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Abstract 

Microporous carbons are important in a wide variety of applications, ranging 

from pollution control to supercapacitors, yet their structure at the molecular 

level is poorly understood. Over the years, many structural models have been 

put forward, but none have been entirely satisfactory in explaining the 

properties of the carbons. The discovery of fullerenes and fullerene-related 

structures such as carbon nanotubes gave us a new perspective on the 

structure of solid carbon, and in 1997 it was suggested that microporous 

carbon may have a structure related to that of the fullerenes. Recently, 

evidence in support of such a structure has been obtained using aberration-

corrected transmission electron microscopy, electron energy loss spectroscopy 

and other techniques. This article describes the development of ideas about 

the structure of microporous carbon, and reviews the experimental evidence 

for a fullerene-related structure. Theoretical models of the structural evolution 

of microporous carbon are summarised, and the use of fullerene-like models 

to predict the adsorptive properties of microporous carbons are reviewed. 

 

 

Keywords: Microporous carbon, fullerenes, transmission electron microscopy, 

adsorption  
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1. Introduction 

The adsorptive properties of charcoal have been known for thousands of 

years. Egyptian papyri from 1500BC record the application of charcoal to 

adsorb odorous vapours from putrefying wounds, while Hindu documents from 

450 BC refer to the use of sand and charcoal filters for the purification of 

drinking water [1]. In the 18th century, charcoal began to be used industrially 

for the decolourization of sugar syrups, while in the First World War the 

deployment of poisonous gases created an urgent need for adsorbent 

carbons suitable for use in respirators. Today, activated microporous carbon 

is used on an enormous scale for the purification of air and water [2,3]. It is 

still used widely in respirators, as well as in air-conditioning systems and in 
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the clean-up of waste gases from industry. In the liquid-phase, its largest 

single application is the removal of organic contaminants from drinking water. 

Many water companies in Europe and the USA now filter all domestic supplies 

through granular activated carbon filters, and household water filters 

containing activated carbon are also in widespread use. Other applications 

include decontamination of groundwaters and control of automobile 

emissions. Microporous carbon is also an important support material in 

heterogeneous catalysis, and is used in lithium ion batteries and 

supercapacitors. As a result of its commercial importance, charcoal has been 

the subject of a huge amount of research in both industrial and academic 

laboratories. Despite this, many important questions remain, not least about 

its detailed atomic structure. 

 

The primary aim of this article is to discuss the idea, first put forward by the 

present author and S.C. Tsang in 1997 [4,5], that charcoal, or char, has a 

structure related to that of the fullerenes. In order to put this in context, a brief 

outline of earlier work in the field is included. The article begins with a brief 

description of the characteristics of graphitizing and non-graphitizing carbons, 

and highlights the work of Rosalind Franklin in establishing the distinction 

between these two forms of carbon. Some of the structural models which 

have been put forward for non-graphitizing carbons are then discussed, 

beginning with Franklin’s original models, which were based on cross-linked 

graphitic domains. Subsequent workers suggested that sp3-bonded carbon 

atoms might be present in the cross-links, while later workers interpreted 

transmission electron microscopy (TEM) images of microporous carbon in 
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terms of a ribbon-like structure. The studies which led to the proposal of the 

fullerene-related model are then outlined, and experimental support for this 

structure is discussed. The strongest experimental support comes from 

studies carried out in the past four years using aberration-corrected TEM and 

electron energy loss spectroscopy (EELS). Both techniques provide evidence 

for the presence of pentagonal carbon rings in microporous carbon. 

 

In the subsequent section, some attempts to model the structural evolution of 

microporous carbon are reviewed. It is notable that in each case these 

modelling exercises lead to structures which contain non-hexagonal rings. 

Finally, the use of fullerene-like models of microporous carbons to predict their 

adsorptive properties is summarised. 

 

2. Graphitizing and non-graphitizing carbons 

In the early part of the 20th century it was established that carbons formed by 

the pyrolysis of organic materials fall into two distinct classes, cokes and 

chars. The two types of carbon have quite different physical properties. Cokes 

are relatively dense and soft whereas chars are hard, low density materials. 

Although cokes may be porous, this porosity is on a relatively large scale. 

Chars, on the other hand, have a high degree of microporosity, although some 

of this porosity is usually inaccessible to gases. The internal surface area can 

be enhanced by activation, i.e. mild oxidation with a gas such as carbon 

dioxide, steam or air. In this way surface areas of the order of 2000 m g-1 can 

be achieved. There is another key distinction between cokes and chars: the 

former can be converted into graphite by high temperature annealing while the 
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latter cannot. It is not entirely clear when this was first demonstrated, but it 

was certainly known in the 1940s. In a major review article published in 1948 

[6], Paul Emmett describes work carried out by H.F. Johnston and G.L. Clark, 

who showed that ―charcoals sinter and turn into graphite much less readily 

than does petroleum coke‖. Unfortunately this work only seems to have been 

published in US government reports. The first detailed study of this topic to 

appear in the open literature is Rosalind Franklin’s classic 1951 paper [7]. 

Franklin prepared carbons from a wide range of organic materials, including 

sugar, polyvinylidene chloride (PVDC), polyvinyl chloride (PVC) and pitch. 

She then used X-ray diffraction to investigate the effect of heat treatment, up 

to a temperature of 3000°C, on the structure of these carbons. She found that 

some of the carbons, including those prepared from PVC and pitch could be 

graphitized by heat treatments above about 2200°C, while others, such as those 

prepared from sugar and PVDC, could not be transformed into crystalline 

graphite, even at 3000°C. Instead, they formed a porous, isotropic material 

which only contained tiny domains of graphite-like structure. Franklin coined the 

terms ―graphitizing‖ and ―non-graphitizing‖ to describe these two classes of 

carbon. 

 

3. Structure of non-graphitizing carbon: early work 

In his 1948 review Paul Emmett stated that ―There are very few things about 

which we can be sure as regards the structure of charcoal.‖ However, he goes 

on to express the view that ―The X-ray results taken as a whole constitute 

strong evidence that much of the carbon in charcoal is arranged in platelets‖. 

Emmett’s idea seems to be that char consists of tiny flakes of graphene 
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approximately aligned with each other, giving a structure in which the pores 

have a slit-like shape. This picture of porosity in carbon as a system of 

interconnecting slits has proved extremely tenacious. In fact, it is still used in 

theoretical studies of adsorption and permeability of carbons [e.g. 8,9]. 

However, there is little experimental evidence that the pores in non-

graphitizing carbon are generally slit-like in shape. Franklin’s 1951 X-ray 

diffraction study demonstrated rather the opposite, as can be seen from Fig. 

1, which shows her models for non-graphitizing and graphitizing carbons. In 

these models, the basic units are small graphitic crystallites containing a few 

layer planes, which are joined together by cross-links. For the non-graphitizing 

carbon (Fig. 1(a)), the structural units are oriented randomly, so that the 

structure is isotropic, while in the graphitizing carbon (Fig. 1(b)) the units are 

approximately parallel to each other. It is clear that the structure in Fig. 1(b) is 

more amenable to transformation into graphite. 

 

Franklin's ideas on graphitizing and non-graphitizing carbons are probably 

broadly correct, but they are in some regards incomplete. For example, the 

nature of the cross-links between the graphitic fragments is not specified, so the 

reasons for the sharply differing properties of graphitizing and non-graphitizing 

carbons is not explained. Some authors have suggested that the ―cross-links‖ 

envisaged by Franklin might in fact be sp3-bonded atoms [e.g. 10]. The 

presence of diamond-like domains would be consistent with the hardness of 

non-graphitizing carbons, and might also explain their extreme resistance to 

graphitization. A problem with these models is that sp3 carbon is unstable at 

high temperatures: diamond is converted to graphite at 1700C. Therefore, the 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



 

 8 

presence of sp3 atoms in a carbon is unlikely to explain the resistance of the 

carbon to graphitization at high temperatures, although the presence of small 

amounts of sp3 carbons cannot be ruled out. It should also be noted that 

diffraction studies of non-graphitizing carbons have found no evidence for the 

presence of sp3-bonded atoms [11]. 

 

Transmission electron microscopy began to play a major role in the structural 

study of carbon in the 1970s, when improvements in lens design meant that 

the interlayer (0.34 nm) graphitic spacing could be readily resolved [12]. In 

1975, Ban, Crawford and Marsh described a lattice-resolution TEM study of 

non-graphitizing carbons derived from polyvinylidene chloride [13]. The 

structures of the carbons following heat treatments at temperatures in the range 

530°C - 2700°C was investigated. Images of these carbons apparently showed 

the presence of curved graphite sheets, typically two or three layer planes thick, 

enclosing voids. These images led Ban et al. to suggest that heat treated non-

graphitizing carbons have a ribbon-like structure. A rather similar model for the 

structure of glassy carbon had been proposed by Jenkins and Kawamura in 

1971 [14]. However, models of this kind have serious weaknesses. Such models 

consist of curved and twisted graphene sheets enclosing irregularly-shaped 

pores. However, graphene sheets are known to be highly flexible, and would 

therefore be expected to become ever more closely folded together at high 

temperatures, in order to reduce surface energy. Indeed, tightly folded graphene 

sheets are quite frequently seen in carbons which have been exposed to 

extreme conditions. Thus, structures like the ones envisaged by Jenkins, Ban 

and their colleagues would be unlikely to be stable at very high temperatures. It 
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has also been pointed out by Oberlin [15] that the ribbon-like models are based 

on a questionable interpretation of the electron micrographs. In most 

micrographs of graphitized carbons, only the {002} fringes are resolved, and 

these are only visible when they are approximately parallel to the electron beam. 

Therefore, such images tend to have a ribbon-like appearance. However, since 

only a part of the structure is being imaged, this appearance can be misleading, 

and the true three-dimensional structure may be more cage-like than ribbon-like.  

 

4. Structure of non-graphitizing carbon: fullerene-related models 

The discovery of the fullerenes [16 - 18] and subsequently of related structures 

such as carbon nanotubes [19,20] and nanohorns [21,22], has given us a new 

paradigm for solid carbon structures. We now know that carbons containing 

pentagonal rings, as well as other non-six-membered rings, among the 

hexagonal sp2 carbon network, can be highly stable. This new perspective 

prompted a number of groups to take a fresh look at well-known forms of 

carbon, to see whether any evidence could be found for the presence of 

fullerene-like structures. 

 

The first studies to consider the idea that non-graphitizing, microporous carbon 

might have a structure related to that of the fullerenes were published in 1997 

[4,5]. A series of subsequent papers developed the idea further [23 - 26]. In the 

original studies, some non-graphitizing carbons were examined using 

transmission electron microscopy before and after heat treatments at very high 

temperatures (up to 2600°C). For comparison, graphitizing carbons treated in a 

similar way were also examined. Typical TEM micrographs of non-graphitizing 
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and graphitizing carbons prepared at 1000°C are shown in Fig. 2. The insets 

show diffraction patterns recorded from areas approximately 0.25 m in 

diameter. The image of the non-graphitizing carbon shows the structure to be 

disordered and isotropic, consisting of tightly curled single carbon layers, with no 

obvious graphitization. The diffraction pattern shows symmetrical rings, 

confirming the isotropic structure. The appearance of graphitizing carbon, on the 

other hand, approximates much more closely to that of graphite. In this case the 

structure contains small, approximately flat carbon layers, packed tightly 

together with a high degree of alignment. The fragments can be considered as 

rather imperfect graphene sheets. The diffraction pattern for the graphitizing 

carbon consists of arcs rather than symmetrical rings, confirming that the layers 

are preferentially aligned along a particular direction. The bright, narrow arcs in 

this pattern correspond to the interlayer {002} spacings, while the other 

reflections appear as broader, less intense arcs. 

 

Micrographs showing the effect of high temperature heat treatments on the 

structure of non-graphitizing and graphitizing carbons are shown in Fig. 3 (note 

that the magnification here is much lower than for Fig. 2). In the case of the non-

graphitizing carbon, heating at 2300°C in an inert atmosphere produces the 

disordered, porous material shown in Fig. 3 (a). This structure is made up of 

curved and faceted graphitic layer planes, typically 1 - 2 nm thick and 5 – 15 nm 

in length, enclosing randomly-shaped pores. A few somewhat larger graphite 

crystallites are present, but there is no macroscopic graphitization. In contrast, 

heat treatment of the anthracene-derived carbon produces large crystals of 

highly ordered graphite, as shown in Fig. 3 (b).  
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More detailed analysis of the heat-treated non-graphitizing carbons showed that 

they often contained closed nanoparticles; examples can be seen in Fig. 4. The 

particles were usually faceted, and often hexagonal or pentagonal in shape. 

Sometimes, faceted layer planes enclosed two or more of the nanoparticles, as 

shown in Fig. 4 (b). Here, the arrows indicate two saddle-points, which are 

indicative of heptagonal rings, as pointed out by Iijima and colleagues [27]. The 

closed nature of the nanoparticles, their hexagonal or pentagonal shapes, and 

other features such as the saddle-points strongly suggest that the particles have 

fullerene-like structures. Indeed, in many cases the particles resemble those 

produced by arc-evaporation in a fullerene generator although in the latter case 

the particles usually contain many more layers. 

 

The observation of fullerene-related nanoparticles in the heat treated carbons 

suggested that the original, freshly-prepared carbons may also have had 

fullerene-related structures. This prompted the present author and colleagues to 

propose a model for the structure of non-graphitizing carbons which consists of 

discrete fragments of curved carbon sheets, in which pentagons and heptagons 

are dispersed randomly throughout networks of hexagons, as shown in Fig. 5. It 

should be noted that this representation of the structure is intended as an 

illustration, rather than a full, three-dimensional model. In subsequent work, 

discussed in section 7, three-dimensional structures have been created from the 

curved fragments, and have been used to model adsorption. 
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5.  Experimental evidence for fullerene-related structure of non-

graphitizing carbon 

The micrographs shown in Figs. 2, 3 and 4 were recorded using conventional 

transmission electron microscopy. The resolution achievable with such 

microscopes is typically around 0.18 nm. In the past 10 years or so, a new 

generation of TEMs has become available with resolutions of 0.05 nm or 

better. This has been achieved through the use of aberration-correctors, which 

compensate for the inherent defects of electron lenses [28]. These microscopes 

are capable of resolving carbon atoms in graphene, where the atomic spacing 

is 0.142 nm [29, 30]. In 2008, Suenaga, Liu and the present author applied this 

technique for the first time to a microporous carbon [31]. The carbon studied 

was a commercial activated carbon, Norit GSX. Imaging was carried out in an 

aberration-corrected TEM operated at 120kV, with a point resolution of better 

than 0.14 nm. Obtaining atomic resolution images of the fresh carbon proved 

to be extremely challenging, and the images which were recorded were 

difficult to interpret. A typical example is shown in Fig. 6. At the edge of this 

fragment the individual rings of carbon atoms are resolved: the bright spots 

represent the centres of the rings. In some cases, pentagonal arrangements of 

spots can be discerned: an example is arrowed. However, the images of the 

fresh carbon were not of sufficient quality to provide definite proof of the 

presence of pentagons. 

 

Much better quality images could be obtained from carbon samples which had 

been heated at high temperature, in order to increase the crystallinity. An 

image from a carbon sample which had been heated in Ar to 2000°C is shown 
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in Fig. 7 (a). Here there is clear evidence for the presence of five-membered 

rings. The area enlarged in Fig. 7 (b) shows an arrangement of 5 bright spots 

surrounding a central spot. A good match was obtained with the simulated 

image in Fig. 7 (c), which was obtained from the structure in Fig. 7 (d) using a 

standard multi-slice procedure. Here, the pentagon is oriented approximately 

parallel to the plane of the image. A second area which contains a pentagonal 

structure is shown in Fig. 7 (e). In this case the central pentagonal ring is not 

visible, apparently because the ring is tilted away from the plane of the image. 

Support for this comes from the reasonable match which can be seen 

between the image and the simulated image in Fig. 7 (f), obtained from the 

structure in Fig. 7 (g). Images of this kind provide convincing evidence for the 

presence of pentagonal carbon rings in the heat-treated carbon. 

 

In addition to high resolution imaging, TEM can also probe the structure of 

material through the use of electron energy loss spectroscopy (EELS). In 2011, 

Zhang et al. used EELS to investigate the structure of a non-graphitizing 

carbon derived from phenolic resin [32]. In this study a detailed analysis was 

carried out of the carbon K-edge spectrum. When the CőC ʌ*, C—C ı* and 

CőC ı* components were removed from the spectrum, a residual feature was 

found between 286 and 288 eV. A similar feature is observed in spectra 

recorded from crystalline C60 [33] and could therefore be interpreted as 

evidence for five-membered rings. As Zhang et al. point out, further theoretical 

modelling would be valuable in confirming this interpretation. 
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Evidence for fullerene-like structures in microporous carbons has also been 

found using Raman spectroscopy. Burian, Dore and colleagues have used 

this method to analyse carbons prepared from sucrose, heat treated at 

temperatures from 1000°C - 2300°C [34, 35]. The Raman spectra showed 

clear evidence for the presence of fullerene- and nanotube-like elements in 

the carbons. 

 

X-ray and neutron diffraction studies have generally been less useful than 

microscopy and spectroscopy in establishing whether microporous carbons 

have a fullerene-related structure, since the interpretation of diffraction data 

from these highly disordered materials is not straightforward. Burian, Dore and 

their co-workers have published a number of studies in this area [e.g. 36, 37] 

and have found that the results are consistent with the presence of non-six 

membered rings, but other interpretations may also be possible. 

 

6. Modelling the structural evolution of microporous carbon 

The formation mechanism of microporous carbon is not well understood at the 

atomic level. A number of groups have attempted to model the process, and in 

several cases these modelling exercises have produced structures which 

contain fullerene-like elements. One of the first such exercises was reported 

by Acharya et al. in 1999 [38]. In this work the carbon was assumed to be 

derived from polyfurfuryl alcohol. The starting point for the simulation was a 

series of all-hexagon fragments, terminated with hydrogens, as shown in Fig. 

8 (a), while Figs. 8 (b) – (d) illustrate the evolution of the structure as the H/C 

ratio is reduced (i.e. the temperature is increased). During this evolution, 
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pentagons and heptagons form as well as hexagons, resulting in the formation 

of curved fragments. 

 

In a later study, Kumar et al. used Monte Carlo (MC) simulations to model the 

evolution of a polymer structure into microporous carbon [39]. Again 

polyfurfuryl alcohol was chosen as the precursor, and in this case the starting 

structure was the polymer itself rather than hexagonal fragments of carbon. 

Simulations were carried out with a number of different polymer starting 

structures and different pre-defined densities. In each case the final carbon 

was made up of a hexagonal network with 10-15 % non-hexagonal rings 

(pentagons and heptagons). The properties of the simulated carbons 

appeared to be generally consistent with experimental results.  

 

A different approach to modelling the evolution of microporous carbon was 

used by Shi [40]. Here, the initial system consisted of carbon gas atoms at 

very high temperature. This choice of initial condition was intended to 

represent the high temperature state in a pyrolysis process after the polymer 

chains break down and most other elements have evaporated. The 

temperature was then decreased so that the atoms ―condensed‖ to form a 

porous structure composed of curved and defected graphene sheets, in which 

the curvature was induced by non-hexagonal rings. 

 

In 2009, Powles, Marks and Lau described a comprehensive molecular-

dynamics study of the self-assembly of carbon nanostructures [41]. The 

precursor for these simulations was highly disordered amorphous carbon, which 
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was generated by rapid quenching of an equilibrated liquid sample. It was found 

that, under certain conditions, annealing the amorphous carbon at high 

temperature could lead to the highly curved sp2 sheet structure shown in Fig. 9. 

The resemblance between this and the structure shown in Fig. 5 is very 

striking. 

 

7. Modelling adsorption using fullerene-like models for microporous 

carbon 

To date, there have been relatively few attempts to use fullerene-like models 

to predict the adsorptive and other properties of microporous carbons. By far 

the most ambitious programme of work in this area has been carried out by 

Terzyk, Gauden and colleagues, whose results have been published in a 

series of papers beginning in 2007 [42 - 49]. In the first of these [42], 36 

different carbon structures with increasing microporosity, labelled S0 - S35, 

were generated. The initial microporous structure, named S0, is shown in Fig. 

10 (top left). Fragments were then progressively added to create the 36 

structures labelled S0 - S35. Pore size distribution (PSD) curves for the 

structures were calculated using the method of Bhattacharya and Gubbins 

(BG) [50]. This involves determining the statistical distribution of the radii of 

the largest sphere that can be fitted inside a pore at a given point. A selection 

of the PSD curves determined in this way is shown in Fig. 11. It can be seen 

that the most ―crowded‖ structure, S35, has a much narrower range of pore 

sizes than the initial S0 structure. Argon adsorption isotherms were simulated 

for these structures using the parallel tempering Monte Carlo simulation 

method developed by Yan and de Pablo [51]. Some of these isotherms are 
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shown in Fig. 12. These show that the gradual crowding of the S0 structure 

(leading finally to S35) leads to a decrease in the maximum number of 

adsorbed molecules. On the other hand, the S0 structure exhibits less 

adsorption at low pressures than the more crowded ones because the 

average micropore diameter is larger. Also notable is the increasing 

―sharpness‖ of the inflection point in the isotherms, a feature which is often 

reported for experimental systems (e.g. [52]). The simulated isotherms were 

then used to determine PSD curves, using a range of widely used methods, 

with the aim of checking the validity of these methods. Good agreement was 

found between the PSDs determined from the isotherms and the PSDs from 

the BG method. This confirms the validity of various methods for calculating 

PSD curves from adsorption data. It would also seem to confirm the validity of 

the fullerene-related model for microporous carbon. 

 

In the next paper of this series [43], Terzyk et al. began with 3 structures 

constructed from fullerene-like fragments, as shown in Fig. 13. The densities 

of these structures were calculated, and values in the range 2.18 - 2.24 g cm-3 

were found, consistent with typical densities of non-graphitizing carbons. 

Once again, pore size distributions for the structures were determined using 

the BG method. As in the previous paper, the simulated isotherms were used 

to determine PSD curves, using a range of widely used methods. Good 

agreement was found between the PSDs determined from the simulated 

adsorption data and the original PSDs from the BG method. This is illustrated 

in Fig. 14, where the PSD curve determined from the Bhattacharya-Gubbins 

method is compared with results from the Horvath–Kawazoe method [53].  
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In a further paper [44], the adsorption of Ne, Ar, Kr, Xe, CCl4 and C6H6 on the 

S0 and S35 carbons was modelled. The simulated data were compared with 

the predictions of the Dubinin–Radushkevich [54] and Dubinin–Astakhov [55] 

adsorption isotherm equations, and a good fit was found for the S35 carbon. 

For the S0 carbon the Dubinin–Izotova (DI) equation [56] gave a better fit 

because the micropores in this model have a wide distribution of diameters. 

The simulated isotherms exhibited a number of features similar to those seen 

in experimental results. For example the isotherms for CCl4 and C6H6 were 

temperature invariant, as observed experimentally. It was also noted that the 

isotherms obeyed Gurvich’s rule, which states that the larger the molecular 

collision diameter the smaller the access to micropores, as well as other 

empirical and fundamental correlations developed for adsorption on 

microporous carbons.  

 

The effect of oxidising the carbon surface on porosity was analysed in a paper 

published in 2009 [45]. A ―virtual oxidation‖ procedure was employed, in which 

surface carbonyls were attached to carbon atoms located on the edges of the 

fragments. It was assumed that the structure of the carbon skeleton remained 

unchanged. Pore size distributions, determined using the BG method were 

found not to be greatly affected by oxidation. Simulated isotherms for Ar, N2 

and CO2 were calculated using the GCMC method. For Ar, the effect of 

oxidation on the isotherm was relatively small. However, for N2 and CO2 there 

were significant changes in the isotherms, due to electrostatic interactions 

between N2 and CO2 and the surface carbonyl groups. As a consequence of 
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this, pore size distributions calculated from the simulated isotherms for N2 and 

CO2 differed markedly from those originally determined from the BG method. 

An important conclusion from this is that experimental PSDs determined using 

CO2 (or using N2 if there is a large oxygen content) may be unreliable. A 

further study looked at the influence of carbon surface oxygen groups on 

Dubinin-Astakhov equation parameters calculated from CO2 isotherms [46]. It 

was concluded that porosity parameters calculated by fitting the DA model to 

experimental CO2 adsorption data may be questionable. 

 

Terzyk and colleagues have published a number of other studies in which 

fullerene-like models have been used to predict the properties of microporous 

carbons [47 - 49], but the results summarised above are sufficient to 

demonstrate the utility of such models. 

 

 

8. Discussion 

The structure of microporous carbon has been a subject of uncertainty for 

decades, and a wide range of different structural models have been proposed. 

The idea discussed in this review, that microporous carbon has a structure 

related to that of the fullerenes, is by no means universally accepted, and will 

remain controversial until unequivocal experimental evidence is obtained. The 

best hope of achieving such proof probably lies with aberration-corrected 

transmission electron microscopy. As discussed in Section 5, the advent of this 

new form of TEM has meant that directly imaging the ring structure of graphitic 

carbons is now a practical possibility. Initial studies using this technique [31] 
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have produced convincing evidence for pentagonal rings in carbon heated to 

2000°C, but further work is needed to achieve clear images of pentagons in 

―fresh‖ carbon. This is clearly a considerable experimental challenge, but not 

beyond the capabilities of current microscopes. 

 

While direct imaging probably provides the best hope of finally determining the 

structure of microporous carbon, other techniques can give valuable 

corroborative information. We have seen that careful analysis of electron energy 

loss spectra has revealed features that can be ascribed to five-membered rings 

[32]. More work in this area, involving both experimental studies and 

theoretical analysis would be welcome, as would further studies using 

techniques such as Raman spectroscopy and X-ray and neutron diffraction.  

 

If experimental evidence for a fullerene-related structure appears to be growing, 

theoretical studies of the formation of microporous carbon also point in the 

same direction. It is surely significant that four separate modelling studies, all 

using slightly different methods and starting systems [38 - 41], each produce 

structures containing non-hexagonal rings. Particularly notable is the 

resemblance between the structure of Powles and colleagues (Fig. 9), and the 

structure inferred from TEM observations shown in Fig. 5. There is clearly 

scope for further modelling work on the evolution of carbonaceous material 

into carbon, since there is still much that we do not understand. In particular, 

the question of why some materials yield non-graphitizing carbon while others 

give graphitizing carbon is not at all well understood at the molecular level. 
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A fullerene-like model for microporous carbon could be of great value in 

understanding its adsorptive properties. It is widely recognised that the slit 

pore model has serious deficiencies [57 - 61], and it has been known for some 

time that the profile for small-angle (X-ray or neutron) scattering does not 

correspond to the model predictions for slit scattering.  However, a widely-

accepted alternative model has not yet emerged. Theoretical studies by 

Terzyk et al. [42 - 49] have shown that fullerene-like models can replicate 

reasonably well the densities, pore size distributions and adsorption isotherms 

observed experimentally, and it would be valuable if other groups were to 

carry out similar studies. One way in which the modelling work could be 

extended would be by employing larger fragments. It is very difficult to 

determine accurately the size of the individual fragments in microporous 

carbon, but recent work by Kyotani and colleagues has suggested that they 

may be larger than generally thought [62]. In this work, the amount of 

hydrogen in carbon materials heat-treated to 1000°C and above was 

measured. The crystallite sizes were then determined by assuming that all the 

edge sites were terminated by hydrogen atoms. In this way it was found that a 

non-graphitizing carbon prepared from polyfurfuryl alcohol by heating to 

1000°C had a crystallite size of 12 nm, much larger than the size estimated 

from X-ray diffraction (1 nm). This is understandable, since XRD 

measurements assume planar crystallites, and the structures in a non-

graphitizing carbon are of course highly curved. A graphene crystallite with a 

diameter of 12 nm would contain approximately 4500 atoms, whereas the 

fragments employed by Terzyk et al.  generally had fewer than 500 atoms. It 

is quite possible that structures constructed from larger fragments would 
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display similar behaviour to those made from smaller ones, but further 

modelling studies are needed to confirm this. 
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Figure Captions 
 
 
Figure 1  Franklin’s representations of (a) non-graphitizing and (b) 

graphitizing carbons [7]. 
 
Figure 2  (a) High resolution TEM image of carbon prepared by pyrolysis 

of sucrose in nitrogen at 1000°C, (b) carbon prepared by 
pyrolysis of anthracene at 1000°C. Insets show selected area 
diffraction patterns [23]. 

 
Figure 3  Micrographs of (a) sucrose carbon and (b) anthracene carbon 

following heat treatment at 2300°C [24]. 
 
Figure 4  (a) Micrograph showing closed structure in PVDC-derived 

carbon heated at 2600°C, (b) another micrograph of same 
sample, with arrows showing regions of negative curvature [4]. 
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Figure 5  Schematic illustration of a model for the structure of non-

graphitizing carbons based on fullerene-like elements. 
 
Figure 6 Aberration-corrected HRTEM micrograph of fresh activated 

carbon, with arrow indicating possible pentagonal 
  arrangement of carbon rings [31]. 
 
Figure 7 (a) Aberration-corrected micrograph of activated carbon heated 

to 2000°C. (b) Enlarged region showing pentagonal 
arrangement of spots. (c) Simulated image of structure shown in 
(d). (e) Second region showing pentagonal arrangement. (f) 
Simulated image of structure shown in (g) [31]. 

 
Figure 8 Structural evolution of microporous carbon modelled by Acharya 

et al. [38].  The sequence of images (a) to (d) represent 
decreasing H/C ratio (or equivalently, increasing temperature). 

 
Figure 9 Curved sp2 sheet structure produced in molecular-dynamics 

simulations by Powles et al. [41].   
 
Figure 10 Illustration of the construction of microporous structures S0, S16 

and S35 from fullerene-related fragments. These structures are 
used by Terzyk et al. to simulate adsorption properties [42]. 

 
Figure 11 Pore size distribution curves for some of the model structures 

created by Terzyk et al. [42]. 
 
Figure 12 Argon adsorption isotherms for model structures [42]. 
 
Figure 13 Illustration of the construction of micro-mesoporous structures, 

from the work of Terzyk et al. [43]. (i) shows individual fullerene-
related fragments, (ii) shows a 2D structure constructed from 
these fragments. H0 is the initial 3D structure produced from the 
fragments; HC1 and HC2 were created by cutting boxes from 
this structure. 

 
Figure 14 Comparison of pore size distribution curves for the H0 structure 

determined using the Bhattacharya-Gubbins and the Horvath–
Kawazoe method [43]. 
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