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abstract: Rensch’s rule, which states that the magnitude of sexual
size dimorphism tends to increase with increasing body size, has
evolved independently in three lineages of large herbivorous mam-
mals: bovids (antelopes), cervids (deer), and macropodids (kanga-
roos). This pattern can be explained by a model that combines al-
lometry, life-history theory, and energetics. The key features are that
female group size increases with increasing body size and that males
have evolved under sexual selection to grow large enough to control
these groups of females. The model predicts relationships among
body size and female group size, male and female age at first breeding,
death and growth rates, and energy allocation of males to produce
body mass and weapons. Model predictions are well supported by
data for these megaherbivores. The model suggests hypotheses for
why some other sexually dimorphic taxa, such as primates and pin-
nipeds (seals and sea lions), do or do not conform to Rensh’s rule.

Keywords: sexual selection, size dimorphism.

Introduction

Rensch’s rule describes the tendency across species within
a functional or taxonomic group for the ratio of male to
female body size at breeding to increase with female body
size (Rensch 1950; Reis 1989; Abouheif and Fairbairn 1997;
Fairbairn 1997; Dale et al. 2007; Fairbairn et al. 2007).
Like other ecological rules (e.g., Bergmann’s rule),
Rensch’s rule is not an absolute law. There are conspicuous
exceptions; it does not hold in some groups (Dale et al.
2007; Fairbairn et al. 2007), and in others, an extended
version applies, with females being larger than males and
the magnitude of sexual dimorphism increasing with de-
creasing body size (Colwell 2000; Dale et al. 2007). It also
lacks a general explanation.

Here we derive a simple model that is based on allo-
metric scaling relationships, which predicts the quantita-
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tive form of Rensch’s rule in large herbivorous mammals.
Our treatment is motivated to account for similar breeding
systems that have evolved convergently in three lineages
of large herbivorous mammals: bovid and cervid artio-
dactyls (antelopes and deer, respectively) and macropodid
marsupials (kangaroos). In all three taxa, smaller species
tend to live in monogamous pairs; in larger species, fe-
males tend to aggregate in social groups, and males tend
to control these groups and mate with the multiple females
(Jarman 1974, 1983; Geist and Bayer, 1988; Croft 1989;
Jarman and Coulson, 1989; Geist 1998; Loison et al. 1999;
Fisher and Owens 2000; Fisher et al. 2001; Croft and Ei-
senberg 2006; Lindenfors et al. 2007). Jarman (1983)
showed that, in the smallest species of each family, both
sexes mature rapidly at similar body sizes and have rela-
tively small weapons, whereas in larger species, life span
and time to sexual maturity are longer, and males grow
to larger sizes than females and typically possess well-
developed ornaments and weapons that are used in con-
tests for mates. Thus, associated with this trend of in-
creasing polygyny are increased longevity, sexual size
dimorphism, and weaponry. Our model for Rensch’s rule
incorporates these salient features of ecology and breeding
system as functions of female body size.

The Model

We start from allometric relationships, which are power
laws of the form

bY p Y M , (1)0

where Y is some dependent variable, such as metabolic
rate, somatic growth rate, or death rate; M is adult body
mass; Y0 is a normalization constant; and b is another
constant, the allometric or scaling exponent, which is often
close to a simple multiple of 1/4 (e.g., Peters 1983; Brown
et al. 2004; Savage et al. 2004). Our model is derived as
far as possible from metabolic scaling theory and docu-
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Figure 1: The structure of the model. Key variables are given in
boldface type. Group size, N, is predicted first and is used to predict
the time difference, , between females breeding for the firstt � t� �

time at age t� and males breeding for the first time at age t�. During
this period , males grow larger than females, until the finalt � t� �

ratio of their sizes is . The prediction equations for key var-M /M� �

iables are shown beneath them in square boxes. The ovals below
show which figures plot the data in which each prediction equation
is tested. Ancillary equations used to derive predictions are shown
in the square boxes at the top of the figure.

mented empirical allometric relationships. An overview is
given in figure 1. The flow of prediction is shown by the
bold symbols and arrows in the central row of figure 1.
First, we predict the allometry of group size, N. From this
we calculate the difference between the breeding ages of
males and females, . Finally, we use this to obtaint � t� �

the ratio of masses of adult males and females, ,M /M� �

and hence the magnitude of Rensch’s rule. The additional
allometric information used in making these predictions
is shown in the boxes in the top row of figure 1. In par-
ticular, we assume two allometric relationships defining
the scaling of death rate and somatic growth rate. Specif-
ically, for female placental mammals, we assume the female
adult death rate

�1/4m p 0.49 M . (2)� �

We use units of kilograms and years throughout. The
normalization constant ( ) in equation (2)intercept p 0.49
comes from a regression of data in Sibly et al. (1997) and
Ernest (2003); see figure A1. The scaling exponent of �1/
4 comes from the commonly observed quarter-power scal-
ing of biological rates and times, including death rates in
life history (Brown et al. 2004; McCoy and Gillooly 2008;
McCoy and Gillooly 2009). For males between the ages of
t� and t�, we assume male somatic growth rate

3/4dm/dt p Cm , (3)

where m is body mass during growth and C is a normal-
ization constant parameterizing the absolute, size-inde-
pendent rate of biomass production, whose value is dis-
cussed below. The exponent, 3/4, again reflects commonly
observed quarter-power scaling (in this case, of ontoge-
netic growth rate; Hou et al. 2008; Moses et al. 2008).

The starting point of our model is the allometry of
female group size, N (fig. 1). This allometry in principle
emerges from the allometry of population density, which
scales with body mass to the –3/4 power (Damuth 1981,
1987), and the allometry of individual space use or home
range size, which scales with body mass to the power 1
(Kelt and Van Vuren 1999, 2001; Jetz et al. 2004). Assum-
ing that females aggregate and share the same home range,
the number in the group theoretically should scale with
body mass to the power (Calder 1984). Below1– 3/4 p 1/4
some threshold size Mmono, however, females do not form
social groups but instead live as monogamous pairs and
share a territory with a male (Jetz et al. 2004). This gives
female group size

gN p (M /M ) , (4)� mono

with Calder’s reasoning predicting .g p 1/4
The allometry of female group size ultimately deter-

mines the allometry of sexual dimorphism, as indicated
in figure 1. The key intermediate step is that males adjust

their life histories in response to variation in female group
size to maximize their reproductive success. As group size
increases, proportionately fewer males are able to mate,
and the intensity of competition among males increases.
We assume that, if he is large enough, a single male wins
the contests and controls and mates with all of the females
in a group. Therefore, as female group size increases, males
are selected to grow larger and defer mating until an older
age. However, this comes at a cost, both because males
delay reproduction and because, as males grow larger than
females, they incur higher maintenance requirements and
higher death rates. Therefore, the effect of sexual selection
on males is a trade-off: larger males can control groups
of females and sire more offspring, but this delays repro-
duction and increases death rates and the energy allocated
to maintenance (Blanckenhorn 2000, 2005).

We assume that the increased death rate of adult males,
m�, can be expressed as a function of female death rate
and female body mass as

vm p m (M /M ) , (5)� � � mono

where the exponent v scales male in relation to female
death rates. Its value is discussed below.

Although males are capable of breeding earlier, we as-
sume that they first breed at age t�, when they are larger
than enough other males to control a group of females.
We now use the fact that the lifetime reproductive success
of males is equal to that of females (Fisher 1930). Lifetime
reproductive success of females is , and that of malesbS /m� �

is , where b is the number of offspring producedbNS /m� �
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per year by individual females and S� and S� are the
survival rates from birth to first breeding of males and
females, respectively. Thus

bS /m p bNS /m . (6)� � � �

We assume that males and females have identical sur-
vival rates until t�. Subsequently, male death rate increases,
so survival rate of males, S�, is less than that of females,
and we assume . Combining with�[(m �m )/2](t �t )� � � �S p e S� �

equation (6), recalling equations (2), (4), and (5), and
rearranging gives the difference in the age of first repro-
duction between males and females:

( )2(g � v) ln M/Mmono

t � t p . (7)� � �1/4v( )0.49 1 � M/M M( )mono

This equation predicts how long males have to wait
before they can control a group and breed with the females.
We assume that the energy available to males is limited
by the ecological conditions on the home range and is the
same for males and females. A female attains reproductive
maturity and stops growing at age t� at the ecologically
optimal body size. Subsequently, she allocates energy be-
tween survival (maintenance) and reproduction, and her
total metabolic rate exceeds the standard field metabolic
rate (FMR) of (Nagy 2005) by ap-8 0.733.1 # 10 M J/year�

proximately 25% because of the cost of reproduction
(Kenagy et al. 1990). Therefore, in the period , at � t� �

female uses ( ) J, and this8 0.735/4 # 3.1 # 10 M t � t� � �

amount of energy is available to a male over the same
period, during which he has to fuel his survival and growth
from M� to M�. The rate of energy expenditure of a male
on survival during this period is given by the scaling of
FMR as a function of his mass, m, which is 3.1 #

. Therefore, over the entire period , a8 0.7310 m J/year t � t� �

male expends J on survival. The quan-t� 8 0.733.1 # 10 m dt∫t�
tity of available energy is the same for both sexes, but the
female allocates to reproduction, whereas the male allo-
cates to growth. This means that 5/4 # 3.1 #

J is potentiallyt�8 0.73 8 0.7310 M (t � t ) � 3.1 # 10 m dt∫t� � � �

available to fuel growth from M� to M�. The metabolic
expenditure on growth can be estimated from the energy
required to produce a kilogram of mammalian flesh, 2.4
MJ (Hou et al. 2008). Substituting, this gives

1
8 0.73M � M p [5/4 # 3.1 # 10 M� � �62.4 # 10 (8)

t�

8 0.73# (t � t ) � 3.1 # 10 m dt].� � �
t�

The last term can be integrated by approximating 0.73
as 3/4 and using equation (3). Rearranging gives the pre-
dicted sexual dimorphism:

�1/4M /M p 1 � 1.25M (t � t )/(0.008 � 1/C). (9)� � � � �

Predictions of the model are shown in figure 2. The
difference in age of first reproduction between males and
females, , is shown in figure 2C and 2D, and thet � t� �

ratio of masses of breeding males and females, ,M /M� �

the magnitude of Rensch’s rule, is shown in figure 2E and
2F.

Data and Empirical Evaluation

We have compiled and analyzed relevant data for bovids,
cervids, and macropodids. Data were obtained from mul-
tiple sources in the published literature, available in Dryad.
Sufficient standardized data are available for all three taxa
to analyze female group size, N; the age difference between
females and males breeding for the first time, ; andt � t� �

the magnitude of sexual dimorphism, , all as func-M /M� �

tions of female body size (fig. 2). The allometries of Bov-
idae and Cervidae are indistinguishable and are plotted in
the upper row of figure 2, the allometries of Macropodidae
are in the lower row. Assumptions and predictions of the
model are evaluated empirically as follows:

1. Female group size: The smallest females with group
size of one weigh approximately 1 kg in macropodids and
approximately 10 kg in bovids and cervids. Therefore, we
used for macropodids andM p 1 kg M p 10mono mono

for bovids and cervids. Linear regression of the log-logkg
data shown in figure 2A and 2B gives exponents (�SE)
of for bovids and cervids ( , 21.09 � 0.05 P ! .001 R p

) and for macropodids ( , 20.77 0.55 � 0.06 P ! .001 R p
). Both exponents are substantially and significantly0.75

higher than the value of 0.25 predicted by Calder (1984).
Given this discrepancy, we used the exponents from the
fitted regression equation for each group to complete the
model (fig. 1).

2. Female death rate: Equation (2) predicts that death
rates of adult females scale as . Analysis�1/4m p 0.49M�

by McCoy and Gillooly (2008) of data for 323 mammal
species gave a similar exponent but higher normalization
constant: , with a standard error for nor-�0.24m p 1.20M�

malization constant of 1.07 and a standard error for scaling
exponent of 0.01. Their data for 41 species of Bovidae and
Cervidae give . Our data are from field�0.23m p 1.4M�

studies of survival rate in Sibly et al. (1997), whereas their
data are based on estimates of the maximum longevity of
captive animals, under the assumption that the mortality
rates of wild animals are approximately 2.5 times greater.
Our analysis suggests that their correction factor of 2.5
may overestimate death rates of ungulates in the wild.

3. Age of breeding and male death rate: Difference in
age of breeding between the sexes is plotted as a function
of M� in figure 2C and 2D. The model predictions (solid

http://dx.doi.org/10.5061/dryad.j1fd7
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Figure 2: Model predictions and empirical tests of the key allometric relationships (see fig. 1). Model predictions are shown as solid lines
except in panels A and B. Data for Bovidae (asterisks) and Cervidae (open circles) are shown in the upper row, and data for Macropodidae
(closed circles) are shown in the lower row; for values and sources, see Dryad. The left-hand column (A, B) tests the prediction for the
allometry of female group size N. The theoretical prediction is , shown as faded lines. Fitted regressions are solid lines0.25N p (M /M )� mono

corresponding to with in A and in B. These values are used in the model predictionsgN p (M /M ) g p 1.09 � 0.05 g p 0.55 � 0.06� mono

in C, D, E, and F. C and D test the prediction for the difference in age of first reproduction between males and females, . E and Ft � t� �

test the predicted allometry of the ratio of masses of adult males and females, (Rensch’s rule).M /M� �

lines) come from equation (7), which gives the difference
in age of breeding as a function of M� and v, where v is
the exponent relating male to female death rates in equa-
tion (5). We used nonlinear least square regression (Gauss-
Newton algorithm in R) to fit equation (7) to the data in
figure 2C and 2D. The model predictions fit the data well,
giving values (�SE) of for bovids andv p 0.60 � 0.03
cervids and for macropodids ( ,v p 0.40 � 0.03 P ! .001

and , , respectively). Few2 2R p 0.73 P ! .001 R p 0.56
data are available with which to compare these values, but
there is clearly a substantially higher death rate among
males than among females in highly sexually dimorphic
species (Georgiadis 1985; Owen-Smith 1993; Jorgenson et
al. 1997; Catchpole et al. 2004). From data in Owen-
Smith’s (1993) study of greater Kudu (Bovidae) we cal-
culated that m� was approximately 6.6m�. In this species,
females weigh approximately 200 kg, suggesting that v ≈

, close to our fitted value for Cervidae and Bovidae of0.63
0.60. Thus, the limited data that are available support the
model assumption that an increased male death rate is an

emergent outcome of sexual selection for large male body
size.

4. Growth trajectories: The model assumes that females
stop growing at reproductive maturity, but in species where
group size is 11 and , males continue to grow.M 1 Mmono

This is supported by Georgiadis’ (1985) study of 11 species
of African ruminants, and we have found high-quality data
on growth rates as a function of age for three species:
white-tailed deer (Fuller et al. 1989), red deer (Clutton-
Brock et al. 1982, 1988), and moose (Solberg and Sæther
1994). These data strongly support the model assumption
that, in sexually dimorphic species, females virtually stop
growing once they reach sexual maturity, whereas males
continue to grow, but at decreasing rates, throughout life.

5. Sexual size dimorphism and male growth rate: We
used nonlinear least square regression to fit equation (9)
to the data in figure 2E and 2F. The model predictions fit
the data well, giving values of male growth rate (�SE)

kg1/4/year for bovids and cervids andC p 0.35 � 0.03

http://dx.doi.org/10.5061/dryad.j1fd7
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kg1/4/year for macropodids (fig. 2E, 2F ;0.97 � 0.13 P !

, and , , respectively).2 2.001 R p 0.60 P p .001 R p 0.58

Discussion

Using four parameter values (Mmono, g, v, and C) estimated
from the data, our model makes assumptions and pre-
dictions that are consistent with analyses based on large
data sets for all three groups. Therefore, the model pro-
vides a quantitative explanation for Rensch’s rule in these
large herbivorous mammals.

Calder’s theoretical prediction of M 1/4 scaling of female
group size, based on the allometry of metabolic rate and
home range size in mammals (Calder 1984; Jetz et al.
2004), was not supported (fig. 2A, 2B). The fitted expo-
nents are substantially and significantly greater than 0.25
for both groups: 1.09 for bovids and cervids, 0.55 for
macropodids (fig 2A, 2B). The empirical regressions, al-
though highly significant, left considerable unexplained
residual variation. To some extent, both the higher ex-
ponent and the magnitude of variation may reflect lack
of comparability across studies because of differences in
methodology and because of our representation of each
species with a single value of (average female) body size
and (maximum) group size. Much of the variation, how-
ever, undoubtedly reflects real differences in group size
among species with similar body sizes. These differences
probably reflect variability in habitat quality, stability, and
mobility of female groups and characteristics of the breed-
ing system (Jarman 1974, 1983). There is a need both to
revisit Calder’s theory for allometric scaling of space use
and group size, especially as it applied to large herbivorous
mammals, and to obtain more and better data to evaluate
and perhaps modify the theory.

With this qualification, our model appears to capture
the fundamental role of female group size and its rela-
tionship to foraging ecology in accounting for Rensch’s
rule in large herbivorous mammals. We used empirical
values for four parameters of the model: the constant,
Mmono, in equations (4) and (5) for the average body size
of monogamous species (i.e., where female group

); the exponent g in equation (4) for scaling ofsize p 1
female group size with female body mass (see above); the
exponent v in equation (5) for scaling male relative to
female death rates; and the normalization constant, C, in
equation (3) for scaling of growth rate. After such param-
eterization, the model predicted the data for both differ-
ences between sexes in age of first breeding (fig. 2C and
2D) and sexual size dimorphism (fig. 2E and 2F). Thus,
the model makes predictions for Rensch’s rule in large
herbivorous mammals that are in reasonable agreement
with the data. However, mechanistic models such as ours,
which make multiple predictions for disparate traits, re-

quire more sophisticated evaluation procedures than are
currently available (White et al., forthcoming). For ex-
ample, all four fitted parameters contribute to the pre-
diction of sexual dimorphism in equation (9), so the fitting
procedure would ideally fit all four parameters simulta-
neously to all the data in figure 2. Phylogenetic correction
during model fitting would also be desirable, but tech-
niques have not yet been devised to allow phylogenetic
fitting of nonlinear regressions. In our defense, we note
that, when species data are spread out over orders of mag-
nitude variation in body mass, phylogenetically corrected
and uncorrected analyses tend to give similar results. For
example, in a thorough analysis of Rensch’s rule in varanid
lizards, Frydlova and Frynta (2010) found that the results
remained virtually unchanged after performing a phylo-
genetically informed analysis.

Our model implies that Rensch’s rule is observed in
large herbivorous mammals, such as deer, antelope, and
kangaroos, because females form social groups of increas-
ing size with increasing body size, and a single male that
lives long enough and grows large enough can control a
group and monopolize the matings. Therefore, an im-
portant parameter is how the number of females in a group
varies with female body size. This scaling of group size
reflects the role of ecological factors, especially foraging,
predator avoidance, and information exchange. Even in
herbivorous mammals, there is much variation, discussed
above, and there are also exceptional species that violate
assumptions of the model. For example, zebra and wil-
debeest are large but exhibit little or no sexual dimorphism
in body size. However, these species typically occur in large
herds, where it is difficult for single males to control groups
of females. When this is taken into account, these species
may actually support the model.

We urge caution in extrapolating from our model for
large herbivorous mammals to make predictions about
Rensch’s rule and the correlates and causes of sexual size
dimorphism in other taxa. However, some speculation is
warranted. Primates are another group that exhibits
Rensch’s rule (Smith and Cheverud 2002; Gordon 2006).
Most components of our model seem to apply, at least
qualitatively, to primates: females occur in social groups;
group size scales positively with body size; and larger, older,
dominant males mate with more females. There are also
differences, however. In particular, somewhat different
ecological factors (information exchange and predation
risk) likely account for body size–dependent aggregation
into social groups, which often include multiple subor-
dinate males as well as females.

The model also offers insights into why some other taxa
are exceptions to Rensch’s rule. For example, some pin-
nipeds (seals, sea lions, and walruses) are highly sexually
dimorphic in body size, but the magnitude of dimorphism
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is not correlated with body size (being highest in fur and
elephant seals, which are among the smallest and largest
pinnipeds, respectively; authors’ unpublished data com-
pilation and analysis). In these marine mammals, the mag-
nitude of dimorphism is strongly related to harem size,
but the limited terrestrial sites where females mate and
give birth are related to habitat and predator avoidance
strategies and not to foraging ecology.

The relevance of our model to other cases is less clear.
Hummingbirds exhibit an “extended” Rensch’s rule, with
females being larger than males and the magnitude of
sexual dimorphism increasing with decreasing body size
(Colwell 2000; Dale et al. 2007). At least in this case, male
reproductive success seems to depend less on dominance
in aggressive interactions and more on agility in courtship
displays. In such cases, biomechanical analyses support the
inference that smaller males are more agile and better able
to execute tight turns and complicated manoeuvres (Dial
et al. 2008). Some groups that exhibit Rensch’s rule, such
as varanid lizards, seem to differ from large herbivorous
mammals and hence from our model in so many ways
that extrapolation is unwarranted (Frydlova and Frynta
2010).

The values of the parameter C used to generate pre-
diction lines in figure 2E and 2F are extremely low (0.35
kg1/4/year for bovids and cervids and 0.97 kg1/4/year for
macropodids). C is the proportionality constant relating
somatic growth rate to body size (eq. [3]). If males con-
tinued to grow as fast as females throughout their lives,
they would mature much earlier or attain much larger
sizes (Georgiadis 1985), and C would be on the order of
3 kg1/4/year (see “Appendix”). However, male and female
growth rates are similar only up until the size at which
females stop growing. In dimorphic species, although
males continue to grow, their growth rates are substantially

reduced, which is probably attributable in part to the costs
of maintaining the large bodies and weapons used to com-
pete for mates. These costs are likely to be higher in species
with larger weapons, and this may explain why C is lower
for bovids and cervids, in which males grow horns or
antlers, than for macropodids, which do not have such
obvious weaponry.

Surprisingly, our calculations clearly show that highly
dimorphic male bovids, cervids and macropodids allocate
only a very small fraction of their total metabolic energy
to growing additional biomass, including both body and
weapons. It is likely that this qualitative result also holds
for other sexually dimorphic mammals and other verte-
brates. The vast majority of metabolic energy is apparently
spent on maintenance (including survival). An important
caveat is that males of sexually dimorphic species also
expend energy on potentially costly breeding behaviors,
including courtship of females and aggressive contests with
other males. Because reproductively successful males do
tend to be larger and to have more elaborate weapons and
ornaments (Kodric-Brown et al. 2006), this raises inter-
esting, still unanswered questions about the energetic basis
of sexual size dimorphism and how it relates to sexual
selection and life history.
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APPENDIX

Supplemental Figures

Figure A1: Death rates of young adult female placental mammals in relation to body size. Data are from Sibly et al. (1997). These
rates are estimated from field studies of populations, and some species are represented more than once. The line is the fitted line
with slope �1/4.

Figure A2: plotted against t�. The slope of the fitted line gives C.1/4 1/44[M � M ]� o
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