population of background states and
observation profiles, and the first term on the RHS can be
estimated separately by synthesising a population of such
low-resolution or noisy observations profiles from a truth
to derive the variance of η

y
inv. The second term on the RHS

is σ 2
a which can then be derived.

We assume that this procedure is not necessary in this
work as the radiosonde observations used (see below) are
accurate and of high resolution and so (21) is assumed
to be applicable. This means that a sample of radiosonde
and collocated background temperature profiles allow the
variance of the error of the height of the background
inversion to be calculated:

σ 2
a = 〈

η2
inv

〉
, (25)

where the triangular brackets represent an average over a
suitable population when an inversion is present in both the
background forecasts and the observations. Ideally, for data
assimilation, the error distribution of any control variable
should be Gaussian and unbiased so that the assumptions
that the variational assimilation theory is based on are true.
Figure 15 shows the distribution of ηinv. The background
data are from the global Unified Model (UM; Cullen, 1993).
The background and collocated observations have been
taken from a population comprising 50 days of data at
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Figure 14. (a) A single observation at 1160 m (star) measuring the centre of a true inversion (grey) which is 240 m lower than the inversion in the
background (dashed). In order for the analysis to agree with the observations in the floating BL scheme, the background could be raised or lowered. (b)
Components of the cost function as a function of a showing double minima in J at approximately −240 m and +200 m.
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Figure 15. A histogram of observation minus background inversion height.
This distribution is assumed to describe the error distribution of a. Examples
of different distributions have also been plotted. The continuous curve is
Gaussian with mean zero and standard deviation as calculated from the
distribution. The dashed curve is an example of a sum of two Gaussian
distributions which more accurately describes the shape of the distribution.

midday covering Europe over land from 24 December 2006
to 13 October 2008. During these 50 days an inversion was
present in the background approximately 40% of the time,
which gave us a sample of 1000 profiles to compare. The
data have been interpolated to the same 100 level vertical
resolution as that used for the idealised examples. The
height error is seen to be significant, ranging from −400 m
to +600 m, with a standard deviation of 115 m.

The distribution of the errors of a is non-Gaussian and
asymmetric. The mean of the distribution is 42 m, so there is
a slight bias towards the inversion in the background being
too low. This may be due, for example, to too much large-
scale subsidence in the model, erroneous front locations, or
incorrect strength of mixing in the BL, cloud-top cooling,
cloud-top entrainment or wind shear.

Modelling the distribution of a as Gaussian (continuous
curve in Figure 15) underestimates the probability in the
assimilation that the difference between the observation and
background inversion heights is small (smaller than 40 m).
This would mean that the floating scheme, when assimilating
real data, would try to make a shift of the background more
often than is necessary. That is, the scheme might try to shift
the levels when the background inversion height is correct.
However in cases when there is a large difference between the
observation and background inversion heights, the floating
BL scheme would be able to move the heights and give an
improved analysis. This effect was seen in the preliminary
assimilation results, given in Figure 8 of Fowler et al. (2010)

4.2. Modelling the non-Gaussian error statistics of the new
control variable, a.

A better description of the prior error distribution of a could
improve the floating BL scheme. There are two obvious

routes which could be taken. The first is the transformation
from a to a new control variable to describe the movement
of the background levels. This new control variable could be
chosen such that its errors are better described by a Gaussian
distribution. Work done by Hólm (2003) has shown that
any variable, g, can be transformed to a variable, γ , with
a Gaussian error distribution by finding a transform, f ,
such that the cumulative distribution of the probability
of g less than a fixed value δφ, P(g ≤ δφ), equals the
cumulative distribution of the probability of γ less than
the transformed fixed value f (δφ), P{γ ≤ f (δφ)}. A second
route is to reformulate the cost function for non-Gaussian
errors and simply to choose a distribution which more
accurately describes the errors seen. It is believed in this case
that this is a simpler solution as we are dealing with only one
variable which is taken to be uncorrelated with the rest of the
state variables. The main drawback of the current Gaussian
distribution for a is that it does not give high enough
probability to the event of the background inversion height
being in close agreement to that observed. Other important
features of the distribution are the long tails representing the
events when the background height is in a large disagreement
with the observations. It is necessary to represent accurately
these two characteristics of the error distribution in order
for our floating BL scheme to accept these events and to
be able to move the background accordingly. These criteria
are satisfied empirically by a sum of two Gaussian curves
(a two-component Gaussian mixture model). One Gaussian
distribution with a large standard deviation in order to
capture the long tails and a second with a small standard
deviation to represent the sharp peak. The intention is to
reduce the chance of the floating BL scheme moving the
background inversion more often than is necessary. This
is a similar approach to that of Andersson and Järvinen
(1999) for their description of observation errors used for
quality control purposes. This non-Gaussian distribution of
ηinv = a is described as Pa

Pa = (1 − A)Pa1 + APa2 , (26)

where Pai is a Gaussian distribution (N(0, σ 2
ai

)) and A
is a constant between 0 and 1. An example of this
is shown in Figure 15 (dashed curve), where A = 0.5,
Pa1 ∼ N(0, 252m2) and Pa2 ∼ N(0, 3002m2), chosen to fit
the data in this sample. The parameters A, σa1 and σa2 , are
found by trial and error to optimise the fit to the measured
distribution. The sample used to make Figure 15 comprises
data over a long period and so we assume it is applicable
to different datasets. In an operational setting, it is expected
these parameters would need to be calculated only once.
The parameters, however, may be changed to fit a new
population as long as it has characteristics of the sum of two
Gaussians. By using (26), we account approximately for the
sharp peak and long tails of the known error distribution
but not its asymmetry, which we do not attempt to account
for in this work.

The sum of two Gaussians is no longer Gaussian (as seen
in Figure 15), and so using this distribution to represent the
error distribution of a means the background part of the
cost function is no longer quadratic. The background part
of the cost function is now written explicitly in two parts as
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shown below (cf. (2); the Appendix gives a derivation)

JB = 1

2
(̃x − x̃b)TB̃−1

x (̃x − x̃b)

−ln

{
1−A

σa1

exp

(
− a2

2σ 2
a1

)
+ A

σa2

exp

(
− a2

2σ 2
a2

)}
.

(27)

The first term represents the (quadratic) amplitude
description of the background profile (as in (1)) and the
second term represents the (now non-quadratic) positional
description of the background inversion. The separation
is possible due to the assumption that the amplitude and
positional errors are uncorrelated.

4.3. Testing the assimilation with real data

The performance of the 1D-Var schemes is now tested with
a population of actual radiosonde data and UM forecasts
with the following background state formulations:
(i) the floating BL scheme (fully Gaussian);
(ii) the floating BL scheme (non-Gaussian formulation
described above); and
(iii) the standard scheme (Gaussian).
As discussed in section 3.2, in order for the floating BL
scheme to be successful, the displacement function must be
adaptive to the height of the inversion in the background.
For this reason, before the assimilation of background
and observation data is performed, the inversion top and
bottom are derived from the background profile and the
displacement function is then set to 1 within these limits.
Outside of this region, the displacement function linearly
tends to zero as in the idealised example (section 3.1).

A summary of assimilation results is now given in terms
of frequency histograms of differences between the analysed
and observed inversion heights (Figure 16). These plots
show how effective the assimilation schemes are at shifting
the background profiles to agree better with the inversion
heights derived from the radiosondes. We assume that the
observed inversion heights have negligible error (and so
the plots may be interpreted as analysis inversion-height
error distributions), and noting that the radiosonde-derived
inversion heights are not assimilated themselves, these
plots contain useful information for this study. The same
population of backgrounds and observations is assimilated
as that used to derive Figure 15. The objective is to produce
an analysis-error distribution which is as tall and thin as
possible about an analysis error of zero. In Figure 16(a),
the analysis error distributions are compared between the
Gaussian floating BL scheme (stems) and the non-Gaussian
floating BL scheme (bars). The difference between the
shapes of the two distributions is clear: the non-Gaussian
formulation produces more analyses with a smaller error
than the Gaussian formulation, and the standard deviation
of the analysis height error has also been marginally reduced
from 55 m to 50 m. This demonstrates the advantage of the
non-Gaussian formulation.

In Figure 16(b), the analysis error distributions are
compared between the standard scheme (stems) and
the non-Gaussian floating BL scheme (bars). The two
distributions have a similar shape with a relatively similar
frequency of cases when the positional error is small (central
bin). However in the standard scheme there are still extreme
cases when the analysis has a very large positional error.
The standard deviation of the analysis height error in the
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Figure 16. Inversion height analysis error distributions (a) with the
floating BL scheme and the error in the background inversion height
is approximated as Gaussian (stems) and as the sum of two Gaussian
distributions (bars), and (b) with the standard scheme (stems) with the
bars the same as in (a).

non-Gaussian floating BL scheme is significantly smaller
than of the standard scheme (50 m compared to 75 m) and
the non-Gaussian floating BL scheme performs better than
even the standard scheme when the background inversion
height is accurate (small analysis errors).

This diagnostic measures the improvement in the
inversion height only. However, from what we have learnt
about the idealised examples, we would also expect the
floating BL scheme, with both the Gaussian and non-
Gaussian positional error formulation, to give a better
representation of the inversion structure as the background
inversion structure is more easily maintained. We can
compare the average temperature gradient of the inversion
in the analysis using the three different methods to that
of the background and observations. On average, the
inversion in the analysis using the standard scheme is weaker
than in the analyses using the floating BL formulations
(8.62×e−3K m−1 compared to 9.87×e−3K m−1 for the
Gaussian floating BL scheme and 9.30×e−3K m−1 for
the non-Gaussian floating BL scheme). The stronger
inversions seen in the floating BL scheme analyses are
consistent with the average strengths seen in the observations
(9.70×e−3K m−1) and the backgrounds (9.26×e−3K m−1).

As seen from the statistics plotted in Figure 16, the differ-
ences in the analyses using the three different methods can
be subtle. It is perhaps easier to appreciate the differences
between the three schemes for real data by looking at a few
examples in detail. In Figure 17, three cases are shown where
the model of the positional error used is important. In each
case the background (thick grey line) and the observations
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Figure 17. Examples of assimilations with real data using the three different methods. The background is given by the bold grey line and the observation
profile is represented by the thinner grey line. The analyses profiles are given by the black lines; the solid uses the standard scheme, the dashed uses
the floating BL scheme with a Gaussian representation of the positional error and the dashed-dot uses the floating BL scheme with the non-Gaussian
representation of the positional error described in section 4.2. Dates for the three cases are given in Table I.

Table I. Comparison of the analysis error in the inversion height, ηinv, and the gradient of the inversion (inv grad) for the
three assimilation methods for three cases using real radiosonde and background data. Cases a, b, and c correspond to the

panels in Figure 17.

Case Date Location Standard Gaussian FBL Non-Gaussian FBL
ηinv inv grad ηinv inv grad a ηinv inv grad a

a 17 Dec 2007 Switzerland −108 0.0066 105 0.0118 216 45 0.0098 157
b 13 Dec 2007 Switzerland −163 0.0063 47 0.0133 212.8 0 0.0128 165.5
c 18 Dec 2007 Norway 0 0.0097 100 0.014 100 52 0.0107 52.8

(thin grey line) both described a strong capping inversion.
The strength of these inversions have fairly good agreement
between the background and observations albeit with slightly
different structures, however in cases (a) and (b) there is a
clear disagreement in the inversion height. In case (a), the
background inversion is approximately 160 m too low and
in case (b) the inversion is approximately 175 m too low. In
case (c), there is not such a clear positional error and instead
the background simply seems too cool in this region. For
each case the background and observation data have been
assimilated using the three different schemes. A summary of
the assimilation results for these three cases with the three
different formulations is given in Table I. As expected, in
cases (a) and (b) the standard scheme (black solid) has been
unable to give a good representation of the inversion height
(ηinv = −108 m and −163 m respectively) or the tempera-
ture structure in this region (‘inv grad’ in Table I). In these
two cases, the analyses given by the floating BL schemes
perform better (given by the dashed line for the Gaussian
formulation and dashed-dot line for the non-Gaussian for-
mulation). These examples have been selected as it is seen
that in each case the floating BL scheme with Gaussian for-
mulation shifts the inversion in the background to a greater
extent than the non-Gaussian formulation. In case (c), where
there is no real positional error, the standard scheme has
given a fairly good analysis. The floating BL scheme in this
cases interprets the cool background relative to the observa-
tions as a positional error and so in the analysis has shifted
the background inversion up unnecessarily. Using the non-
Gaussian formulation means that this shift is slightly smaller
and so the error in the inversion height is reduced.

5. Summary and future work

The floating BL scheme is a new method for performing
1D-Var which attempts to correct explicitly for vertical posi-
tional errors in the background as well as the usual errors
dealt with in standard assimilation schemes (amplitude
errors). The scheme works by introducing an additional
control variable, a, which specifies the degree to which the
heights of certain levels are allowed to be modified coherently
by the assimilation. In this article this scheme has focused
on the BL capping inversion, which is a sharp structure that
is often forecast well, but at the wrong height. Compared to
standard assimilation, this scheme gives a better representa-
tion of the errors associated with the background inversion
by introducing an error in the height of the inversion.

It has been shown that, in an idealised case, the floating
BL scheme gives an improved analysis, compared to the
standard scheme, when there is disagreement in the vertical
position of the inversion in the background and the obser-
vations, by making it possible explicitly to shift the whole of
the background inversion structure. The floating BL scheme
introduces nonlinearities into the observation operator and
therefore implies a non-quadratic cost function. A non-
quadratic cost function can lead to problems with unique-
ness of the solution if the inversion is not well observed.

A study of the statistics of the new variable a has been
conducted. This shows that the background errors of a
are non-Gaussian and asymmetric which (strictly speaking)
violates the assumptions on which Var is normally based.
Performing the assimilation with the assumption that the
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errors of a are Gaussian leads to the floating BL scheme
shifting the background inversion more often than is
necessary. We have been able to write the cost function
with a more complicated description of the error statistics
of a, due to a being a single variable with errors assumed to
be uncorrelated with the errors in potential temperature. In
this work, a two-component Gaussian mixture model was
chosen to describe simultaneously the high probability that
the positional error is small at the same time as accounting
for the possibility that the positional error is large.

The improved representation of the temperature profile
in the analysis given by the floating BL scheme should
have a positive impact on the forecast of features directly
affected by the height and strength of the inversion, e.g. the
formation of BL clouds and the dispersion of pollutants. BL
clouds are of particular interest due to their large impact on
the propagation of radiation which in turn affects the BL
dynamics. However, the diagnosis of clouds is dependent
upon humidity as well as temperature. It is intended to
extend the floating BL scheme to assimilate humidity as well
as temperature. This will allow us to assess the impact that
the floating BL scheme may have on the diagnosis of clouds.

Building upon the complexity of the floating BL scheme
would also allow an assessment of the scheme’s effect on
future forecasts. Whether the scheme could lead to an
improved forecast of the inversion or whether the forecast
model would adjust back to the wrong inversion height is
of particular interest. Part of the motivation for this work
is based on the assumption that correcting wrong inversion
heights and structures in analyses could significantly yield
more accurate forecasts of such features and of BL cloud. This
scheme, however, makes no attempt to correct the model
itself which may contribute to an inaccurate inversion height.
A study of the the current floating BL scheme’s impact on the
positional error in future forecasts would be enlightening.

There are a number of ways that this scheme may be
implemented in an operational setting, e.g. within 3D- or
4D-Var. The anticipated research issues associated with this
(e.g. those given below) would have to be resolved before
the scheme could be used to generate 3D analyses so that
realistic forecasts could be made to allow the scheme to be
evaluated thoroughly.

In 3D-Var an extra control variable and a displacement
function may have to be introduced for each horizontal
location. The different meteorological conditions from one
location to the next (resulting in the existence or not, and
the different character, of inversions) is likely to lead to
discontinuities in the 2D field of a values. Consequently,
an error covariance matrix would have to be introduced to
describe how perturbations in a(r) co-vary with those in
a(r′), where r and r′ are neighbouring horizontal positions.
The nature of inversions changes with position and time
and so these covariances are likely to be inhomogeneous,
anisotropic and flow-dependent. Additionally, as the levels
shift, all model variables (and not just temperature) would
be carried with them. The effects of this would need careful
evaluation to check that the other variables are not degraded
as the heights of temperature inversions are corrected.
Analyses produced on vertical grids that have been shifted
by the floating BL scheme would need to be interpolated
back to the fixed model grid before forecasts can be made.

In 4D-Var, other issues emerge in addition to the above.
For instance, the extra field of control variables, a(x, y),
and the displacement functions may additionally become

a function of time. Ignoring this variation over the 4D-
Var time window may be problematic, e.g. due to the
strong diurnal cycle of the boundary layer (Stull, 1988).
Additionally, the perturbation forecast model and its adjoint
used within incremental 4D-Var would have to operate on
shifted levels. Not only would this require development
effort, but may conceivably introduce unwanted imbalances
during the propagation of field perturbations.
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Appendix

The non-Gaussian background cost term for the floating
BL scheme

The probability of the background, ṽb = (̃xb, a = 0)T, can be
described as the weighted sum of two Gaussian distributions,
P1 and P2:

PB = (1 − A)P1 + AP2 , (A.1)

where A is a constant (0 ≤ A ≤ 1) and

Pi = 1

(2π)
N+1

2 |̃Bvi |1/2
exp

{
−1

2
(̃v − ṽb)TB̃−1

vi
(̃v − ṽb)

}
.

(A.2)

Here i = 1, 2 and N is the length of the background vector,
x̃b. B̃vi is the background error covariance matrix for the
background ṽb:

B̃vi =
(

B̃x 0
0 σ 2

ai

)
. (A.3)

Since errors in a are taken to be uncorrelated with errors
in x̃b, the part of the distribution concerned with a may be
separated as follows (the distribution for amplitude errors
in x̃b remains Gaussian, while only the distribution for a
becomes non-Gaussian):

Pi = 1

(2π)
N+1

2 |̃Bx|1/2
exp

{
−1

2
(̃x − x̃b)TB̃−1

x (̃x − x̃b)

}
× 1

σai
exp

{
− a2

2σ 2
ai

}
.

(A.4)

Substituting (A.4) into (A.1) gives

PB = 1

(2π)
N+1

2 |̃Bx|1/2
exp

{
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exp
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− a2

2σ 2
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.

(A.5)
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The background cost function is commonly defined as

JB = − ln PB + c, (A.6)

where c is a constant which has no effect on the minimisation
of the cost function and so can be added without altering
the analysis. Substituting (A.5) into (A.6) gives

JB =1

2

(̃
x − x̃b

)T
B̃−1

x

(̃
x − x̃b

)
− ln

{
1−A

σa1

exp

(
− a2

2σ 2
a1

)
+ A

σa2

exp

(
− a2

2σ 2
a2

)}
,

(A.7)

where the constant c has been added:

c = ln

{
1

(2π)
N+1

2 |̃Bx|1/2

}
. (A.8)

The choice of A dictates the shape of the function. As A
tends to 0, PB tends to a Gaussian with σa = σa1 and as A
tends to 1, PB tends to a Gaussian with σa = σa2 .
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