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A MATRIX ITERATION FOR DYNAMIC NETWORK SUMMARIES

PETER GRINDROD∗ AND DESMOND J. HIGHAM†

Abstract. We propose a new algorithm for summarizing properties of large-scale time-evolving
networks. This type of data, recording connections that come and go over time, is being generated
in many modern applications, including telecommunications and on-line human social behavior. The
algorithm computes a dynamic measure of how well pairs of nodes can communicate by taking account
of routes through the network that respect the arrow of time. We take the conventional approach of
downweighting for length (messages become corrupted as they are passed along) and add the novel
feature of downweighting for age (messages go out of date). This allows us to generalize widely used
Katz-style centrality measures that have proved popular in network science to the case of dynamic
networks sampled at non-uniform points in time. We illustrate the new approach on synthetic and
real data.

Key words. centrality, communicability, dynamic network, Katz centrality, social network
analysis, telecommunication, resolvent
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1. Introduction. Large scale complex networks arise in a range of natural and
technological settings [7, 19], and pose many challenges to applied and computational
mathematicians. Many key ideas in this area came from the field of social network
analysis [23], at a time when interactions were typically recorded link by link in the
field, and systems involved tens or perhaps hundreds of players. Nowadays, however,
the same principles are being applied to networks in biology, on-line behaviour and
telecommunications, where data involving millions of nodes or more can be generated
and stored automatically.

The motivation for our work is that many emerging interaction data sets involve
an element of time [11]. For example, human social contact can be monitored in
relation to emails and phone calls [6, 22], on-line chats [12], allegiances during massive
on-line gaming [20] and physical proximity [13]. In neuroscience we can record which
brain regions have correlated activity as a task is performed [1] and in e-business
we may be told that “people who bought this book also bought. . . ” [16]. In these
cases, links are transient, and after dividing the time axis into discrete units (seconds,
minutes, hours, . . . ) we obtain a time ordered sequence of networks. Our aim here is
to present an algorithm that is able to summarize key features in this type of data
in a manner that (a) respects the time-dependency and (b) generalizes previously
developed algorithms.

We focus on centrality measures that identify key nodes. Many alternatives have
been proposed and evaulated for static networks [3, 7, 19]. Our approach is motivated
by the original work of Katz [14], and in the time-dependent context we have in mind
questions such as

• who is currently most likely to know the latest news, import the latest soft-
ware virus or catch the latest strain of influenza?

• who is currently most effective at broadcasting the latest news, spreading the
latest software virus or passing on the latest strain of influenza?
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In the next section, we set up the notation and motivate a new algorithm, which
is then described in section 3. A key feature of the algorithm is illustrated on specially
constructed synthetic networks in section 4, and two types of real interaction data are
used in section 5. We finish with a brief discussion in section 6.

2. Notation and Background. Suppose we have a time-ordered sequence of
unweighted graphs defined over a set of N nodes. Given the time points t0 < t1 <
· · · < tM , we let A[k] denote the adjacency matrix for the network at time tk. So the
i, j entry of A[k] equals one if there is a link from node i to j at time tk and A[k]

equals zero otherwise. Directed links, where A
[k]
ij 6= A

[k]
ji are allowed, but we have no

self loops, so A
[k]
ii ≡ 0.

We let ∆ti := ti − ti−1 denote the spacing between successive time points. We do
not assume that the time points are equally spaced. Non-uniform spacing is natural,
for example, if we have time-stamped emails or text messages with each A[k] recording
one event.

In this setting, we can envisage excursions around the network that respect the
arrow of time. For example, if A links with B today and B links with C tomorrow,
then there is a natural route from A to C but (in the absence of any other links) there
is not a natural route from C to A. With this philosophy, dynamic walks were defined
in [10] as follows.

Definition 1. A dynamic walk of length w from node i1 to node iw+1 consists

of a sequence of edges i1 → i2, i2 → i3, . . . , iw → iw+1 and a non-decreasing sequence

of times tr1
≤ tr2

≤ . . . ≤ trw
such that A

[rm]
im,im+1

6= 0.
This concept was used to motivate the definition of a dynamic communicability

matrix, which we write here as Q[M ], where, more generally,

Q[k] =
(

I − aA[0]
)

−1 (

I − aA[1]
)

−1

· · ·
(

I − aA[k]
)

−1

. (2.1)

The parameter a is assumed to satisfy a < 1/ maxk ρ(A[k]), where ρ(·) denotes the
spectral radius. This ensures that the resolvents in (2.1) exist and may be expanded

according to
(

I − aA[p]
)

−1
= I + aA[p] + a2(A[p])2 + · · · . It is then straightforward to

see that
(

Q[k]
)

ij
is a weighted sum of the number of dynamic walks from i to j using

the ordered sequence {A[0], A[1], A[2], . . . , A[k]}, where the number of walks of length
w is scaled by aw. The key idea here is that each possible walk around the network
from node i to node j adds to the communicability measure but longer walks are
less influential than shorter walks. In the static case, where k = 0, this leads to the
classical Katz centrality [14], and we note that Katz also offered the interpretation
that a represents the probability that a message successfully traverses an edge.

It is important to note that the use of Q[M ] is strongly tied to the idea of a start

point, t0 and an end point, tM . Any walk that took place in the time period t0, . . . , tM
has equal influence. Also, by construction, the elements in Q[M ] are nonnegative and
non-decreasing with k, so that pairs of nodes cannot become less communicative
over time. These features are appropriate in some applications; e.g. if the networks
represent functional connectivity between brain regions in the course of a well-defined
task [1]. However, there are many applications where we are interested in the current

and recent activity, but not in the activity that took place a long time ago—messages
go out of date, rumours lose their timeliness, some viruses become less infectious.

In this work we take the view that it is of interest to know whether node i recently

had the opportunity to get a message to node j using short walks. At one extreme
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the matrix A[k] gives us the most localized picture, telling us what is possible using
single steps with only today’s connectivity. At the other extreme, the matrix Q[k]

gives us the most historical view, telling us what is possible using all walks over all
the connections that ever existed up the current time. In the next section we present
a matrix iteration that interpolates between these two extremes.

3. New Iteration. Suppose we have several months’ worth of hourly email or
phone activity, starting from some arbitrary day zero. It would be of interest to
compute a time-dependent ‘running summary’ of communicability between pairs of
nodes. Here, at each point in time, we wish to quantify the capability of node i to
pass messages to node j, where

(i) as we discussed in the previous section and has been used in the derivation of
many centrality measures for static networks [4, 5, 7, 8, 14, 19], long walks

are less important than short walks, but also, in this time-dependent setting,
(ii) walks that started recently are more important than walks that started a long

time ago.

Part (ii) is the novel feature that we incorporate in this work.

These requirements motivate the idea of a running dynamic communicability ma-

trix, S [k], based on two parameters, a ∈ (0, 1) and b > 0. Here, as in (2.1), a is used
to downweight walks of length w by the factor aw. To explain the new parameter
b, we refer to the current age, t, of a dynamic walk as the time that has elapsed
since the walk began. The parameter b is then used to further downweight by the
age-dependent factor e−bt. So b is used to filter out ‘old’ activity.

We therefore propose the following iteration, where, for convenience, S [−1] = 0,

S [k] = (I + e−b∆tkS [k−1])(I − aA[k])−1 − I, k = 0, 1, 2, . . . . (3.1)

To understand how this works, we can expand the right hand side of (3.1) as

aA[k] + a2A[k]2 + · · · + arA[k]r + · · · (3.2)

+ e−b∆tkS [k−1] (3.3)

+ e−b∆tkS [k−1]aA[k] + e−b∆tkS [k−1]a2A[k]2 + · · · + e−b∆tkS [k−1]arA[k]r + · · ·(3.4)

This leads to the following interpretation.

• The terms in (3.2) give a length-weighted count of all walks that start and
finish at the current time, tk.

• The term in (3.3) deals with all “old” walks that do not involve time tk.
These get downweighted by the time-factor e−b∆tk , because the age of each
such walk has increased by ∆tk.

• The terms in (3.4) deal with all walks that began at an earlier time but make
use of one or more edges at the current time, tk. The factor e−b∆tk is used
again, because the age of each such walk has increased by ∆tk. Then we have
a length-downweighting factor ar if r new edges are used.

So overall, we get what we wanted:

The i, j element of the matrix S [k] records a scaled count of the
number of dynamic walks from i to j that can be taken with the
time-ordered sequence A[0], A[1], A[2], . . . , A[k]. The scaling comprises
the product of (a) a factor aw for walks of length w, and (b) a factor
e−bt for walks that began t time units ago.
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The factor e−b∆tk in (3.1) may be interpreted as the probability that a message
does not become ‘irrelevant’ (or a virus doesn’t mutate into a harmless form) over a
time length ∆tk. We also note that the iteration automatically incorporates the case
of nonuniform time spacing.

There are, of course, many other possible choices for downweighting. On static
networks the inverse factorial 1/w! for walks of length w, which leads to the matrix
exponential, has proved popular [7]. However, the factor aw is particularly convenient
when we move into the realm of dynamic networks, since the basic law of indices
aw1aw2 = aw1+w2 allows us to do the combinatorics across time-points through simple
matrix products in (2.1). The same reasoning also explains why the functional form
e−b∆t was chosen in (3.1).

When b = 0 (no downscaling in time), we essentially recover the original iteration
(2.1) from [10]; we have Q[k] = I + S [k]. On the other hand, for b = ∞, that is,
e−b∆tk ≡ 0 (complete downscaling in time), we revert to Katz static centrality with
S [k] = (I − aA[k])−1 − I.

A simple variation of (3.1) restricts attention to walks using at most one edge per
time point. (For example, the time taken to pass a message along an edge may be
comparable with a typical ∆t.) In this case, we just replace the resolvent in (3.1) by
its first two terms:

S [k] = (I + e−b∆tkS [k−1])(I + aA[k]) − I. (3.5)

More generally, the resolvent expansion could be truncated after more terms if it is
appropriate to impose some other upper limit on the number of edges traversed in a
single time point.

We also point out that in the case of discrete, instantaneous interaction, such as
email and text, it is attractive to take ∆t so small that each A[k] records a single
event. In this way, the requirement for the networks to be unweighted does not incur
a loss of detail.

We may summarize down to the level of nodal information by aggregating the
ability of a node to communicate with, or receive communication from, every other
node. In this way,

S [k]1 and S [k]T 1, (3.6)

where 1 ∈ R
N denotes the vector of ones, give running versions of the dynamic broad-

cast and receive communicabilities introduced in [10]—the ith components indicate
the current propensity for node i to act as a source or sink, respectively, of information.

4. Illustration on Synthetic Data. We now give an artificially constructed
example that illustrates the new algorithm. Our network sequence has 31 nodes over
64 time points. We regard the time points as representing days, with ∆t equal to one
day, and suppose that over a certain time period, day 17 to day 48, the links are the
consequence of rumours that originate from node 1. These rumours cascade from node
1 across the network: a node that receives a rumour passes it on to a new recipient
the next day. In this manner node 1 is getting messages across the network with very
little effort in a way that is difficult to unravel from either snapshots or aggregate
data. It is the timing and local follow-on effect of the links that distinguishes node 1
from its peers. We will show that this well-hidden, and transient, broadcasting role
is not revealed by existing centrality measures, but can be uncovered by a suitable
choice of parameters in the new algorithm.



5

To begin, we construct directed networks on days 1 to 16 and days 49 to 64 that
consist of ‘noise’ in the form of independent Erdös-Rényi graphs, so each directed
edge appears on each of these days with independent probability p = 2/N . Each node
therefore has an average of two outgoing edges on these days. To describe days 17 to
48, consider a directed binary tree with the obvious labelling: node 1 at level 1, nodes
2 and 3 at level 2, nodes 4 to 7 at level 3, nodes 8 to 15 at level 4 and nodes 16 to 31
at level 5. We switch on different levels at various times.

• L1: Level one switched on: there are connections 1 → 2 and 1 → 3.
• L2: Level two switched on: there are connections 2 → 4 and 2 → 5, and

3 → 6 and 3 → 7.
• L3: Level three switched on: there are connections 4 → 8 and 4 → 9, up to

7 → 14 and 7 → 15.
• L4: Level four switched on: there are connections 8 → 17 and 8 → 18, up to

15 → 30 and 15 → 31.

In this way, we use the directed binary tree structure to cascade rumours that start
at node 1. At day 17, we use L1 and at day 18 we use L2. Then from days 19 to 48
we alternate between ‘L1 pus L3’ and ‘L2 plus L4’. So on odd days there is a new
rumour from node 1 that is being passed to level 2, and the previous rumour (from
two days ago) is passed from level 3 to level 4. On even days the most recent rumour
is passing from level 2 to level 3, and the previous rumour is passing from level 3 to
level 4.

Note that by ‘staggering’ the cascade, we get quite a subtle effect over this time
period. In particular, node 1 does not have high bandwidth: it is switched off every
other day, and even when it is switched on, it has the same number of outward links
as 4 other nodes.

For this data, the biggest spectral radius over all days is maxk ρ(A[k]) = 2.7, so
the upper limit for a in the resolvent is 0.37. We use a = 0.3 in these tests.

Figure 4.1 shows the rank of node number one over time, as measured by the
running broadcast communicability from (3.6). A rank of 1 means that node one is
the best broadcaster, and a rank of 31 the worst. The upper picture uses b = 0.6,
and in this case the algorithm has picked out the special nature of node one over the
period where the rumour cascading takes place. From around day 20, the node builds
up in rank, until it becomes one of the top performers (despite its modest bandwidth).
After day 48, when the cascading stops, the node loses rank considerably. The middle
picture uses b = 0.1. In this case, we are close to the iteration (2.1) from [10]. We
are not discounting old walks enough to capture the cascading effect—the ‘noise’ at
the start of the time period continues to influence the result. The lower picture shows
b = 1. Here we are close to using static Katz centrality in each snapshot—old walks
are heavily penalized and we are looking at each day almost in isolation. Because we
localize so strongly in time, node one immediately reduces in rank on days 18, 20, 22,
. . . , 48, where it has no activity. If we take this to the extreme case of e−b∆t = 0
then, during the cascade period, when node one switches on it will share the highest
rank with the level 3 nodes, (nodes 4,5,6,7) and when it switches off it will share the
lowest rank with the level 3 nodes and level 5 nodes.

The question of whether properties like those of node 1 in this example are of
interest, and, if so, how to quantify them, clearly depends on the application. In
general, this issue requires us to understand, or estimate, the natural time scales at
work; that is, how quickly relevance decays over time. This is reflected in the fact
that the plots in Figure 4.1 are sensitive to the parameter b (whereas tests in [10]
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Fig. 4.1. Rank of node one in the synthetic test (rank = 1 denotes that this node is currently
the best broadcaster). Upper: b = 0.6. Middle: b = 0.1. Lower: b = 1. Cascade takes place over
days 17 to 48.

found that a could be changed by an order of magnitude without a major affect on
the node rankings). Our aim here is to present the new algorithm and show that
it can discover interesting ‘hidden’ features if b is chosen appropriately. Automating
the choice of b via problem-specific knowledge or data-driven analysis is an important
area for future work. The second experiment in section 5 suggests one approach.

5. Real Human Interaction Data. We now illustrate the new iteration on
two real social interaction data sets. The first experiment gives a feel for the overall
smoothing effect of the time downweighting parameter b. In the second experiment
we focus on the use of S [k] to define the time-dependent broadcast and receive cen-
tralities (3.6) and judge the quality of these measures for one-day-ahead predictions
of Katz centrality. We emphasize that these computations are presented for illus-
trative purposes—quantifying the effectiveness of network summaries and centrality
measures is not a well-defined task, and it necessarily depends on the type of data
under consideration and the issues of interest.

We begin with the ‘Reality Mining’ telecommunication data from [6]. In this
case there are 106 nodes and we summarize into 365 days: (A[k])ij = (A[k])ji = 1
means that nodes i and j communicated by telephone at least once on day k. Here
maxk ρ(A[k]) = 8.2, so the upper limit for a is 0.12, and we use a = 0.05.

In Figure 5.1 we show how the average number of links per node varies over time.
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Fig. 5.1. Reality Mining data. Average links per node on each day.

We see a build up of activity that peaks at around day 100. Figure 5.2 summarizes the
network communicability by showing the evolution of ||S[k]||, scaled by its maximum,
where || · || denotes the Euclidean norm. The upper picture uses b = ∞ (more
precisely, e−b∆t = 0 in (3.1)), which corresponds to the static Katz centrality applied
at each daily snapshot. We see that this measure closely follows the overall links-per-
day structure across time. The middle picture uses b = 0.2, so e−b∆t = e−b = 0.82,
allowing us to capture the effect of earlier activity propagating across the network. We
see that the running centrality measure presents a much smoother temporal summary,
and highlights a later period, from around days 140 to 200 as the most influential,
with distinct bi-modal structure. There is a ‘lag time’ of around 50 days between
peaks for the static and running summaries. This lag time was found to depend quite
strongly on the parameter b, but the bi-modal structure of the running summary was
persistent: the lower picture uses b = 0.4, so e−b∆t = e−b = 0.67, and we see that the
lag is much shorter. With b increased to 0.6 the picture becomes very similar to the
b = ∞ case.

The second experiment uses email data between Enron employees, [15], as studied
previously, for example, in [10, 21]. We have 151 nodes in the network with interaction
summarized over 11389 days. Because email is a one-way form of communication, we
use directed links, with (A[k])ij = 1 if person i emailed person j at least once on day
k. We regard To:, cc: and bcc: as equivalent, for simplicity. Figure 5.3 displays the
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Fig. 5.2. Test on Reality Mining data. Upper: size of the running dynamic communicability
matrix, S [k], when b = ∞, equivalent to Katz centrality. Middle: b = 0.2. Lower: b = 0.4.

average number of links per node over time. We have maxk ρ(A[k]) = 3.93, giving an
upper limit of 0.25 for a, and we chose a = 0.2. Our aim is to use current information
{A[0], A[1], A[2], . . . , A[k]} to predict the next day’s behavior. We focus on centrality
and target tomorrow’s Katz-style broadcast and receive centralities, given by

(I − aA[k+1])−11 and (I − aA[k+1])−T 1, (5.1)

respectively. At each time point k = 0, 1, . . . , M − 1 we test whether the dynamic
broadcast communicabilities assigned to each node by (3.6) match tomorrow’s actual
Katz broadcast centralities in (5.1) by computing the Pearson correlation coefficient
between the two vectors. We sum the correlation coefficients over all time points
(ignoring cases where the adjacency matrix, A[k+1], was empty) to give an overall
quantification of how well the dynamic summary predicts future behavior, with a
larger value indicating better performance. We also do the same for receive centrality.

The upper and lower pictures in Figure 5.4 give the results for broadcast and
receive centralities, respectively, as a function of the time-downweighting parameter,
b. These are normalized to have a maximum of one. Here, b = ∞ corresponds to
using only today’s network to predict tomorrow’s and b = 0 corresponds to letting all
earlier days have equal influence. We see that the best performance arises with an
intermediate case of b ≈ 0.3, where, for example walks that started three days ago are
downweighted by e−3b ≈ 0.41 and walks that started two weeks ago are downweighted
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Fig. 5.3. Enron email data. Average links per node on each day.

by e−14b ≈ 0.015. This test indicates how the choice of b can be informed by studying
a quantity of interest on real data.

6. Discussion. We believe that the new iteration (3.1) can form the basis of
many useful tools aimed at analysing temporal networks. For example:

• If the iteration is applied in real time, the resulting centrality measures (3.6)
can identify the latest ‘hot’ players, and those currently on rapid upward or
downward trajectories.

• The dynamic summary S [k] can be used to predict likely upcoming links
(estimating future bandwidth), or to interfere effectively with the network
evolution (suggesting new friends in an on-line social network or recommend-
ing movies in a rental service). Here the static Katz measure, corresponding
to b = ∞, has proved successful [17].

• The behavior of S [k] for appropriate time-dependent random graph models,
for example, from the class in [9], could provide a base-line against which to
calibrate unusual network behavior.

• By applying a clustering method to the running dynamic communicability
matrix S [k] at each time point, we could detect sets of nodes that organize
into tightly connected communities and then disperse over time. This would
give an alternative to the approach in [18].

• The running dynamic broadcast and receive centralities in (3.6) could be
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Fig. 5.4. Test on Enron email data. Upper: prediction quality for broadcast centrality as a
function of the downweighting parameter b. Lower: receive centrality.

used to rank nodes and compare them with known hierarchical structure—
for example, job status within a company—in order to see who is punching
above their weight.

• In general, S [k] will evolve into a dense matrix, so very large-scale applications
are not feasible. It is therefore of interest to devise fast and low strorage
algorithms that use approximations of S [k], along the lines of those developed
in the static case [2].
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