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Optimal linearization trajectories for tangent linear models

R.J.J. Stappers and J. Barkmeijer

Abstract

We examine differential equations where nonlinearity
is a result of the advection part of the total derivative
or the use of quadratic algebraic constraints between
state variables (such as the ideal gas law). We show
that these types of nonlinearity can be accounted for
in the tangent linear model by a suitable choice of
the linearization trajectory. Using this optimal lin-
earization trajectory we show that the tangent linear
model can be used to reproduce the exact nonlin-
ear error growth of perturbations for more than 200
days in a quasi geostrophic model and more than (the
equivalent of) 150 days in the Lorenz 96 model. We
introduce an iterative method, purely based on tan-
gent linear integrations, that converges to this opti-
mal linearization trajectory.
The main conclusion from this paper is that this it-

erative method can be used to account for nonlinear-
ity in estimation problems without using the nonlin-
ear model. We demonstrate this by performing fore-
cast sensitivity experiments in the Lorenz 96 model
and show that we are able to estimate analysis incre-
ments that improve the two day forecast using only
four backward integrations with the tangent linear
model.

1 Introduction

The use of tangent linear and, in particular, ad-
joint models has been very useful in several appli-
cations in numerical weather prediction (NWP) (see
Errico, 1997, 2003; Errico and Ehrendorfer, 2007, for
an overview). For example at the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
these linear models play a crucial role in the compu-
tation of initial condition perturbations used in the

ensemble prediction system (Leutbecher and Palmer,
2008) and in their 4D-VAR data assimilation system
(Courtier et al., 1994). One of the major limitations
to the application of linear models is that the re-
sults are useful only when the linear approximation
is valid (Errico, 1997). By this we mean that the dif-
ference between two runs of the nonlinear model can
be described by the associated linearized version of
the nonlinear model. To achieve this, great effort is
taken to develop linearized models which capture as
many as possible features of the full nonlinear model
(Janisková et al., 1999). Despite these efforts the use
of tangent linear and adjoint models is restricted to
“short” time spans. The time span for which the TL-
model can be considered accurate will be referred to
as the tangent linear regime.

The duration of the tangent linear regime depends
on many factors. Typically the difference between
two nonlinear forecasts is compared with the linear
forecast by a scalar index, and it is said that the TL-
assumption is violated when the index has reached a
threshold value. So the measure which is employed
to compare forecast fields is already important in the
definition of the TL-regime. But also the size of
the initial condition perturbation, the orientation of
the perturbation, the background trajectory around
which the TL-model is linearized and the physical
processes taken into account in the TL-model play a
role. Another issue which influences the usefulness of
linear models is whether we are considering forecast
problems, where error growth is determined by the
singular value spectrum of the propagator, or esti-
mation problems that are typically characterized by
the reciprocal of the singular value spectrum. In gen-
eral the spectrum of reciprocal of the singular values
attains higher values (Reynolds and Palmer, 1998)
and therefore the usefulness of the TL-model in esti-
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mation problems is shorter. This effect becomes even
more pronounced by the fact that the typical size of
perturbations used in backward integrations is larger
than in forward mode.

In this forward mode the tangent linear assumption
is generally believed to be valid for 2-3 days at the
synoptic scale. However, see Gilmour et al. (2001)
who argue that 1 day is perhaps a better estimate.
On the cloud resolving scale the tangent linear as-
sumption probably holds for much shorter time peri-
ods on the order of 1.5 hours (Hohenegger and Schär,
2007). As models reach higher resolutions the validity
of the TL assumption is therefore a major concern.
We will show that for bilinear systems the usefulness
of the TL-model can be greatly extended by mod-
ifying the linearization trajectory and therefore the
one of the major limitations for using tangent linear
models can be eliminated.

In section 2 the definition of bilinear differential
equations is given. In section 3 we show that for bi-
linear systems there is an optimal linearization trajec-
tory such that if the tangent linear model is linearized
around this trajectory the perturbation growth in the
tangent linear model is equal to the nonlinear pertur-
bation growth. Knowing that such a trajectory exist
we show in section 4 that there is an iterated map
based purely on TL-integrations that converges to
this linearization trajectory. In section 5 we show
how the iterative method can be used in forecast
sensitivity experiments using the inverse of the TL-
model. In section 6 the experimental results using a
quasi geostophic model (Marshall and Molteni, 1993,
described in appendix A) and the Lorenz 96 model
(Lorenz, 1996, described in appendix B) are given.
In the discussion in section 7 the prospects for using
the method in realistic NWP models and a method
to regularize the error growth in the tangent linear
model are discussed. The conclusions are given in
section 8.

To keep the notation simple we use the convention
that lower case variables are perturbations (also re-
ferred to as increments) to upper case variable, e.g.
x is a perturbation to the state vector X.

2 Bilinear differential equa-

tions

In this section some terms are defined that will be
used throughout the rest of the paper. Let U,V,W
and X be elements of a vector space H.

Definition 1 (Bilinear map)
A map q

q : H×H → H

(U,V) 7→ W = q(U,V),

is called bilinear if q is linear in both arguments.

Definition 2 ((Anti)symmetric bilinear map)
A bilinear map s will be called symmetric if for any
U,V ∈ H

s(U,V) = s(V,U). (1)

A bilinear map a will be called antisymmetric if

a(U,V) = −a(V,U). (2)

Note that for any bilinear map q there is a unique
decomposition

q(U,V) = s(U,V) + a(U,V), (3)

where s(U,V) = 1
2 (q(U,V) + q(V,U)) is symmet-

ric and a(U,V) = 1
2 (q(U,V) − q(V,U)) is antisym-

metric.

Definition 3 (Bilinear differential equation)
A differential equation will be called bilinear if it is
of the form

Ẋ = q(X,X) + b(X) + c, (4)

where q is a bilinear map, b is a linear map and c is a
forcing. If X is finite dimensional this is an ordinary
differential equation (ODE) while if X represents a
(collection of) space and time dependent field(s) this
is a partial differential equation (PDE). For PDE’s
the mappings q, b and forcing c are allowed to depend
on space and time explicitly.

2



Definition 4 (Bilinear differential algebraic equation)
A differential algebraic equation (Brenan et al., 1996)
will be called bilinear if it is of the form

e(X, Ẋ) + d(Ẋ) = q(X,X) + b(X) + c, (5)

where q and e are bilinear maps, d and b are linear
maps and c is a forcing.

Example 1 (Barotropic vorticity equation)
The barotropic vorticity equation (bve) is

∂η

∂t
= −J(ψ, η)

0
∂ψ

∂t
= ∇2ψ + f − η

0
∂u

∂t
= u− k×∇ψ

where the first equation is a prognostic equation for
the absolute vorticity η, the second and third equa-
tion are algebraic constraints (diagnostic equations)
for the stream function ψ and the two dimensional
velocity u respectively (hence the zeros in front of
the time derivatives), f is the Coriolis parameter, k
is the vertical unit vector and J is an antisymmetric
bilinear map defined as

J(ψ, η) =
∂ψ

∂x

∂η

∂y
− ∂ψ

∂y

∂η

∂x
. (6)

If we define X = (η, ψ)
T

we see that the bve is a
bilinear partial differential algebraic equation in the
state vector X with e = 0 and d = diag(I, 0) and the
velocity is a “post-processed” variable. Alternatively
the equation for ∂η

∂t can be written as ∂η
∂t = −u · ∇η

in which case the state vector should be defined as
X = (η, ψ,u)

T
.

Example 2 (Momentum equation)
The momentum equation in a uniform rotating coor-
dinate frame is (Pedlosky, 1987)1

ρ
∂u

∂t
+ ρ(u · ∇)u+ 2Ω× ρu = −∇p− ρ∇φ+ F(u),

1We introduced a minus sign in the ρ∇φ term such that

potential energy is increasing with increasing height

where u is the three dimensional velocity vector, p is
pressure, ρ is density, Ω is the angular rotation vec-
tor, φ is the potential that represents conservative
body forces, including gravity, F represents noncon-
servative (frictional) forces. The prognostic equation
for u is a trilinear differential equation due to the
term ρ(u · ∇)u caused by the advection part of the
total derivative. It is however easy to transform the
trilinear equation to a bilinear differential algebraic
equation by augmenting the state vector with the mo-
mentum density p = ρu

ρ
∂u

∂t
+ (p · ∇)u+ 2Ω× p = −∇p− ρ∇φ+ F(u)

0
∂p

∂t
= ρu− p.

Alternatively the momentum density vector field p
can be considered as the prognostic variable

dp

dt
+ 2Ω× p = −(∇ · u)p−∇p− ρ∇φ+ F(u)

0
∂u

∂t
= p− ρu,

where we used the mass continuity equation.

Example 3 (Equation of state)
The equation of state for an ideal gas can be formu-
lated as an algebraic constraint as

0
∂p

∂t
= p− ρRT. (7)

Examples 1 and 2 illustrate that in fluid dynam-
ics bilinearity is typically a result of the advection
part of the total derivative. Example 3 shows that
another source for bilinearity is the use of algebraic
constraints between state variables such as the ideal
gas law. Example 2 further illustrates that it is easy
to reduce multilinear systems (see appendix D) to
bilinear systems by augmenting the state vector.

Notation 1 (Nonlinear integrations)
Integrations with a nonlinear model starting from an
initial condition X0 are denoted by

X(t) = M(t, 0,X0). (8)
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Then, by definition, the exact increment trajectory
for a given perturbation x0 of an initial condition X0

is given by

x(t) ≡ M(t, 0,X0 + x0)−M(t, 0,X0). (9)

Notation 2 (Tangent linear integrations)
Integrations with the tangent linear model starting
with an initial condition perturbation x0 are denoted
by

x̂(t) = MX(t, 0)x0, (10)

where MX(t, 0) is known as the propagator and X is
the trajectory around which the tangent linear model
is linearized.

3 Optimal linearization trajec-

tories

In this section we derive the tangent linear model for
the general form of bilinear system and show how to
modify the linearization trajectory to obtain an ex-
act correspondence between the nonlinear time evo-
lution and the corresponding tangent linear evolution
of perturbations.
Consider the general form of a bilinear differential

equation
Ẋ = q(X,X) + b(X) + c, (11)

where X ∈ H, q is a bilinear mapping, b is a lin-
ear mapping and c is a forcing and the mappings q
and b and forcing c are allowed to explicitly depend
on space and time. Solutions (trajectories in H) of
(11) are denoted as X(t). The time evolution of a
perturbed run X(t) + x(t) is given by

Ẋ+ ẋ = q(X+ x,X+ x) + b(X+ x) + c. (12)

Now using the bilinearity of q, the linearity of b and
(11) to eliminate Ẋ we obtain

ẋ = q(X,x) + q(x,X) + b(x)
︸ ︷︷ ︸

J(X)x

+q(x,x). (13)

Here we used the linearity of q in both arguments and
the linearity of b to define an operator

J(X)x ≡ q(X,x) + q(x,X) + b(x). (14)

For finite dimensional systems J(X) is the Jaco-
bian of (11) evaluated along the trajectory X(t). In
the tangent linear approximation the bilinear term
q(x,x) is neglected and the system

˙̂x1 = J(X)x̂1 (15)

is known as the tangent linear model. We use a hat
to indicate that this is only an approximation to the
true evolution x and the reason to add the superscript
1 will become apparent later.
The key observation in this section is that the exact

time evolution of perturbations in (13) can also be
written as

ẋ = J(X + x/2)x, (16)

i.e. we obtain the exact time evolution of perturba-
tions if the tangent linear model is linearized around
the trajectory X+ x/2 instead of X. The trajectory
X+x/2 will be referred to as the optimal linearization
trajectory. The previous results can be generalized to
bilinear partial differential algebraic equations (BP-
DAE). Let

e(X, Ẋ) + d(Ẋ) = q(X,X) + b(X) + c, (17)

substitution of X → X+ x, using (17) and retaining
only terms linear in x gives the TL-model

e(x̂1, Ẋ) + e(X, ˙̂x1) + d( ˙̂x1) = 2s(X, x̂1) + b(x̂1).

where we used definition 2 to write q(X, x̂1) +
q(x̂1,X) = 2s(X, x̂1). It is easy to see that the ne-
glected bilinear terms e(x, ẋ) and q(x,x) are recov-
ered if the TL-model is linearized around the trajec-
tory X+ x/2. An important difference with the pre-
vious result is that to integrate the TL-model both
the trajectory X and the tendencies Ẋ are required
if e 6= 0.
Integrations with the tangent linear model lin-

earized around a trajectory X + x/2 starting from
an initial condition x0 will be denoted by

x(t) = MX+x/2(t, 0)x0. (18)
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Note that, although the tangent linear model is used
to propagate the increment x0, this is not a linear
mapping from x0 to x(t) due to the dependence of
the linearization trajectory on x0. In appendix C we
discuss how to preserve bilinearity when higher than
first order integration schemes are used to integrate
(11) and show that bilinearity is preserved if a finite
dimensional representation of the state vector X is
obtained by truncating the coordinate vector w.r.t.
a time independent orthonormal basis.

4 Iterative relinearization

In section 3 we observed that, for a given initial con-
dition perturbation, there is an optimal linearization
trajectory for the TL-model such that the tangent lin-
ear predictions become exactly equal to the nonlinear
predictions. In this section we introduce an iterative
method purely based on integrations with the tan-
gent linear model that converges to this optimal tra-
jectory. Section 5 shows how this iterative method
can be used to update the linearization trajectory
in forecast sensitivity experiments without using the
nonlinear model.

We have seen that for bilinear systems

x(t) = MX+x/2(t, 0)x0, (19)

describes the exact time evolution of perturbations.
For a given initial condition perturbation x0 and a
trajectoryX(t) this equation can be written as a map
TX

x0
that maps increment trajectories to increment

trajectories

x = TX

x0
(x), (20)

with TX

x0
(x) = MX+x/2(t, 0)x0, i.e. the trajectory

x(t) is a fixed point of TX
x0
. If for a fixed time interval

[0, T ] there is a constant 0 < q < 1 and a suitable
metric d on the space of increments defined on the
interval [0, T ] such that d(TX

x0
(x),TX

x0
(y)) ≤ qd(x,y)

then TX

x0
is known as a contraction mapping. The

Banach fixed point theorem then guarantees that the
fixed point x is unique and more over the iterated
map

x̂k = TX

x0
(x̂k−1), (21)

converges to this fixed point. This suggests that given
an estimate of the trajectory x̂k−1(t) the tangent lin-
ear model can be integrated in the form

x̂k(t) = MX+x̂k−1/2x0, (22)

where the superscripts indicate the iteration number.
With x̂0(t) = 0, the first iteration k = 1 is equal to a
standard TL-integration (as given by (15)) and gives
a trajectory x̂1. During the second iteration we inte-
grate the tangent linear model with a modified tra-
jectory X+ x̂1/2 etc. Alternatively the iteration can
be started with x̂0(t) = x0 which has the advantage
that the time derivatives in the TL-model become ex-
act at t = 0. In the experiments both methods are
compared.

In appendix D an analysis of (22) for multilinear
models is given and we show that, independent of the
order of the nonlinearities in the nonlinear model, at
convergence (22) always gives better predictions of
the time evolution of perturbations than the standard
TL-model (15). In particular the bilinear terms are
exactly taken into account. In section 6.2 we examine
the rate of convergence for the iterated map (21) for
the QG and the L96 model.

Remark 1 (Radius of convergence) Iterated

maps can exhibit a finite radius of convergence even

though there is a fixed point valid for all t. Therefore,
even though the fixed point trajectory x(t) is valid for

all t, this does not imply that the iterated map (22)
converges to this fixed point. As an example consider

the system Ẋ = −2tX2 with X(0) = 1. The solution

is given by the Witch of Agnesi X(t) = 1
t2+1 . The Pi-

card iteration Xk(t) = X(0) +
∫ t

0 −2s(Xk−1(s))2ds,
with X0(t) = 1 converges to the Taylor series of

X(t) but because X(t) has poles at t = ±i the Picard

iteration only converges to the fixed point for |t| < 1.
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5 Estimation using the inverse

TL-model

The estimation problem considered in this paper is:
given a forecast starting from an analysis X0

XT = M(T, 0,X0), (23)

and an analysis XT + xT valid at time T . Can we
determine an analysis increment x0 such that

XT + xT = M(t, 0,X0 + x0). (24)

These types of experiments are known as forecast sen-
sitivity experiments and have been studied by Rabier
et al. (1996); Klinker et al. (1998); Pu et al. (1997a,b).
If the tangent linear assumption is valid we expect

xT = MX(T, 0)x0, (25)

and therefore we can obtain estimates of x0 from

x̂0 = M−1
X

(T, 0)xT . (26)

Besides giving estimates for x0 the integration with
the inverse tangent linear model can be used to pro-
duce estimates of the complete trajectory x(t). The
result from section 4 therefore suggests to use this
method iteratively

x̂k(t) = M−1
X+x̂k−1/2

(T, t)xT , (27)

with x̂0(t) = 0 or x̂0(t) = xT . This defines an iter-
ated map on the space of increments trajectories

x̂k = SX

xT
(x̂k−1), (28)

where SX

xT
(x̂k−1) = M−1

X+x̂k−1/2
xT . In section 6.3

the convergence rate of the iterated map (28) is in-
vestigated for the L96 model.

6 Applications

6.1 Indices

To highlight different aspects of the optimal lin-
earization trajectories and the iterative relineariza-
tion method the exact time evolution of the perturba-

tions x(t) and the corresponding tangent linear evolu-
tion x̂k(t) are compared using five indices lk, αk, Rk

and dk and Rk
d. The similarity index lk(t) is defined

as

lk(t) =

(
x(t), x̂k(t)

)

‖x(t)‖ ‖x̂k(t)‖ , (29)

the angle αk(t) is given by

αk(t) = acos
(
lk(t)

)
, (30)

the relative norm Rk(t) is given by

Rk(t) =
‖x̂k(t)‖
‖x(t)‖ , (31)

the error norm dk(t) by

dk(t) = ‖x(t)− x̂k(t)‖, (32)

and the relative error norm Rd(t) by

Rk
d(t) =

‖x(t)− x̂k(t)‖
‖x(t)‖ . (33)

For the QG-model the values of dk, lk, Rk and Rk
d

are determined using the kinetic energy inner prod-
uct. For the L96 model the Euclidean inner product
is used. In the context of twin experiments values
of l = 0.7, corresponding to an angle α = 45◦, are
commonly used to indicate that the TL assumption
is violated (e.g. Gilmour et al. (2001)).

We will say that x̂k(t) is more similar to x than
x̂k−1(t) at time t if αk(t) < αk−1(t) or, equivalently, if
lk(t) > lk−1(t). We say that x̂k(t) is closer to x than
x̂k−1(t) at time t if dk(t) < dk−1(t) or, equivalently,
if Rk

d(t) < Rk−1
d (t).

6.2 Iterative relinearization

In this section the rate of convergence of the iter-
ated map T is examined in a quasi geostrophic model
(described in appendix A) and the Lorenz 96 model
(described in appendix B).
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Figure 1: Stream function perturbation at 500 hPa after 2 days using the nonlinear model x (top left),
the standard tangent linear model with x̂0(t) = 0 (top right) and the iterative relinearization method with
x̂0(t) = x0 for iteration 1 (middle left) to iteration 4 (bottom right). The initial condition for the perturbed
run and the control run are 100 days apart. The contour interval is 1 · 10−3 Ωa2 in all panels (with a and
Ω the average radius and the angular velocity of the Earth, respectively). Positive values (solid) negative
values (dashed).
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6.2.1 QG model

In figure 1 we show the 2 day forecast difference of
the stream function at 500 hPa (upper left). The ini-
tial condition for the control run and the perturbed
run are 100 days apart and therefore we may assume
that they are uncorrelated (see also figure 9). The
size of the perturbations used in these experiments
is therefore much larger than typical analysis incre-
ments. In the upper right we show the forecast of the
standard TL-model x̂0(t) = 0.

The other panels show the iterative method for 4
iterations with x̂0(t) = x0. Both the standard TL-
integration (l1 = 0.55) and the first iteration with
x̂0(t) = x0 (l1 = 0.73) differ substantially from the
truth, with large differences north of 60◦N. In the
first iteration with x0 = 0 there is a wave pattern
over the North Atlantic ocean which is absent in the
first iteration with x0 = x0. At subsequent iterations
all positive and negative cells are gradually moved to
their correct location and with the correct amplitude.
At iteration 2 to 4 we have l2 = 0.90, l3 = 0.95 and
l4 = 0.99 respectively, indicating that the iterative
method converges quickly with the largest improve-
ment when going from iteration 1 to 2.

Figure 2 shows the similarity index lk and the rela-
tive error norm Rk

d as a function of time and iteration
number. The solid black line refers to the standard
TL-model with x̂0(t) = 0. The colored lines show
the iterative relinearized results for 4 iterations with
x̂0(t) = x0. The control run and the perturbed run
are 2 days apart. From the standard TL-integration
we see that the duration of the TL-regime is slightly
larger than 1 day. Especially in the short range it is
beneficial to use x̂0(t) = x0 because the derivatives
in the TL-model become exact at t = 0. In figure
2 (right) this can be seen for example from the rela-
tive error norm where Ṙd(0) 6= 0 when the standard
TL-model is used. Observe that the iterative method
adds approximately 0.5 days to the usefulness of the
TL-model at each iteration.

6.2.2 L96 model

Figure 3 shows the similarity index and relative error
norm (average over 50 experiments) as a function of

time and iteration index for the L96 model. All ex-
periments start with a random initial condition per-
turbation with ‖x0‖ = 10. Such an initial condition
amplitude is approximately equal to the size of 12
hour forecast differences (see figure 10). From the
first iteration using x̂0(t) = 0 (black) we see that the
duration of the tangent linear regime is slightly larger
than 1.5 days (0.3 time units). Using x̂0(t) = x0

this can be extended to 2 days. The iterative lin-
earization method converges to the true increment at
subsequent iterations. For a 2 day forecast (0.4 time
units) of the order of 4 iterations are required to con-
verge to the true time evolution of the increment,
with the largest improvements when going from iter-
ation 1 to 2. For longer lead times more iterations
are needed. This is related to the fact that the TL-
model produces large increments beyond the duration
of tangent linear regime (see also figure 7). Therefore
the corrections x̂1/2 used in the second iteration are
actually deteriorating the linearization trajectory at
the end. As a result of this the second iteration is
further away from the truth at the end of the opti-
mization window, even though it is more similar to
the truth. In section 7.2 we discuss a method to regu-
larize this behaviour without affecting the fixed point
of the iterated map.

6.3 Estimation using the inverse TL-

model

Here we examine the iterated map (28) from section
5 The action of M−1

X
on a vector xT is obtained by

integrating the tangent linear model backwards in
time. In the L96 model the fourth order Runge Kutta
(RK4) scheme is used to propagate the state. Theo-
retically the backwards integration requires the use of
the inverse integration scheme (which will be an im-
plicit scheme) to ensure MXM−1

X
= I. Here the ad-

joint of the RK4 scheme is used to integrate the TL-
model backwards in time. In the L96 model we find
experimentally that the angle between M−1

X
MXx0

and x0 is of the order O(10−3) degrees and the rela-
tive norm ‖M−1

X
MXx0‖/‖x0‖ − 1 ≈ O(10−6) for an

optimization time of 0.6 time units (3 days). So it
appears that M−1

X
MX is close to the identity opera-

tor. We conclude that the adjoint RK4 scheme can

8
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Figure 2: Similarity index lk(t) (left) and relative error norm Rk
d(t) (right) as a function of time and iteration

number for the QG model. Shown are average values for 20 experiments. The black line is the standard
TL-model with x̂0(t) = 0. The colored lines are iteration 1 to 4 with x̂0(t) = x0. The control run and
perturbed run are two days apart.
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Figure 3: Similarity index lk(t) (left) and relative error norm Rk
d(t) (right) as a function of time for the

L96 model. Shown are average results for 50 experiments using random initial condition perturbations with
‖x0‖ = 10. The black line is the result for iteration 1 with x̂0(t) = 0 the colored lines for iteration 1 to 5
with x̂0(t) = x0
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be used for the inverse integrations.
Figure 4 shows the result when we iteratively solve

(27) using x̂0(t) = xT . Even though the estimate
from the first iteration differs substantialy from the
truth with l1 = 0.4, the method quickly converges
and the subsequent iterations are more similar and
closer to the truth. Approximately 4 iterations are
required to obtain an almost perfect estimate. Note
that during the inverse integration we also obtain the
corrections needed for the next iterations. There-
fore the computational cost is equal to four TL-
integrations (backwards). This cost should be com-
pared to the alternative of solving this estimation
problem in terms of a cost function minimization (e.g.
4D-VAR) where a single inner loop iteration already
involves two linear integrations (1 adjoint and 1 tan-
gent linear integration). For comparison figure 4 also
includes the result when the standard TL-model, i.e.
x̂0(t) = 0, is used to propagate the increment back-
wards in time (the black line). If l = 0.7 is used as
threshold value then the gain of using x̂0(t) = xT

in the first iteration is 0.13 time units (0.65 days).
From the time evolution of the error norm (figure
4 right) we see that this gain is mainly a result of
the fact that, by using x̂0(t) = xT , the time deriva-
tives at t = 0.4 become exact in the TL-model and
thus ḋ1 = 0 at t = 0.4. In particular for large per-
turbations we therefore expect to benefit from using
x̂0(t) = xT .
From figure 4 it is also clear that for long optimiza-

tion windows the estimated increment at t = 0 from
the first iteration becomes uncorrelated with the true
increment. As a result, the nonlinear forecast start-
ing from X0 + x̂1

0 bears low similarity to the truth
(dashed lines in figure 4). For long windows there-
fore, the nonlinear model starting from X0 + x̂1

0 can
not be used to update the linearization trajectory. In
a forthcoming paper applying optimal linearization
trajectories in the context of 4D-VAR we will show
that also in 4D-VAR it is better to update the lin-
earization trajectory using the TL-model.
If we use l < 0.7 to indicate the breakdown of

the TL-assumption, figure 4 indicates that the tan-
gent linear assumption linearized around the control
run is valid for 0.15 time units (i.e. from t = 0.4 to
t = 0.25). This should be compared with the forward

integration in figure 3 where the value 0.7 is reached
after 0.3 time units. The duration of the TL-regime
is shorter for inverse integrations. Partly this is a
result of the fact that error growth in the backward
integration is characterized by the reciprocal singu-
lar value spectrum and these values are larger than
the singular values (see figure 6). Another reason is
that typically ‖xT ‖ > ‖x0‖ and therefore the back-
ward integration is started with larger initial condi-
tions. integration is determined by the reciprocal of
the singular values and these are in general larger
than the singular values (see figure 6) and partly be-
cause we created xT using the nonlinear model with
a perturbations ‖x0‖ = 10 and in general we have
‖xT ‖ > ‖x0‖. Therefore we started the inverse inte-
gration with a large perturbations and for large per-
turbations the TL-assumption is violated on shorter
time spans. The idea of using the inverse of the TL-
model has been studied in Pu et al. (1997a) using
a method called the quasi inverse. They reversed
the sign of the dissipation terms in the TL-model
as a form of regularization. As will be discussed
in section 7.2 on the regularized prediction experi-
ments, there is no need for bilinear systems to add
regularization when the optimal linearization trajec-
tory is used. Therefore the amount of regularization
should depend on how close we are to the optimal
linearization trajectory. If the linear term b in the
nonlinear model (11)) is a purely dissipative term,
i.e. (X, b(X)) < 0, then the TL-model can be inte-
grated in the form

˙̂xk = J(X+ x̂k−1/2)x̂k + αb(x̂k−1 − x̂k) (34)

The choice α = 2 amounts to reversing the sign of
the dissipation terms (see also equation (13)) during
the first iteration. However at subsequent iterations,
at locations in space and time where the solution has
converged, the unmodified TL is used.

6.4 Identification of bilinear systems

For bilinear systems the time evolution of the incre-
ment x̂(t) in the TL-model linearized around the tra-

10
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Figure 4: Similarity index (left) and error norm dk = ‖x− x̂k‖ (right) as a function of time for the inverse
TL-model (solid) and the NL-model starting from X0 + x̂k

0 (dashed). Shown are average results over 50
experiments with an OT=0.4 and random initial condition perturbations with norm ‖x0‖ = 10. The black
line is the first iteration with x0(t) = 0, i.e the standard TL-model

jectory X+ x/2 given by

x̂(t) = MX+x/2(t, 0)x0, (35)

is equal to the time evolution according to the non-
linear model: x̂(t)− x(t) = 0. Therefore a necessary
condition for the model M to be a bilinear system is
that the error norm (or equivalent the relative error
norm) is zero:

d(t) = Rd(t) = 0. (36)

However, numerical integrations will be subject to
round off error leading to nonzero values for d and
Rd. To highlight different aspects, the time evolution
of perturbations is examined in terms of the angle α
(30) and the relative norm R (31). Note that α = 0
and R = 1 if and only if Rd = d = 0. In the following
sections we study the behaviour of Rd, α and R in
the QG and L96 model.

6.4.1 QG model

Figure 5 shows the relative error norm Rd, the rel-
ative norm R and angle α as a function of time for

the QG model for 10 experiments. The control run
is obtained by integrating the nonlinear model for
300 days. Continuing the integration for another 300
days yields the perturbed run. The trajectory for
the second experiment starts using the final condi-
tion of the previous perturbed run and so forth. Due
to the long integration times the initial condition for
the tangent linear model is given by the difference
between two uncorrelated state vectors on the model
attractor and is therefore larger than typical analysis
increments. For these large amplitude perturbations
the TL approximation is valid for 1 day.

The 10 experiments show exponential growth of the
relative norm R after day 210. Before day 210 both
α ≈ 0 and R ≈ 1 and we conclude that the TL-model
can be used for lead times shorter than 210 days. The
time evolution of the relative error norm Rd (figure
5, left) shows no signal at day 210. Instead it merely
indicates exponential growth beyond day 10 with an
exponent of 0.148 day−1 (standard deviation 0.005
in 10 experiments) corresponding to an error dou-
bling time of τd = 4.7 days. Note that this is longer
than the error doubling time based on linearization

11



of the TL-model around a control run, which gives a
Lyapunov exponent of σ = 0.254 (with standard de-
viation 0.014 in 10 experiments) and a corresponding
error doubling 2.7 days. This is in agreement with
other studies, e.g. Swanson et al. (1998), where an
approximate value of 3 days is given. The increase
of the error doubling time when we linearize around
the average trajectory of the control and perturbed
run is consistent with Hoskins et al. (2000) who de-
termined singular vector growth using different lin-
earization trajectories in the TL-model. They found
that the dominant factor for singular vector growth is
the dynamic structure of the linearization trajectory
and, in particular, its smoothness.
From figure 5 we see that the time evolution of the

relative error norm Rd is approximately exponential
beyond day 10. This suggests that we can model the
time evolution of Rd for t > 10 days by

Ṙd = σRd. (37)

The values of σ and Rd(0) are estimated using linear
least squares on the experimental values of ln(Rd(t)).
The solid line in figure 5 (left) show the predictions
of this model with the estimated values Rd(0) =
2.9 · 10−14 (standard deviation 2.2 · 10−14 in 10 ex-
periments) and σ = 0.148 (standard deviation 0.005
in 10 experiments). With the additional assumption
that the error vector x̂− x is perpendicular to x the
modelled time evolution of Rd can be used to predict
values of the angle α and the relative norm R (solid
lines in the middle and right panel of figure 5). We
emphasize that the solid lines in the middle and right
panel of figure 5 are not fitted to the experimental
data but purely a result of the geometric assumption
that the error vector x̂−x is perpendicular to x. Ex-
perimentally we find that the angle between x and
x− x̂ is 89.6◦ with a standard deviation of 8.1◦.
With the assumption that the error vector x̂−x is

perpendicular to x the condition α = 45◦ is equiva-
lent to the condition Rd = 1. Setting Rd = 1 in the
error growth model gives the estimate

tp =
−1

σ
lnRd(0) = 212± 3.8 days. (38)

This estimate is plotted in the left panel of figure
5. The same estimate is obtained from α = 45 and

R =
√
2. Note that in the absence of round-off error

x = x̂ and as such there is no reason to prefer the NL
over the TL integration. Therefore these results also
put a predictability limit on the nonlinear model due
to round-off error of 212 days.

6.4.2 L96 model

In the L96 model we obtain the estimates R̂d(0) =
4.0 · 10−16 and σ = 0.233 day−1 equivalent to an er-
ror doubling time of 2.97 days. The error doubling
times are higher than estimates based on the Lya-
punov exponent (2.1 days) consistent with the re-
duced growth of singular vectors for smooth trajec-
tories in Hoskins et al. (2000). The figures for Rd,
α and R are similar to the results for the QG-model
(not shown) For the L96 model the TL-model can be
used for tp = −1

σ lnRd(0) = 152 days.

7 Discussion

7.1 Prospects for using the method in

NWP

We demonstrated the advantage of using the opti-
mal linearization trajectories in the context of two
simple bilinear models. Although the analysis in ap-
pendix D shows that, independent of the order of the
nonlinearities in the nonlinear model, the iteratively
relinearized TL-model always gives better results at
convergence, to get an exact correspondence between
the TL and the NL model, the NL-model has to be
bilinear. In example 2 it was shown that it is possible
to transform multilinear systems to bilinear systems
by augmenting the state vector.

There are other situations where apparent “infi-
nite” order nonlinearities can be transformed to bi-
linear terms. Let Ẋ = eαX and define Y = eαX then
Ẋ = Y and Ẏ = αY 2 which is a bilinear system.
One difference between the reduction of multilinear
systems (appendix D) to bilinear system in example
2 is that in this case the newly introduced variable
Y has to be a prognostic variable because the alge-
braic constraint 0Ẏ = Y − eX is not bilinear and can
therefore not be used. Similary it can be shown that

12
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Figure 5: Relative error norm Rd (left), relative norm R (middle) and angle α (right) for the QG model
with individual experiments dashed. The solid line in the left panel is the estimate Rd using (37) with
Rd(0) = 2.9 · 10−14 and σ = 0.148. In the middle panel and right panel the solid lines are estimates using
the assumption that the error vector is perpendicular to x.

Ẋ = sin(X) (Define Y = sin(X) and Z = cos(X)),
Ẋ = lnX (define Y = lnX) and Ẋ = Xα (define
Y = Xα−1) can be written as bilinear systems. Al-
though this does not show that realistic NWP models
can be formulated as bilinear systems, it illustrates
that both multilinear models and models that con-
tain “infinite” order nonlinearites can be written as
a bilinear system and demonstrates that the class of
bilinear systems is very general. In a forthcoming pa-
per we show that the restriction to bilinear systems
can be lifted if the tangent linear model is linearized
around an ensemble of trajectories simultaneously.

7.2 Regularized relinearization in the

L96 model

The TL-model produces large increments for long
lead times (see figure 7). This will deteriorate the
linearization trajectory for the next iterations. In
principle, this can be solved by increasing the dissi-
pation in the TL-model, however, in that case the
solution would no longer converge to the true solu-
tion during the iterative process. Here we propose to
add a term α(x̂k−1 − x̂k) to the TL-model leading to

˙̂xk = J(X+ x̂k−1/2)x̂k + α(x̂k−1 − x̂k) (39)

So dissipation is added to the model but at the same
time the previous iteration is used as a forcing in the

TL-model. At convergence of the algorithm x̂k−1 =
x̂k and the added term becomes zero, i.e. the added
term does not modify the fixed point of the iterated
map T (21). In general α could be an operator (see
also section 6.3), here we only discuss the situation
where α is a scalar.
Using x̂0 = 0 the first iteration is given by

x̂1(t) = MX(t, 0)e−
∫

t

0
αdt′x0 (40)

Where MX(t, 0) is the propagator for the TL-model
with α = 0. If MX = UDVT is the singular value
decomposition of MX we obtain

x̂1(t) = U(De−
∫

t

0
αdt′)VTx0 (41)

So the added term has no impact on the singular vec-
tors but it changes the singular value spectrum. Let
σmax(t) denote the leading singular value ofMX(t, 0).
By choosing α such that

∫ t

0

αdt′ > lnσmax(t) (42)

we conclude that ||x̂1(t)|| < ||x0|| for all x0. In fig-
ure 6 we show the leading singular value as a function
of the optimization time and the value for α when
α is kept constant during the optimization window
α = 1

t log σmax(t).
Figure 7 shows the impact of the added term by

examining the norm ‖x̂k‖ as a function of time for
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α = 0 and α = 8. The iterative method still conver-
gences to the true solution but in a more controlled
manner. At the first iteration the norm decreases
monotonically as expected. At subsequent iterations
the forcing ensures that we still converge to the true
solution.
In NWP models we know that at each grid point in

the integration domain the density ρ, absolute tem-
perature T , pressure p and the specific humidity q
are all positive quantities. Tangent linear integra-
tions do not respect these types of constraints and
therefore it is possible that in the linearization trajec-
tory X+xk−1/2 some of these variables are negative.
We therefore suggest to use a projection operator P
that sets negative values of ρ, T , p and q to zero and
integrate the tangent linear model in the form

x̂k(t) = MP(X+xk−1/2)x0 (43)

Being solutions of the nonlinear model the trajec-
tories X and X+x do not contain negative values for
ρ, T and q. At convergence of the iterated map the
linearization trajectoryX(t)+x(t)/2 is the average of
X(t) + x(t) and X(t) and therefore the linearization
trajectory does not contain negative values for ρ, T ,
p and q, i.e. the projection operater does not modify
the fixed point of the iterated map but ensures that
during the iterations only “physically consistent” tra-
jectories are used.

7.3 Identification of multilinear sys-

tem

In section 6.4 we introduced a necessary condition
(36) for a nonlinear model to have at most bilinear
terms. Here we illustrate that this condition can be
used to detect higher order multilinearities.
Consider the L96 model with modified dissipation

Ẋ = q(X,X) −X+ F+ α(1− ‖X‖2
‖F‖2 )X (44)

Where q(X,X) is given in appendix B, F = 8 and
α ≥ 0. For α = 0 we recover the L96 model and
dissipation is linear. For α = 1 the dissipation is
a purely trilinear term and dependent on the total
energy in the system. The factor ‖F‖2 is introduced
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Figure 8: Error norm ‖x(t) − MX+x/2(t, 0)x0‖ as
a function of time for the trilinear Lorenz model for
α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. Shown are average results
for 50 experiments

to ensure that the (unstable) steady state solution
X∗ = F for the case α = 0 is also a (unstable) steady
state for α 6= 0. For α 6= 0 the additional steady

state solutions are X∗ = −F

2

(

1±
√

1− 4/α
)

. For

0 < α < 4 the last expression gives two complex
conjugate steady state solutions which can not be
reached if we start with a real valued initial condition.
The time derivative of the total energy is

Ė = −‖X‖2 + (X,F) + α(1 − ‖X‖2
‖F‖2 )‖X‖2

≤ −‖X‖2 + ‖X‖‖F‖+ α(1 − ‖X‖2
‖F‖2 )‖X‖2

For points outside the sphere with radius ‖F‖ we
therefore have Ė < 0 and we conclude that all tra-
jectories eventually enter this ball and cannot escape
afterwards.
We expect that for nonzero values of α we have

‖x(t)−MX+x/2(t, 0)x0‖ > 0 and this is indeed what
we observe (see figure 8). This shows that nonbilin-
earity can be identified purely based on the model
output and might be useful in realistic NWP models

14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

OT

S
in

gu
la

r 
va

lu
e

 

 
σ

max

1/σ
min

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

4

5

6

7

8

9

10

11

al
ph

a

OT

 

 
α

max

−α
min

Figure 6: Average leading singular value σmax and reciprocal of the trailing singular value 1/σmin (left) and
corresponding mean values of α for the regularized prediction αmax and regularized estimation αmin values as
a function of optimization time (right) for the Lorenz model. In both plots the range indicates the standard
deviation in 50 experiments.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

Time

N
or

m

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Time

N
or

m

 

 

Figure 7: The norm ‖x̂k‖ as a function of time without regularization (left) and with regularization (right)
using α = 8. The black line is ‖x‖. The colored lines are the values for ‖x̂k‖ . Initial condition perturbation
is random with norm ‖x0‖ = 10

15



where analysing the code to determine nonbilinearity
might be prohibitive.

8 Conclusions

The nonlinearities in fluid dynamics as a result of the
advection part of the total derivative and the use of
algebraic constraints such as the ideal gas law give
rise to bilinear differential equations. We have shown
that for bilinear systems there exists an optimal lin-
earization trajectory for the tangent linear model,
such that the TL-model predicts the exact time evo-
lution of the perturbations. Using a quasi geostrophic
model and the Lorenz 96 model we showed that, when
the optimal linearization trajectory is used, the tan-
gent linear model can be used for more than 200 days
in a quasi geostropic model and more than 150 days
in the Lorenz 96 model.For bilinear systems there-
fore one of the major limitations to the application
of linear models mentioned in the introduction can
be eliminated by linearizing around the optimal lin-
earization trajectory.

We introduced an iterative method that, based
purely on TL-integrations, converges to this optimal
linearization trajectory. We showed that the opti-
mal linearization trajectory is a fixed point of this it-
erative method and using prediction experiments in
the QG and L96 model we showed that the iterative
method converges to the fixed point. In the discus-
sion we introduced a method to regularize the error
growth in the TL-model without affecting the fixed
point of the iteration.

The main conclusion from this paper is that this
iterative method can be used in estimation problems
to account for nonlinearity without using the nonlin-
ear model. In particular when long windows are used
in forecast sensitivity experiments the estimated in-
crement at t = 0 will be uncorrelated to the true
increment and the nonlinear model can not be used
to update the linearization trajectory. Using forecast
sensitivity experiments in the Lorenz 96 model where
we iteratively use the inverse of the tangent linear
model we showed that the iterative method can be
used for long windows and converges quickly. Typ-
ically 4 iterations (computation cost equal to 4 in-

tegrations with the linear model) are needed to find
the optimal corrections for a two day forecast. In a
forthcoming paper we will show that the same ideas
can be used in multi incremental 4D-VAR.
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A Quasi-geostrophic model

Marshall and Molteni (1993) introduced a spectral
three-level quasi-geostrophic (QG) model with global
domain and pressure as the vertical coordinate. The
model is truncated at wave number 21 and the model
levels are at 200 (level 1), 500 (level 2) and 800 hPa
(level 3). The model integrates the system

∂q1
∂t

= −J(ψ1, q1)−D1(ψ1, ψ2) + S1

∂q2
∂t

= −J(ψ2, q2)−D2(ψ1, ψ2, ψ3) + S2

∂q3
∂t

= −J(ψ3, q3)−D3(ψ2, ψ3) + S3,

where qi is potential vorticity (PV), ψi streamfunc-
tion, Di are linear operators that represent dissipa-
tive terms, Si are constant PV sources and J the
Jacobian of a two dimensional field. We refer to Mar-
shall and Molteni (1993) for a complete description
of the model.
Figure 9 shows the norm ‖X(t) − X(t − δt)‖ as

a function of δt averaged over 1 year for the quasi
geostrophic model. In Bengtsson et al. (2008, their
figure 3) a similar picture is shown for the RMSE of
the geopotential height at 500 hPa for the ECMWF
model but based on analyses instead of forecasts. If
the trend due to seasonal variability is removed in
the ECMWF model the RMSE reaches a maximum
of 110.8m and the RMSE of analyses one day apart
is 61m, i.e. at 1 day the error is already half of the
value reached for large δt. The QG model the L96
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model (figure 10) and the ECMWF model therefore
show similar behaviour in this respect. Both in the
QG model and the L96 model the growth of the error
norm saturates at δt = 10 days.

B Lorenz 96 model

Lorenz (1996) introduced a simple system of the form
(50) with qii−1,i+1 = 1, qii−2,i−1 = −1, all other qijk =

0, bij = −δij the Kronecker delta and ci = F . Giving
the system

Ẋ i = X i−1(X i+1 −X i−2)−X i + F, (45)

where the dimension of the state vector is N and the
cyclic convention X i+N = X i is used. We will use
the vector notation

Ẋ = q(X,X)−X+ F. (46)

The nonlinear term conserves the total energy
1
2‖X‖2, i.e. (X, q(X,X)) = 0. The linear term −X,

10
−1

10
0

10
1

10
0

10
1

10
2

dt (days)

N
or

m

Figure 10: The norm ‖X(t)−X(t−δt)‖ as a function
of δt averaged over 1 year on a loglog scale for the L96
model. The solid line is the average and the dashed
lines are the maximum and minimum value of the
norm that occurred during the 1 year period. The
straight line is the estimated value

√
2‖F

2 ‖ based on
the sphere C given by (48). For ease of comparison
with figure 9 the time axis is scaled such that 1 time
unit is 5 days.

representing mechanical or thermal dissipation, de-
creases the total energy − (X,X) < 0 while the con-
stant term F, representing external forcing prevents
the total energy from decaying to zero. We imagine
that X represents some atmospheric variable around
a latitude circle and X i is the value at longitude
360i/N . In all simulations we use N = 40 and F = 8.
If 1 time unit in the model is identified with 5 days the
error doubling time of the model is 2.1 days (Lorenz
and Emanuel, 1998).

Figure 10 shows the norm ‖X(t) − X(t − δt)‖ as
a function of δt average over 1 year. This should
be compared with figure 9 for the QG-model. The
forecast error norm saturates after day 10 in both
models. The straight line in figure 10 is the estimated
bound

√
2‖F

2 ‖ which can be derived as follows.

The time evolution of the total energy 1
2‖X‖2 is

given by
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Figure 11: The boundary of ball B (solid) and the
sphere C (dashed) and the steady state solution X∗

for N = 2 and F = 8. Trajectories that start in
B can not cross the boundary of B. This figure is
not equivalent to a cross section through the X1 X2

plane of the system with N = 40 because the center
of C will not be contained in this cross section. In
particular the sphere C will appear much smaller in
such cross sections
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Figure 12: Distance to the center of the sphere C as
a function of time. The straight line is the radius of
C.

d1
2‖X‖2
dt

= −‖X‖2 + (X,F)

≤ (−‖X‖+ ‖F‖) ‖X‖,
where we used the Cauchy-Schwarz inequality. If we
define the closed ball

B = {X | ‖X‖ ≤ ‖F‖}, (47)

then for all X /∈ B we have
d 1

2
‖X‖2

dt < 0. For all

X on the boundary of B we have
d 1

2
‖X‖2

dt ≤ 0. So
all trajectories that start in the interior of B at t = 0
remain in this interior for t > 0. Note that the steady
state solution X∗ = F is on the sphere.
The time derivative of the energy can also be writ-

ten as

d1
2‖X‖2
dt

= −‖X− F

2
‖2 + ‖F

2
‖2. (48)

Therefore there is a sphere C with radius R = ‖F

2 ‖
and center C = F

2 on which the time derivative of the
total energy is zero. Again note that the steady solu-
tion X∗ is on this sphere (see figure 11). Trajectories
that start in the interior of B stay in the interior for
t > 0 and therefore the energy of the state is bounded
as T → ∞. This is only possible if either the state
asymptotically approaches C or by crossing the sur-
face of the sphere indefinitely. In either case this
implies that the dynamics of the system takes place
“near” the surface of the sphere C. This is indeed
what we observe, see figure 12.
Assume now that the state vectors for large δt are

uncorrelated and on the sphere C. By symmetry
considerations the expected value for the angle be-
tween two vectors associated with two random points
on a N − 1 dimensional sphere is π/2 (see Borel E.
(1914) where it is shown that for large N the prob-
ability density function tends to a normal distribu-
tion with mean π/2 and standard deviation 1/

√
N)

and therefore the expected distance between two ran-
dom points on the sphere C is

√
2R. This estimate

is shown in figure 10. Given the simplicity of the
arguments that were used in the derivation this is re-
markably good estimate of the asymptotic behaviour
of the forecast error norm.
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Before each experiment we started from a random
point on the sphere C and integrate for 100 days (20
time units) to allow the system to reach the attractor.
All integrations were performed using a Runge Kutta
order 4 scheme with a time step of 0.01.

C Bilinearity preserving finite

dimensional representations

and time discretizations

If ei is a complete time independent orthonormal ba-
sis of the phase space H w.r.t. an inner product 〈·, ·〉
we can write X(t) =

∑

iX
i(t)ei. Using the bilinear-

ity of q and linearity of b, (11) can be written as

Ẋjej = XjXkq(ej , ek) +Xjb(ej) + c, (49)

where we use the convention that there is an implied
summation over a repeated upper and lower index
in a single term. Taking the inner product of this
equation with ei gives the time evolution of the co-
ordinates X i(t)

Ẋ i = qijkX
jXk + bijX

j + ci, (50)

where qijk = 〈ei, q(ej , ek)〉, bij = 〈ei, b(ej)〉 and

ci = 〈ei, c〉. We see that if the coordinate vector is
truncated at a certain index N the truncated system
is bilinear (e.g. if ei is a spherical harmonic basis).
Therefore the time evolution of the coordinates X i

w.r.t. a time independent truncated orthonormal ba-
sis is given by a bilinear differential equation and the
optimal linearization trajectory can be obtained by
adding the coordinates.

C.1 Integration schemes

The Euler forward scheme propagates the state vec-
tor as

Xk+1 = Xk + hf(tk,Xk), (51)

where h is the time step. If f(tk,Xk) = q(Xk,Xk) +
b(Xk) + c then the highest order nonlinear term in
the map from Xk to Xk+1 is bilinear and therefore

the time discretization by the integration scheme pre-
serves the bilinearity of the underlying differential
equation. This is no longer true if higher order in-
tegration schemes are used. For these schemes the
value that is used to evaluate the right hand side of
the differential equation at intermediate time steps
needs to be stored in the linearization trajectory. In
the tangent linear integration these values from the
linearization trajectory should then be used in the
evaluation of the right hand side of the tangent lin-
ear model.

D Multilinear systems

Definition 5 (Multilinear map)
A map qn(X1, . . .Xn) is called multilinear if it is lin-
ear in each argument.

Definition 6 (Symmetric Multilinear map)
For a given multilinear map qn we define a symmetric
map sn by

sn(X1, . . .Xn) =
1

n!

∑

permutations

qn(X1, . . . ,Xn),

(52)
where the summation is over all possible permuta-
tions of the arguments X1, . . .Xn.

Consider the general form of a multilinear system
with at most N -th order multilinearities.

Ẋ =

N∑

n=0

qn(X, . . . ,X
︸ ︷︷ ︸

n times

), (53)

where q0 is the forcing term in the model. Substitu-
tion of X → X+ x and using (53) gives

ẋ =

N∑

n=0

qn(X+ x, . . . ,X+ x)− qn(X, . . . ,X).

Using definition 6 and Newton’s binomium this can
be written as
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ẋ =
N∑

n=1

n∑

k=1

(
n

k

)

sn(X, . . . ,X
︸ ︷︷ ︸

n−k times

,x, . . . ,x
︸ ︷︷ ︸

k times

). (54)

The sum over k starts from k = 1 because the terms
with only capital X’s are cancelled. The summation
over n starts from n = 1 because the constant term
is cancelled. Retaining only the terms linear in x
(terms with k = 1) gives the tangent linear model

˙̂x1 =

N∑

n=1

nsn(X, . . . ,X
︸ ︷︷ ︸

n−1 times

, x̂1). (55)

If we iteratively relinearized the TL model around
the trajectory X + x̂k−1/2 we get at convergence of
the algorithm a unique increment x̂∗ that satisfies

˙̂x∗ =

N∑

n=1

nsn(X+ x̂∗/2, . . . ,X+ x̂∗/2
︸ ︷︷ ︸

n−1

, x̂∗). (56)

Using Newton’s binomium this can be written as

˙̂x∗ =

N∑

n=1

n

n−1∑

k=0

(
n− 1

k

)

sn(X, . . . ,X
︸ ︷︷ ︸

n−1−k

,
x̂∗

2
, . . . ,

x̂∗

2
︸ ︷︷ ︸

k

, x̂∗).

Shifting the summation over k with 1 gives

˙̂x∗ =

N∑

n=1

n∑

k=1

21−kn

(
n− 1

k − 1

)

sn(X, . . . ,X
︸ ︷︷ ︸

n−k times

, x̂∗, . . . , x̂∗

︸ ︷︷ ︸

k times

),

which can also be written as

˙̂x∗ =

N∑

n=1

n∑

k=1

k21−k

(
n

k

)

sn(X, . . . ,X
︸ ︷︷ ︸

n−k times

, x̂∗, . . . , x̂∗

︸ ︷︷ ︸

k times

).

Therefore we have for the exact time evolution the
coefficients

k
1 2 3 4 5

1 1 - - - -
2 2 1 - - -

n 3 3 3 1 - -
4 4 6 4 1 -
5 5 10 10 5 1

while at convergence we get for the relinearized TL
model

k
1 2 3 4 5

1 1 - - - -
2 2 1 - - -

n 3 3 3 1 · 3
4 - -

4 4 6 4 · 3
4 1 · 4

8 -
5 5 10 10 · 3

4 5 · 4
8 1 · 5
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The normal TL-model has only nonzero values in
the first column. Therefore we see that the relin-
earized model takes into account all linear terms but
also all terms quadratic in the perturbation x. For
terms higher than quadratic in x the relinearized
model multiplies the exact coefficient with a factor
k21−k. This is a number between 0 and 1 and there-
fore is always closer to the exact coefficient then set-
ting the coefficient to zero as is done in the stan-
dard TL-model. We therefore conclude that the re-
linearization iteration will always give better approx-
imations than the standard TL-model at convergence
of the algorithm.
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