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Abstract

The estimation of prediction quality is important because without quality measures, it is difficult to determine the
usefulness of a prediction. Currently, methods for ligand binding site residue predictions are assessed in the function
prediction category of the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment,
utilizing the Matthews Correlation Coefficient (MCC) and Binding-site Distance Test (BDT) metrics. However, the assessment
of ligand binding site predictions using such metrics requires the availability of solved structures with bound ligands. Thus,
we have developed a ligand binding site quality assessment tool, FunFOLDQA, which utilizes protein feature analysis to
predict ligand binding site quality prior to the experimental solution of the protein structures and their ligand interactions.
The FunFOLDQA feature scores were combined using: simple linear combinations, multiple linear regression and a neural
network. The neural network produced significantly better results for correlations to both the MCC and BDT scores,
according to Kendall’s t, Spearman’s r and Pearson’s r correlation coefficients, when tested on both the CASP8 and CASP9
datasets. The neural network also produced the largest Area Under the Curve score (AUC) when Receiver Operator
Characteristic (ROC) analysis was undertaken for the CASP8 dataset. Furthermore, the FunFOLDQA algorithm incorporating
the neural network, is shown to add value to FunFOLD, when both methods are employed in combination. This results in a
statistically significant improvement over all of the best server methods, the FunFOLD method (6.43%), and one of the top
manual groups (FN293) tested on the CASP8 dataset. The FunFOLDQA method was also found to be competitive with the
top server methods when tested on the CASP9 dataset. To the best of our knowledge, FunFOLDQA is the first attempt to
develop a method that can be used to assess ligand binding site prediction quality, in the absence of experimental data.
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Introduction

Proteins are essential molecules in all living organisms and are

involved in virtually all cellular processes, including; transportation

within and between cells, energy generation, catalysis, signalling,

defence and maintaining the structural integrity of cells. Deter-

mining a protein’s ligand binding site location and potential

interacting residues is important for; functional determination,

mutagenesis studies, ligand binding site specificity and de novo drug

design [1,2,3,4,5].

The development of numerous protein ligand binding site

prediction methods has been driven by the recent inclusion of the

function prediction category in CASP [6]. Ligand binding site

prediction methods are subdivided into two broad groupings:

sequence-based methods and structure based-methods [7]. The

sequence based methods utilize sequence conservations of

structurally or functionally important residues, these methods

include firestar (CASP9 – group FN315) [8,9], WSsas [10],

FRcons [11], ConFunc (CASP8 - FN437) [12], ConSurf [13],

FPSDP (CASP8 - FN242) [14], INTREPID [15] and ss-TEA [16].

Structure based methods can be further separated into geometric

methods (FINDSITE [17] and Surflex-PSIM [18]), energetic

methods (SITEHOUND [19]) and miscellaneous methods, which

utilize knowledge from homology modelling (FunFOLD – CASP9

FN425 [4], 3DLigandSite –CASP9 FN017, FN057, FN072 and

FN415 [20] and I-TASSER_FUNCTION – CASP9 FN339 [21]),

surface accessibility (LIGSITECSC [22]) and physiochemical

properties (SCREEN [23]).

The top function prediction methods in CASP8 were the

manual methods by the Lee group [7] and the Sternberg group

[24]. Both groups used the superposition of structurally similar

templates containing biologically relevant ligands, onto protein

models, in order to determine the location of the ligand binding

site and the residues involved in binding [7,24]. Since CASP8 the

Sternberg group developed a web server for their algorithm

3DLigandSite [20] (http://www.sbg.bio.ic.ac.uk/3dligandsite/).

In CASP9 many of the top performing servers, with the

exception of firestar [8,9], converged on the similar concept of

structural superpositions of models to templates for predicting

ligand binding site locations [25]. For example, of the top 10

performing methods in CASP9, the FunFOLD method (McGuf-

fin) [4], the Lee group [7], the Sternberg group [24] and the
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Zhang group all implemented methods based on this idea. In

addition to carrying out structural superpositions of templates

containing biologically relevant ligands onto the model, the Zhang

group (I-TASSER_FUNCTION [21]), additionally carried out

local superpositions of predicted binding sites of the templates to

the model, which was thought to have helped to increase their

accuracy marginally in relation to other groups.

In CASP8, the function prediction category was assessed using

the Matthews Correlation Coefficient (MCC) [1]. The MCC is a

statistical metric for the comparison of the predicted ligand

binding site residues to the observed ligand binding site residues,

by comparing the number of residues assigned as true positive,

false positive, true negative and false negative, resulting in a score

between 21 and 1. A perfect prediction receives a score of 1,

whereas a random prediction receives a score close to 0 [3]. The

MCC score penalizes both over and under predictions making it a

good assessment metric, but the observed binding site residues

need to be clearly defined. However, it is difficult to conclusively

define, which residues will bind to a ligand, considering the

inherent flexibility of proteins and ligands, and proteins may bind

to multiple ligands in the same binding site.

In CASP9 both the Matthews Correlation Coefficient (MCC)

and the Binding-site Distance Test (BDT) score were used in the

assessment of ligand binding site residue predictions [25]. The

BDT metric addressed some of the problems associated with the

MCC score, while maintaining the advantages. The BDT score

ranges from 0 to 1, where a score close to 0 is a random prediction

and 1 is a perfect prediction. The BDT score takes into account

the distance a predicted binding site residue is from an observed

binding site residue, assigning a score accordingly. Binding site

residues predicted to be close to the observed binding site residues

receive higher scores than more distant residues [3]. Both the

MCC and BDT metrics are used to analyse a prediction, after the

experimental protein structure data is available.

In recent years Quality Assessment (QA) has gained attention to

become an integral part of tertiary structure prediction [26], and

here we are proposing that similar metrics should become an

integral component of ligand binding site residue predictions.

Protein feature analysis is incorporated into numerous QA and

ligand binding site prediction tools. Cheng and co-workers built a

single model QA tool, which exploits structural features, integrated

into a support vector machine to predict model quality [27]. The

Cheng group have since developed numerous other feature based

QA tools, MULITCOM [28] a consensus-based method and most

recently APOLLO [29] a single model-based assessment tool.

Both MULTICOM and APOLLO integrate feature analysis for

secondary structure, solvent accessibility, contact maps and beta-

sheet topology [28,29]. Several other QA methods also integrate

various protein features including QMEAN and QMEANclust

[30,31], ProQ [32] and a more recent method by Kalman and

Ben-Tal [33]. Several methods also incorporate protein feature

analysis for the prediction of ligand binding site residues, these

methods include DISCERN [5], a meta-functional signature

method by Wang et al [34] and a carbohydrate-binding module,

binding site residue prediction method [35].

Although it is clear that numerous algorithms have been

developed to incorporate protein feature analysis for protein

structure prediction, global model quality assessment and ligand

binding site residue prediction, we were unable to find any

methods that explicitly use protein feature analysis to assess ligand

binding site prediction quality. In this paper, we describe the

FunFOLDQA method, which can be used for the assessment of

ligand binding site prediction quality, prior to the availability of

experimental structural data. For experimentalists it is important

to know, which predictions they can trust and use to formulate

new hypotheses and plan new experiments. The availability of

predicted quality scores that correlate well with observed quality

scores will provide the necessary confidence measures for assessing

ligand binding site residue predictions.

Methods

The FunFOLD Method
The FunFOLD algorithm, which has been described previously

[4], uses structural superpositions of the top ranked models and

related templates with bound ligands in order to identify putative

contacting residues. The method uses a novel fully automated

agglomerative clustering approach for both ligand identification

and residue selection. The FunFOLDQA feature scores (described

below) are derived from data generated by running the FunFOLD

method. However, similar data are also produced by the majority

of the top structure based binding site residue prediction methods.

The FunFOLDQA Feature Scores
Initially 10 different feature dependent scores, ranging between

0 and 1 were developed; 4 binding site dependent feature scores; 3

ligand dependent feature scores and 3 structure dependent feature

scores. The scores were based on several features we found to be

important in determining a confident prediction from our

development work for the FunFOLD algorithm and from our

manual function prediction submissions for CASP9. A detailed

overview of all feature dependent scores developed for the

FunFOLDQA algorithm follows:

Binding site dependent feature scores. BDTalign: The

BDTalign score determines the distance between equivalent

residues of the model binding site and each template binding site

in 3D space. In other words it is simply a measure of the structural

fit between the template binding site and the model binding site.

The BDTalign score is an extension of the original BDT score [3],

but compares superposed binding sites of templates to models, as

opposed to the BDT score, which compares a predicted and

observed binding site on the same protein. The BDTalign score

was calculated by considering: the list of residue numbers in the

model predicted to be binding to a ligand, the list of residue

numbers of each template predicted to be binding to the

biologically relevant ligand (the distance cut-off for contacting

atoms was 0.5 Å plus the Van der Waal radii, which is a CASP

parameter) and the model and template structures. The models

and templates were superposed using TM-align [36], the

Euclidean distance was then calculated between each binding site

residue in the model and each binding site residue in the template.

The distance was then converted to an S-score using the standard

equation:

Sij~
1

1z
dij
d0

� �2

Where Sij was the S-score between a predicted residue in the model

i and a binding site residue in the template j, dij was the Euclidean

distance between the C-alpha coordinates of residues i and j and d0

was a distance threshold (3Å – the upper range cutoff for the BDT

score). The maximum Sij score, max(Sij), was then determined for

each predicted residue, which was the binding site residue in the

model to the closest equivalent binding site residue in the template.

The Template BDTalign score, was simply the sum of the

maximum Sij scores, divided by the greater value of the number of

Quality Assessment for Ligand Binding Predictions
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predicted residues in the model (Np) and the number of residues in

the template (Nt):

Template BDTalign~

PNp

i~0

max Sij

� �

max Np,Nt

� �

The final BDTalign score was the sum of all the Template

BDTalign scores normalized by the total number of templates

used in the prediction (Ntot):

BDTalign~

PNtot

i~0

Template BDTalign

Ntotð Þ

Identity: The Identity score determines the binding residues that

are ‘‘equivalent’’ in 3D space in the model and the template

binding site and scores them according to their amino acid

identity. The Identity score was calculated, by firstly determining

the closest equivalent residues in the model binding site, to

residues in the template binding site, for each template, by

calculating an S-score as in the BDTalign method using the

standard equation. If equivalent residues were the same amino

acid, then the Equivalent Residue score was equal to 1, if the

equivalent residue amino acids were not equal, the Equivalent

Residue score was 0. The Identity score for each template

(Template Identity) was then calculated, which was simply the sum

of the Equivalent Residue scores divided by the greater value of

the number of predicted residues in the model (Np) and the

number of residues in the template (Nt):

Template Identity~

PNp

i~0

Equivalent Residue score

max Np,Nt

� �

The final Identity score was the sum of all the Template Identity

scores normalized by the total number of templates used in the

prediction (Ntot):

Identity~

PNtot

i~0

Template Identity

Ntotð Þ

Rescaled BLOSUM62 score: The Rescaled BLOSUM62 score

scores residues that are equivalent in 3D space, according to the

BLOSUM62 scoring matrix. The BLOSUM62 matrix was chosen

as it is a widely used as a default substitution matrix, in numerous

sequence alignment algorithms. The Rescaled BLOSUM62 score

was calculated, in a similar way to the Identity score. However, the

closest equivalent residues were scored using the BLOSUM62

substitution matrix. The BLOSUM62 score for each template

(Template BLOSUM62 score) was then calculated, which was

simply the sum of the equivalent residue BLOSUM62 scores, plus

the number of extra binding site residues either in the model or in

the template (diff(24)). The score of 24 for each extra residue is

given to prevent biasing over-predictions or under-predictions.

The score was then divided by the greater value of the number of

predicted residues in the model (Np) and the number of residues in

the template (Nt):

Template BLOSUM62 score

~

PNp

i~0

Residue BLOSUM62 scorezdiff {4ð Þ

max Np,Nt

� �

The BLOSUM62 score was the sum of all the Template

BLOSUM62 scores normalized by the total number of templates

used in the prediction (Ntot):

BLOSUM62 score~

PNtot

i~0

Template BLOSUM62 score

Ntotð Þ

The BLSOUM62 score was then rescaled to lie between 0 and 1,

using the maximum residue BLOSUM62 score (MAXBLO) and

the minimum residue BLOSUM62 score (MINBLO) in the

following equation:

Rescaled BLOSUM62 score

~

PNtot

i~0

BLOSUM62 score{ MINBLOð Þ

MAXBLO{MINBLOð Þ

Where MAXBLO = 11 and MINBLO = 24.

Equivalent Residue Ligand Distance score: The Equivalent Residue

Ligand Distance score scores the equivalent residues in relation to

their distance from the bound ligand. The Equivalent Residue

Ligand Distance score was also calculated by firstly making use of

an S-score. The maximum Sik score between the equivalent

residues in the model and ligand and the Sjk template to the ligand

were calculated, where k was the closest atom in the ligand to the

binding site residues. The differences in distances between the

closest residues in the model to the closest atoms in the ligand and

the closest residues in the template to the closest atoms in the

ligand were calculated (Distance Difference). The Euclidian

distance equation was used to calculate the distances in 3D space

(x,y,z), between the closest binding site residue to the closest atom

in the ligand, using the following equation:

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2{x1ð Þ2z y2{y1ð Þ2z z2{z1ð Þ2

q

To rescale the score between 0 and 1, the equation QSCORE =

exp-Distance Difference was used, to convert the Distance Differ-

ence. The sum of the QSCORE for each model-template

comparison (QTOTAL) was then divided by the greater value

of the number of predicted residues in the model (Np) and the

number of residues in the template (Nt):

QTOTAL~

PNp

i~0

QSCORE

max Np,Nt

� �
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The Equivalent Residue Ligand Distance score was the sum of all

the template QTOTAL scores normalized by the total number of

templates used in the prediction (Ntot):

Equivalent Residue Ligand Distance score~

PNtot

i~0

QTOTAL

Ntotð Þ

Ligand dependent feature scores. In addition to the

binding site dependent feature scores, several ligand dependent

feature scores were developed, including scores to examine the

variation among superposed ligands, in terms of type and

category. However, none of the scores were found to correlate

well with observed scores and so they were not used in the final

FunFOLDQA algorithm. The ligand dependent feature scores are

shown for information only.

Ligand Variation: This score determines the variation of ligand

types in the ligand binding site cluster. The number of each ligand

type in the cluster was calculated e.g. if the ligands within the

cluster are: ZN-3, FE-2, MN-1, out of a total of 6 ligands in the

cluster there are 3 ligand types in the binding site. The total

number of ligands in the cluster was also calculated. The Ligand

Variation was calculated using the following equation:

Ligand Variation~1{
Number of ligand types

Number of ligands in the cluster

Ligand Category Variation: The Ligand Category Variation score is

similar to the Ligand Variation score, but focuses on the variation

in ligand categories in the ligand binding site cluster. Ligands are

classified into 4 categories, based on suggestions by the CASP9

function prediction assessors: metal, DNA/RNA, organic and

inorganic. Again, as in the Ligand Variation, the number of

ligands in the cluster was calculated. Each ligand within the ligand

binding site cluster was categorised into one of the 4 categories.

The sum of the different categories present in the ligand binding

site cluster was then calculated. The Ligand Category Variation

score was subsequently determined using the following equation:

Ligand Category Variation~1

{
Number of ligand categories

Number of ligands in the cluster

Structure dependent feature scores. Several structure

dependent feature scores were also developed, which included

the mean TM-score [36] of the templates, a score to compare the

number of good template superpositions (TM-score $ 0.4) to

models and the global QA scores from ModFOLDclust2 [37] .

The structure dependent feature scores are shown below, only the

ModFOLDclust2 score was used in the final FunFOLDQA

algorithm.

Mean TM-score: The Mean TM-score [36] was calculated to

determine the structural relatedness between templates used in the

prediction compared to the model. Basically, the mean TM-score

was calculated by dividing the sum of TM-scores for all templates

used in the prediction by the number of templates in the following

equation:

Mean TM-score~

Pn
i~1

TM-score

Number of templates

Template Score: The Template Score examines the number of

templates with biologically relevant ligands with TM-score.0.4 to

all templates. Templates need to have a TM-score.0.4, and

contain biologically relevant ligands to be used in FunFOLD and

FunFOLDQA predictions. The Template Score was calculated

using the following equation:

Template score~
Number of templates with TM-scorew0:4

Number of templates

Model Quality Score: The Model Quality Score is calculated using

ModFOLDclust2 [37], for a detailed description of the Mod-

FOLDlcust2 algorithm see the McGuffin and Roche 2010 paper.

Determining Which Features to Include in the
FunFOLDQA Algorithm

All server models from the CASP8 and CASP9 datasets were

downloaded from the CASP website (http://predictioncenter.org/

download_area/). The ModFOLDclust2 method [37] was then

used to predict the global model quality for server models from

both CASP8 and CASP9. Two datasets were produced for each of

the CASP8 and CASP9 targets; for example the CASP8 dataset 1

contained the top 10 models for each target, according to

ModFOLDclust2, while CASP8 dataset 2 contained 10 models

from each target with model quality scores range from good to

bad, and not including the top 10 models. Each of the feature

scores were initially used to analyse the CASP8 and CASP9

FunFOLD [4] predictions on datasets 1 and datasets 2. Utilizing

both datasets, each of the 10 feature scores were compared against

both the observed MCC and BDT scores and the Kendall’s t,

Spearman’s r and Pearson’s r correlation coefficients were

measured. Each of the feature scores were then ranked based on

their correlations to the MCC and BDT metrics on the CASP8

and CASP9 datasets 1 and datasets 2.

Linear Combination of feature scores (mean

score). Initially, linear combinations of the 5 feature scores

with the highest correlations to the MCC and BDT scores

(BDTalign, Identity, Rescaled BLOSUM62, Equivalent Residue

Ligand Distance and Model Quality) were undertaken. The

‘‘Linear Combination’’ score was compared to both the observed

MCC and BDT scores using Kendall’s t, Spearman’s r and

Pearson’s r correlation coefficients.

Multiple Linear Regression of feature scores. The 5

feature scores with the highest individual correlations were also

utilized to carry out multiple linear regression in an attempt to

improve the correlation scores. Multiple linear regression was

carried out using the R statistics package [38] on the top 5 feature

scores, for both CASP8 and CASP9 datasets with the y-value set to

either the MCC and BDT metrics to generate weightings for each

protein feature. The Multiple Linear Regression score was trained

on CASP8 dataset 1 and the subsequent weights were used for

testing on CASP9 dataset 1, and vice versa when trained using the

CASP9 dataset 1, the weights were used for testing on the CASP8

dataset 1.

FunFOLDQA neural network architecture. The 5 feature

dependent scores were used as inputs to a feed forward back

Quality Assessment for Ligand Binding Predictions
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propagation artificial neural network. The neural network

consisted of 3 layers, 5 neurons in the input layer, 5 neurons in

the hidden layer and one neuron in the output layer.

To train the FunFOLDQA neural network, the datasets 1 and

datasets 2 were combined, producing two new datasets (datasets 3),

for both the CASP8 and CASP9 targets. To train the neural

network, 5 protein feature scores were used as inputs to the 5

neurons in the input layer and either the MCC or BDT score was

the score used for training output. The FunFOLDQA Neural

Network was trained on CASP8 dataset 3 and the subsequent

weights were used for testing on CASP9 dataset 3, and vice versa

when trained using the CASP9 dataset 3, the weights were used for

testing on the CASP8 dataset 3. This culminated in the production

of 4 sets of results, CASP8 tested on MCC and BDT and CASP9

tested on MCC and BDT.

Comparison of the Feature Score Combination Methods
Per-target correlations (Kendall’s t, Spearman’s r and Pearson’s

r) were calculated to compare each of the methods’ output scores

with the observed MCC and BDT scores. The Wilcoxon signed

ranked sum test was utilized to compare the per-target correla-

tions, in order to determine whether any method showed a

statistically significantly improvement over any of the other

methods. Additionally, a receiver operating characteristic analysis

was undertaken, using the ROCR [39] plug-in for the R statistical

package, with the MCC or BDT score of 0.5 used to determine a

boundary between true positive and false positive ligand binding

site residue predictions.

Benchmarking of FunFOLDQA Algorithm
The FunFOLDQA Neural Network algorithm was bench-

marked using both the CASP8 and CASP9 dataset and both the

MCC and BDT metrics. The FunFOLDQA method was

benchmarked using only the information concerning templates

and models for each target that could be obtained from the

CASP8 and CASP9 server predictions. Thus all of the information

used was only that which was available to predictors during either

CASP prediction season. The FN prediction files for the 27 targets

analysed for function prediction in CASP8, the 30 targets analysed

for function prediction in CASP9 and all associated 3D server

models were downloaded from the CASP website (http://

predictioncenter.org/download_area/).

The ModFOLDclust2 method [37] was used to analyze the

server models, for each CASP8 and CASP9 target, submitted

during both CASP8 and CASP9 prediction seasons. The top 10

models for each target were then used as the starting models for

predicting ligand binding residues utilizing FunFOLD [4]. The

parent records from each server model were examined in order to

construct a list of template PDB IDs for each target, which was

available at the time of each CASP prediction season. The list of

templates arising from this analysis was subsequently filtered using

FASTA [40] to ensure it was 70% non-redundant according to

pairwise sequence identity. This type of filtering is in line with that

carried out during the construction of the non-redundant fold

libraries used by many fold recognition servers, such as IntFOLD-

TS [26]. Finally, a maximum of 40 templates were used in our

analysis for efficiency. The FunFOLDQA algorithm was subse-

quently utilized to analyze the FunFOLD binding site residue

predictions and produce a quality score for each prediction. The

FunFOLDQA score was then used to re-rank the predictions for

the top 10 models, from each CASP function prediction target.

The scores for the top ranked FunFOLDQA predictions, for

each CASP function prediction target were then compared against

all of those from the other function prediction groups participating

in CASP8 and CASP9, using the MCC and BDT scores as an

indicator of performance. An analysis of the statistical significance

between the differences in mean scores was also carried out,

similar to that of the official CASP assessments [1,25]. The

Binding-site Distance Test (BDT) score was used with the d0

threshold set to 1Å, in order to more stringently assess the

accuracy of predictions.

Results

Three methods for combination of the 5 FunFOLDQA feature

scores: 1. Linear combinations of scores (mean score), 2.

Combination of the feature scores using multiple linear regression

and 3. Combination using a feed forward neural network with

back propagation, are compared to MCC and BDT performance

metrics, to determine how closely correlated the predicted feature

scores are to observed performance metrics. The Wilcoxon signed

ranked sum test is used, to determine if a significant difference in

performance exists, between the feed forward neural network and

the different combinations of feature scores. Receiver Operating

Characteristic (ROC) plots are shown and Area Under the Curve

(AUC) and Standard Error (SE) was also calculated, for the

combination methods.

The FunFOLDQA algorithm, utilizing the Neural Network for

feature score combination, is benchmarked using the set of 27

CASP8 function prediction targets and 30 CASP9 function

prediction targets. The performance of FunFOLDQA is compared

against that of groups that participated in the CASP8 and CASP9

Table 1. Target-by-target analysis of the correlations for the top single feature score and each combination method (CASP8 data).

Methods CASP8

MCC BDT

Pearson’s r Spearman’s r Kendall’s t Pearson’s r Spearman’s r Kendall’s t

Equivalent Residue
Ligand Distance

0.7517 0.6226 0.4715 0.7509 0.6182 0.4667

Linear Combination 0.8086 0.6935 0.5250 0.7638 0.6312 0.4750

Multiple Linear
Regression

0.5918 0.5415 0.3917 0.5918 0.5415 0.3917

Neural Network 0.8258 0.6982 0.5270 0.6694 0.6333 0.4690

Bold values indicate the highest correlation coefficients in each column.
doi:10.1371/journal.pone.0038219.t001

Quality Assessment for Ligand Binding Predictions

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e38219



function prediction categories, along with the FunFOLD meth-

od [4].

Determination of the Best Method for FunFOLDQA
Feature Score Combination

When the 10 FunFOLDQA feature dependent scores are

initially compared to the MCC and BDT metrics, a large variation

in correlations is seen (Kendall’s t, Spearman’s r and Pearson’s r

correlation coefficients). It can also be seen that there are several

feature scores, which show positive correlation, with the Equiv-

alent Residue Ligand Distance score having the highest correla-

tions to both the MCC and BDT scores over all of the datasets

(Figure S1).

On close inspection of the feature dependent score categories,

the binding site dependent scores have the highest correlations (t,

r and r) to both the MCC and BDT scores. The ligand dependent

feature scores are not as closely correlated (t, r and r) to the MCC

and BDT metrics. The predictive structure dependent feature

Table 2. All versus all Wilcoxon signed ranked sum test analysis, to determine of a significant difference exists between the
scoring methods (CASP8 data).

CASP8

Kendall’s t

MCC BDT

Equivalent
Residue
Ligand Distance

Linear
Combination

Multiple
Linear
Regression

Neural
Network

Equivalent
Residue
Ligand Distance

Linear
Combination

Multiple
Linear
Regression

Neural
Network

Equivalent
Residue Ligand
Distance

0.9938 0.7205 0.9958 0.9984 0.1027 0.9693

Linear
Combination

0.0068 0.0229 0.0888 0.0017 0.0005 0.0455

Multiple Linear
Regression

0.2905 0.9791 0.9369 0.9030 0.9995 0.9970

Neural Network 0.0047 0.9175 0.0682 0.0329 0.9582 0.0032

Spearman’s r

MCC BDT

Equivalent
Residue
Ligand Distance

Linear
Combination

Multiple
Linear
Regression

Neural
Network

Equivalent
Residue
Ligand Distance

Linear
Combination

Multiple
Linear
Regression

Neural
Network

Equivalent
Residue Ligand
Distance

0.9944 0.6813 0.9891 0.9981 0.0564 0.9671

Linear
Combination

0.0062 0.0257 0.0536 0.0021 0.0006 0.1826

Multiple Linear
Regression

0.3296 0.9762 0.8348 0.9468 0.9995 0.9971

Neural Network 0.0119 0.9510 0.1740 0.0352 0.8285 0.0032

Pearson’s r

MCC BDT

Equivalent
Residue
Ligand Distance

Linear
Combination

Multiple
Linear
Regression

Neural
Network

Equivalent
Residue
Ligand Distance

Linear
Combination

Multiple
Linear
Regression

Neural
Network

Equivalent
Residue Ligand
Distance

0.9947 0.4832 0.9322 0.9969 0.0742 0.9742

Linear
Combination

0.0058 0.0069 0.0146 0.0034 0.0028 0.0705

Multiple Linear
Regression

0.5279 0.9936 0.9283 0.9295 0.9975 0.9966

Neural Network 0.0717 0.9865 0.0758 0.0275 0.9331 0.0037

Ho = No difference between the methods in the rows and the columns. H1 = the methods in the row has a higher correlation. Bold values indicate significant p-values
(p,0.05).
doi:10.1371/journal.pone.0038219.t002
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scores, are also not well correlated to the observed MCC and BDT

scores, but for the CASP8 datasets, interestingly the Model

Quality score has a high correlation coefficients, to both the MCC

and BDT scores. The 5 feature dependent scores that show the

most promise, which were highly correlated to both the MCC and

BDT metrics, are the 4 binding site dependent scores (BDTalign,

Identity, Rescaled BLOSUM62 and Equivalent Residue Ligand

Distance) and one structure dependent feature score (Model

Quality) (Figure S1).

Combining the Feature Dependent Scores
When the combined scoring methods and Equivalent Residue

Ligand Distance scores are analysed on the CASP8 dataset, the

Linear Combination score, shows an improvement in the

Kendall’s t, Spearman’s r and Pearson’s r, for correlations to

both the MCC and BDT scores, over the best individual feature

scores (Table 1), which is shown to be statistically significant in

Table 2. The Multiple Linear Regression score results in a

decreased correlation to observed MCC and BDT scores, when

compared to the Linear Combination method (Table 1), and this

was shown to be statistically significant (Table 2). In Table 1 the

FunFOLDQA Neural Network score, has overall the highest

correlations (Kendall’s t, Spearman’s r and Pearson’s r correlation

coefficients), to observed MCC and BDT scores. In Table 2 it can

be seen that the Neural Network score is statistically significantly

better than the Equivalent Residue Ligand Distance score (t, r) for

the observed MCC score and shows a statistically significant

improvement over both the Equivalent Residue Ligand Distance

score and the Multiple Linear Regression score for the observed

BDT metric. In Figure 1 plots of the predicted scores to the

observed scores for the CASP8 MCC data can be seen.

The Equivalent Residue Ligand Distance score, has a higher

correlation (t and r) than the Neural Network output score for

CASP9 data, when compared to the MCC metric (Table S1), but

this is not statistically significant (Table S2). For the CASP9

Figure 1. Comparing the top single feature scoring method and each of the combination methods to the observed MCC scores
(CASP8 data). A) The Equivalent Residue Ligand Distance score (r = 0.623). B) The Linear Combination of the 5 feature scores (r = 0.694). C) The
Multiple Linear Regression for the combination of the 5 feature scores (r = 0.542). D) The 5 feature scores combined using the Neural Network
(r = 0.698).
doi:10.1371/journal.pone.0038219.g001
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dataset, when the predictive Neural Network score is compared to

the observed BDT metric, the correlation coefficient is marginally

increased over all other methods (Table S1), however no statistical

significance could be measured in this case (Table S2). The Linear

Combination score shows a statistically significant improvement

over the Equivalent Residue Ligand Distance score and the

Multiple Linear Regression score for the CASP9 BDT data

(Table S2).

Receiver Operator Characteristic Analysis
The performance of the feature score combination methods and

the top single score (Equivalent Residue Ligand Distance score),

for the prediction of the MCC and BDT scores, is also compared

using standard ROC analysis. The results in Table 3 show the

overall AUC scores for each method, along with the standard

error [41], and the AUC scores at low false positive rate. The

ROC curves are shown in Figure 2 for both CASP8 and CASP9

MCC and BDT scores.

From the ROC analysis (Table 3 and Figure 2), on the CASP8

data it can be seen that the Neural Network outperforms all of the

other methods and this is significant compared with the Multiple

Linear Regression score. This shows again the added value of the

utilization of a Neural Network for score combination. For the

CASP9 data, the single score – Residue Ligand Distance score –

outperforms all of the other methods including the Neural

Network, but this is not significant when the SE is considered.

Unfortunately there is no formal method, which can be used to

assess the statistical significance of the observed differences in the

AUC scores, however the standard error (SE) score allows us to

express the separation between the methods.

Results from Training the Neural Network
Each feature score was compared to the FunFOLDQA Neural

Network output score in an attempt to determine the most

important inputs for the Neural Network training (Figures 3, 4, S2

and S3).

For example in Figure 3 for CASP8 data trained on the MCC

score, it can be seen that the BDTalign score has the biggest

influence on learning (t = 0.773, r = 0.926, r = 0.812), followed by

Identity (t = 0.763, r = 0.917, r = 0.714), Rescaled BLOSUM62

(t = 0.756, r = 0.915, r = 0.657), Equivalent Residue Ligand

Distance (t = 0.688, r = 0.852, r = 0.868) with the Model Quality

score having the least influence on the learning (t = 0.361

r = 0.514, r = 0.516). Interestingly, in Figure 4 for the CASP8

BDT dataset, the Rescaled BLOSUM62 score has the most

influence on learning (t = 0.884, r = 0.978, r = 0.950) with the

Model Quality score having the lowest correlation (t = 0.268,

r = 0.379, r = 0.382). For CASP9 data trained on the MCC score

(Figure S2), the Identity score has the highest correlations

(t = 0.925 r = 0.991, r = 0.992), again Model Quality plays little

influence in the learning of the Neural Network (t = 0.037,

r = 0.065, r = 0.088). In Figure S3 for the Neural Network trained

on the CASP8 BDT score, when tested on the CASP9 data, the

feature dependent scores have the following correlations; BLO-

SUM62 (t = 0.704, r = 0.877, r = 0.822), Identity (t = 0.458,

r = 0.641, r = 0.527) and BDTalign (t = 0.439, r = 0.625,

r = 0.550) have the highest correlations, followed by Model

Quality (t = 0.3305, r = 0.481, r = 0.512) and the lowest correla-

tion is for the Equivalent Residue Ligand Distance (t = 0.112,

r = 0.173, r = 0.011), which does not have as big an influence on

learning of the Neural Network.

Can FunFOLDQA be Used to Add Value to Binding Site
Residue Predictions?

The results of an assessment of binding site predictions, similar

to the official CASP8 function prediction assessment carried out

by Lopez et al. [1], the official CASP9 assessment [25] and our

assessment of the FunFOLD method [4], are shown in Tables 4

and 5 and in Figures 5 and 6. The Binding-site Distance Test

(BDT) metric is used to measure prediction success; the resulting

scores achieved by the different groups and FunFOLD are

compared with those from the FunFOLDQA method (The

FunFOLDQA method refers to the Neural Network method for

feature score combination). The FunFOLDQA method is shown

to outperform all other methods tested at CASP8 and the original

FunFOLD method [4] according to the mean per-target BDT

score (Figure 5).

In Figure 5, the difference in mean BDT performance can be

seen. The FunFOLDQA method is 6.43% better than the original

FunFOLD method, when tested on the CASP8 function

prediction dataset. In addition, the FunFOLDQA method

shows.22% improvement over the next best server group

Table 3. ROC analysis.

Methods CASP8 CASP9

MCC BDT MCC BDT

AUC SE AUC0–0.1 AUC SE AUC0–0.1 AUC SE AUC0–0.1 AUC SE AUC0–0.1

Equivalent
Residue
Ligand
Distance

0.9754 0.0090 0.0792 0.9870 0.0061 0.0889 0.8333 0.0251 0.0466 0.7768 0.0293 0.0260

Linear
Combination

0.9765 0.0086 0.0883 0.9681 0.0104 0.0846 0.7938 0.0279 0.0398 0.7489 0.0308 0.0172

Multiple
Linear
Regression

0.9089 0.0207 0.0610 0.8974 0.0226 0.0477 0.8048 0.0272 0.0488 0.7742 0.0294 0.0256

Neural
Network

0.9773 0.0085 0.0845 0.9903 0.0052 0.0904 0.8003 0.0275 0.0319 0.7634 0.0300 0.0053

SE standard error of AUC [41]; AUC0–0.1, AUC for false positive rate between 0 and 10% (false positives were defined as the top function prediction according to each
score having an MCC or BDT score . = 0.5). The AUC and AUC0–0.1 scores were calculated using ROCR [39]. The highest AUC and AUC0–0.1 scores for each CASP
prediction session and each performance measure (MCC and BDT) are indicated in bold.
doi:10.1371/journal.pone.0038219.t003
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FN202’s CASP8 predictions, .9% improvement over group

FN293’s CASP8 predictions and a ,6% improvement over

FN407’s CASP8 predictions. The improvement is statistically

significant for all CASP8 groups tested and the FunFOLD

method, except the manual method by the Lee group FN407

(Table 4). A significant improvement is seen after the addition of

quality assessment to the ligand binding site residue prediction

method. In our previous study, the original FunFOLD method

was not statistically significantly better than group FN293,

however using the FunFOLDQA method we can now demon-

strate a statistically significant improvement. The maximum BDT

score, which can be obtained from the top 10 models using the

FunFOLD method, is shown for comparison.

The FunFOLDQA method is also shown to be competitive with

the methods tested at CASP9 (Table 5 and Figure 6). The

FunFOLDQA method showed no significant difference compared

with the FunFOLD method and the top server methods according

to mean per-target BDT scores (Table 5) (Partial binding site

definitions were used here [25]). According to the Wilcoxon signed

ranked sum test, the per-target BDT score for the top manual

method (FN096) is statistically significantly better than the

FunFOLDQA method, however, no significant difference can be

observed between the top server method (FN339 – I_TASSER_-

FUNCTION [21]) and FunFOLDQA (Table 5). The maximum

BDT scores that can be obtained from the top 10 models using the

FunFOLD method are also shown in Table 5 and Figure 6 for

comparison.

Example Predictions
In Figure 7 the FunFOLDQA method is shown to add value

over using the FunFOLD method alone for T0426 (A - C), T0461

(D – F) and T0480 (G – I). Figure 7C represents accurate

predictions for the CASP8 target T0426 (PDBID 3da2) with

Figure 2. Receiver Operator Characteristic curves for the top single score and each combination method plots. ROC plots for the top
single component score (Equivalent Residue Ligand Distances) (black), the Linear Combination (red), Multiple Linear Regression (blue) and Neural
Network (yellow) scores for both the MCC and BDT performance metrics on both the CASP8 and CASP9 datasets at a true positive rate of 0.5. A) ROC
plot for the MCC performance metric on the CASP8 dataset. B) ROC plot for the BDT performance metric on the CASP8 dataset. C) ROC plot for the
MCC performance metric on the CASP9 dataset. D) ROC plot for the BDT performance metric on the CASP9 dataset.
doi:10.1371/journal.pone.0038219.g002
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Figure 3. The FunFOLDQA Neural Network scores compared with the observed MCC scores and the feature component scores
(CASP8 data). A) The FunFOLDQA Neural Network is plotted against the observed MCC score. B) The BDTalign score. C) The Identity score. D) The
Rescaled BLOSUM62 score. E) The Equivalent Residue Ligand Distance score. F) The 3D Model Quality score (ModFOLDclust2).
doi:10.1371/journal.pone.0038219.g003
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Figure 4. The FunFOLDQA Neural Network scores compared with the observed BDT scores and the feature component scores
(CASP8 data). A) The FunFOLDQA Neural Network is plotted against the observed BDT score. B) The BDTalign score. C) The Identity score. D) The
Rescaled BLOSUM62 score. E) The Equivalent Residue Ligand Distance score. F) The 3D Model Quality score (ModFOLDclust2).
doi:10.1371/journal.pone.0038219.g004
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perfect MCC and BDT scores of 1.0. For comparison, the

prediction by the original FunFOLD method (Figure 7B) gave

MCC = 0.864 and BDT = 0.750. Analysing the prediction for

T0426 in more detail (Figure 7C), the FunFOLDQA method

correctly predicted the binding site as being a metal binding site,

the observed zinc ligands to be in the correct binding pocket and

all correctly predicted binding site residues. However, the

FunFOLD method, over predicted one residue for this target –

THR222 (Figure 7B - shown in red). The FunFOLDQA method

selected a better top prediction where the ligands are superposed

in a tighter cluster than the top FunFOLD prediction, thus fewer

ligands are closer to residue THR222 and it is not over predicted.

Figure 7F represents an accurate binding site residue prediction

for CASP8 target T0461 (PDBID 3dh1), again with perfect MCC

and BDT scores. For comparison the original FunFOLD method

(Figure 7E) achieved MCC = 0.863 and BDT = 0.75. When the

prediction for T0461 (Figure 7F) is analysed in more detail,

FunFOLDQA correctly predicts the binding site location, the

correct ligand (ZN) and the correct binding site residues. However

utilizing the FunFOLD method alone (Figure 7E), again results in

an over prediction of one residue MET77 (shown in red).

Another example of the improvement in predictive quality by

the addition of FunFOLDQA to the FunFOLD method is seen in

Figure 7, for CASP8 target T0480 (PDBID 2k4x) also with perfect

MCC and BDT scores. By comparison, the prediction by the

original FunFOLD method (Figure 7H) received and MCC score

of 0.730 and a BDT score of 0.756. The original FunFOLD

method (Figure 7I) over predicts one residue ARG23 (shown in

red) and under predicts another residue CYS39 (shown in red).

Discussion

In this study we describe a novel method, FunFOLDQA, for the

quality assessment of ligand binding site residue predictions. The

FunFOLDQA algorithm is composed of 5 feature dependent

scores. To combine the 5 feature dependent scores 3 methods were

tested; simple Linear Combination; Multiple Linear Regression

and a Neural Network. The Neural Network showed a statistically

significant improvement over both the Linear Combination and

the Multiple Linear Regression methods, when the correlations of

the predictive output scores to the observed scores (either MCC or

BDT) were calculated. ROC analysis was also undertaken,

showing that the Neural Network scoring method achieved the

largest AUC score and therefore the highest confidence for the

CASP8 dataset. We therefore decided to utilize the Neural

Network to combine the FunFOLDQA feature dependent scores.

The FunFOLDQA method is a feature based quality assessment

method, which assesses the quality of ligand binding site residue

predictions, producing an output score between 0 and 1 in relation

to the quality of the prediction. A score of 1 indicates a likely

perfect prediction and a score close to 0 indicates a likely random

prediction. The FunFOLDQA method was initially designed to

assess alternative FunFOLD predictions, in an attempt to improve

on the predictive quality of the method. We have demonstrated

that a statistically significant improvement can be achieved

compared with using the FunFOLD algorithm alone. However,

the method can also be applied to any other similar method that

produces a 3D model and a list of comparable templates as part of

its prediction protocol. We provide a downloadable executable of

FunFOLDQA, which is usable with any binding site residue

prediction tool that is capable of supplying those data as inputs

(http://www.reading.ac.uk/bioinf/downloads/).

When designing the FunFOLDQA method, we found it difficult

to decide upon which binding site specific feature components to

include. Hence, we started with 10 different feature dependent

components for the prediction of binding site quality, to initially

assess their relationship to the MCC and BDT metrics. The initial

scores were derived to quantify features that we found were

important in estimating prediction quality during our participation

in the CASP9 experiment. The feature dependent scores can be

Table 4. All versus all analysis for the top methods in CASP8
along with the FunFOLD and FunFOLDQA methods.

Method Max FunFOLDQA FunFOLD FN407 FN293 FN202

Max 0.0046 0.0001 0.0277 0.0012 0.0003

FunFOLDQA 0.9968 0.0026 0.0885 0.0140 0.0004

FunFOLD 0.9999 0.9977 0.4870 0.1280 0.0010

FN407 0.9750 0.9182 0.5130 0.0500 0.0303

FN293 0.9990 0.9877 0.8720 0.9585 0.0443

FN202 0.9998 0.9997 0.9999 0.9720 0.9602

The analysis is based on common subsets of all CASP8 function prediction
targets, with a minimum of 10 predictions in common. Predictions are scored
using the BDT metric. Ho = No difference between the methods in the rows
and the columns. H1 = the methods in the row has a higher correlation. Bold
values indicate significant p-values (P,0.05).
doi:10.1371/journal.pone.0038219.t004

Table 5. All versus all analysis for the top server methods in CASP9 along with the FunFOLD and FunFOLDQA methods.

Method FN096 FN339 FN315 FunFOLDQA FunFOLD FN236 Max FN057

FN096 0.0540 0.0402 0.0476 0.0490 0.0056 0.0069 0.0002

FN339 0.9533 0.5000 0.0890 0.1210 0.0319 0.0228 0.0014

FN315 0.9624 0.5107 0.1050 0.2280 0.0252 0.0250 0.0004

FunFOLDQA 0.9553 0.9156 0.9009 0.6001 0.3216 0.1979 0.0938

FunFOLD 0.8790 0.7720 0.6980 0.4115 0.3610 0.1234 0.0590

FN236 0.9949 0.9699 0.9765 0.6885 0.6390 0.4277 0.2050

Max 0.9937 0.9788 0.9769 0.8828 0.8828 0.5833 0.4459

FN057 0.9998 0.9988 0.9996 0.9110 0.9840 0.8035 0.5676

The analysis is based on common subsets of all CASP9 function prediction targets, with a minimum of 10 predictions in common. Predictions are scored using the BDT
metric. Ho = No difference between the methods in the rows and the columns. H1 = the methods in the row has a higher correlation. Bold values indicate significant
p-values (p,0.05).
doi:10.1371/journal.pone.0038219.t005
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divided into 3 major categories; binding site dependent scores;

ligand dependent scores and structure dependent scores.

The binding site dependent feature scores showed positive

correlations to both the MCC and BDT metrics. These scores are

closely assessing our assumption that structurally similar proteins

will have similar binding sites. The structure dependent Model

Quality score also showed a positive relationship to both the MCC

and BDT metrics. It is assumed that Model Quality is important in

binding site predictions, as a bad model, on the whole, should

result in a bad binding site prediction and a good model, a good

prediction. The other structure dependent scores did not result in

a positive relationship to either the MCC or BDT metrics.

Presumably this was due to how closely structurally related the

templates were. All of the ligand dependent scores showed a weak

correlation to the MCC and BDT scores; the correlations (t, r and

r) were low and therefore were not utilized in the final score. We

postulate that the variation in ligand size, ligand type and

chemotype category found across templates does not play a direct

role in the prediction.

Initially the 5 feature dependent scores; BDTalign, Identity,

Rescaled BLOSUM62, Equivalent Residue Ligand Distance and

Model Quality were combined linearly i.e. their mean score was

Figure 5. BDT score comparison for the CASP8 benchmarking. A) Mean per-target BDT scores for selected CASP8 function prediction groups
along with FunFOLD, FunFOLDQA and the maximum score that could be obtained from FunFOLD. B) The added value, or increase in mean per-target
score over FunFOLD (Minimum of 15 predictions) * indicates server method.
doi:10.1371/journal.pone.0038219.g005
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calculated. This was found to improve the correlations to both the

MCC and BDT metrics compared to the individual component

scores. The ideal score would produce a correlation close to one,

and would be a direct replacement for the MCC or BDT metric,

when the solved structure data is not available. Therefore we

attempted to improve on this score further using multiple linear

regression and a neural network. However, when multiple linear

regression was used to combine scores, this resulted in a slight

decrease in the correlation coefficients when compared to the

observed MCC and BDT scores. The decrease in the Kendall’s t,

Spearman’s r and Pearson’s r correlation coefficients is due

presumably to the lack of linearity of the component scores

(Figure 1). We then attempted to train a feed forward neural

network with back propagation, using the 5 component scores as

neurons in the input layer, 5 neurons in the hidden layer and

either the MCC or BDT metrics as the neuron in the output layer

and this was found to improve predictions further still (albeit

marginally).

Overall for the CASP8 data the Neural Network showed the most

improvement over the Multiple Linear Regression method and the

Figure 6. BDT score comparison for the CASP9 benchmarking. A) Mean per-target BDT scores for selected CASP9 function prediction groups
along with FunFOLD, FunFOLDQA and the maximum score that could be obtained from FunFOLD. B) The added value, or increase in mean per-target
score over FunFOLD (Minimum of 15 predications) * indicates server method.
doi:10.1371/journal.pone.0038219.g006
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EquivalentResidueLigandDistance score (Table 2). Interestingly for

the CASP9 MCC data for Kendall’s t, Spearman’s r correlation

coefficient no significant difference is seen between the combination

methods, but for Pearson’s r the Neural Network score shows an

improvement over Multiple Linear Regression. For the CASP9 BDT

data, the Linear Combination score showsa significant improvement

over Equivalent Residue Ligand Distances and Multiple Linear

Regression scores for the three correlation coefficients, with no

significant difference between the Neural Network and the other

methods (Table S2). Using the Multiple Linear Regression assumes a

linear relationship between the scores, also utilizing the linear

combinationsassumesthatall thescoresplayanequalrole inassessing

the ligand binding site residue prediction results. Conversely, the

neuralnetwork should learn therelationshipbetween the input scores

and the observed output scores (MCC or BDT), thus weighting the

scores more appropriately.

Figure 7. Examples of binding site predictions from CASP8 targets using the FunFOLDQA and FunFOLD methods. The green sticks
represent residues in the model that has been correctly predicted as binding to the ligands. The red sticks represent residues that were not predicted
or incorrectly predicted as potential ligand binding residues. The blue sticks represent the observed ligand binding site residues in the experimental
structure. The white spheres and the white sticks represent ligands either predicted (B, C, E, F, H and I) or observed (A, D and G). A) An example of the
observed CASP8 target T0426 (3da2), with the observed binding site residues (117, 119 and 142) and ligands (ZN) shown. B) The predicted binding
site from FunFOLD for T0426 with the predicted binding site residues (117, 119, 142 and 222) and ligands (ZN-19 and SO4-1) shown. C) An example
where FunFOLDQA produces a perfect prediction for CASP8 target T0426 (3da2), with the predicted binding site residues (117, 119 and 142) and
ligands (ZN-19 and SO4-1) shown. D) An example of the observed CASP8 target T0461 (3dh1), with the observed binding site residues (75, 111 and
114) and ligands shown (ZN). E) The predicted binding site from FunFOLD for T0461 with the predicted binding site residues (75, 77, 111 and 114)
and ligands (ZN-17, IMD-1, DDN-1, PO4-1 and THU-1) shown. F) An example where FunFOLDQA produces a perfect prediction for CASP8 target T0461
(3dh1), with the predicted binding site residues (75, 111 and 114) and ligands (ZN-17, IMD-1, DDN-1, PO4-1 and THU-1) shown. G) An example of the
observed CASP8 target T0480 (2k4k), with the observed binding site residues (21, 24, 39 and 42) and ligands (ZN) shown. H) The predicted binding
site from FunFOLD for T0480 with the predicted binding site residues (21, 23, 24 and 42) and ligands (ZN-2) shown. I) An example where FunFOLDQA
produces a perfect prediction for CASP8 target T0480 (2k4k), with the predicted binding site residues (21, 24, 39 and 42) and ligands (ZN-3) shown.
doi:10.1371/journal.pone.0038219.g007
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The ROC analysis provides a useful benchmark for gauging the

consistency of the output scores for the combination methods. In

order to have a high level of confidence in the binding site quality

predictions, the scores must be comparable from one target to the

next. The confidence of the output scores for the combination

methods can be compared by studying the plots of the true positive

rate to false positive rate (Figure 2). For the CASP8 ROC analysis

the Neural Network method has the largest AUC score (Table 3),

thus the methods produces less false positive hits for every true

positive hit, when compared to the other combination methods

and the single score. However their difference in performance is

only significant over the Multiple Linear Regression method on

the CASP8 data. For the CASP9 ROC analysis, the Equivalent

Residue Ligand Distance score has the highest AUC score

(Table 3). However, there is no significant separation between

the methods according to the standard error of the AUC scores.

The AUC score reflects the score consistency across targets, which

is useful in this assessment. The AUC analysis examines the

number of false positive hits i.e. incorrect predictions achieving

good predictive scores compared to the number of true positive

hits. For the CASP8 data, the Neural Network provides the

optimal score combination for producing the best predicted

binding site quality. For CASP9, the single score or the Multiple

Linear Regression method are sufficient. These results reflect the

correlation results shown in Table 1 and Figure 1.

When FunFOLDQA is used in combination with the Fun-

FOLD [4] ligand binding site prediction tool, a significant

improvement over all of the server methods that were tested at

CASP8 is seen, as well as one of the top manual groups (FN293)

and FunFOLD. This shows that the addition of FunFOLDQA,

improves the predictive value of the FunFOLD algorithm. As with

the original FunFOLD method, FunFOLDQA was found to be

competitive with all of the top server groups that participated in

CASP9 and again shows a marginal improvement.

Although the FunFOLDQA Neural Network based quality

assessment method has a good correlation to the MCC and BDT

scores with a Spearman’s r of ,0.7, there is room for

improvement, to increase the correlation to a score closer to 1.0.

In addition, even though the FunFOLDQA method results in a

6.39% improvement (CASP8) over the FunFOLD method, it does

not always pick the predictions with the top MCC or BDT scores.

The maximum BDT score, which can be achieved from the

predictions on the top 10 models, would provide a further

improvement of ,2.9% above the FunFOLDQA method. This is

the maximum score that could be achieved using the FunFOLD

method with the models available. The use of alternative machine

learning methods for score combination may improve the output

score and bring it closer in line with the MCC and BDT metrics.

The addition of some new feature dependent scores may also help

to improve the method; these may include a better score to assess

the ligand variation and look at the physiochemical properties of

the binding sites residues in the model compared to the template.

Conclusions
The FunFOLDQA score provides an accurate measure of

binding site prediction quality that reflects the MCC or BDT

metrics, prior to the availability of structural data. The

FunFOLDQA Neural Network helps to reduce the number of

false positive predictions and has a strong correlation to both the

MCC and BDT metrics. The ability to predict the quality of a

binding site residue prediction is important for the experimentalist

who wishes to know how reliable the prediction might be and

whether the prediction should be used to inform future

experiments. This type of score is directly in line with the CASP9

assessor suggestion, that predictors also provide scores that assess

the quality of their function predictions [25]. Furthermore from a

predictor’s perspective, the FunFOLDQA score is also shown to

add significant value to ligand binding site prediction, for example

resulting in a 6.39% improvement over our previous FunFOLD

method.

Supporting Information

Figure S1 Comparing the single feature scoring meth-
ods to the observed MCC scores (CASP8 data). A) The

BDTalign score (r = 0.665). B) The Identity score (r = 0.677). C)

The Rescaled BLOSUM62 score (r = 0.733). D) The Equivalent

Residue Ligand Distance score (r = 0.623). E) The Ligand Volume

Variation score (r = 20.358). F) The Ligand Variation score

(r = 0.101). G) Ligand Category score (r = 20.002). H) The Mean

TM-score (r = 20.044). I) the Template score (r = 0.175). J) The

Model Quality score (r = 0.411).

(TIF)

Figure S2 The FunFOLDQA neural network scores
compared with the observed MCC scores and the
feature component scores (CASP9 data). A) The Fun-

FOLDQA neural network is plotted against the observed MCC

score. B) The BDTalign score. C) The Identity score. D) The

Rescaled BLOSUM62 score. E) The Equivalent Residue Ligand

Distance score. F) The 3D model quality score (ModFOLDclust2).

(TIF)

Figure S3 The FunFOLDQA neural network scores
compared with the observed BDT scores and the feature
component scores (CASP9 data). A) The FunFOLDQA

neural network is plotted against the observed BDT score. B) The

BDTalign score. C) The Identity score. D) The Rescaled

BLOSUM62 score. E) The Equivalent Residue Ligand Distance

score. F) The 3D model quality score (ModFOLDclust2).

(TIF)

Table S1 Target-by-target analysis of the correlations
for the top single feature score and each combination
method (CASP9 data). Bold values indicate the highest

correlation coefficients in each column.

(DOC)

Table S2 All versus all Wilcoxon signed ranked sum test
analysis, to determine if a significant difference exists
between the scoring methods (CASP9 data). Ho = No

difference between the methods in the rows and the columns.

H1 = the methods in the row has a higher correlation. Bold values

indicate significant p-values (p , 0.05).

(DOC)
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