
On the momentum fluxes associated with 
mountain waves in directionally sheared 
flows 
Article 

Published Version 

Teixeira, M. A. C. ORCID: https://orcid.org/0000-0003-1205-
3233 and Miranda, P. M. A. (2009) On the momentum fluxes 
associated with mountain waves in directionally sheared flows.
Journal of the Atmospheric Sciences, 66 (11). pp. 3419-3433. 
ISSN 1520-0469 doi: 10.1175/2009JAS3065.1 Available at 
https://centaur.reading.ac.uk/29241/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1175/2009JAS3065.1 
To link to this article DOI: http://dx.doi.org/10.1175/2009JAS3065.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



On the Momentum Fluxes Associated with Mountain Waves in Directionally
Sheared Flows

MIGUEL A. C. TEIXEIRA AND PEDRO M. A. MIRANDA

CGUL, IDL, University of Lisbon, Lisbon, Portugal

(Manuscript received 7 January 2009, in final form 13 May 2009)

ABSTRACT

The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave

momentum at critical levels, or levels where the waves break. The first process is treated analytically in this

study within the framework of linear theory. The variation of the momentum flux with height is investigated

for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the

whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady,

nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind

profiles. This approximation must be extended to third order to obtain momentum flux expressions that are

accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the

application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On

the other hand, the momentum flux divergence (which corresponds to the force on the atmosphere that must

be represented in gravity wave drag parameterizations) is given in closed analytical form. The momentum flux

expressions are tested for idealized wind profiles, where they become a function of the Richardson number

(Ri). These expressions tend, for high Ri, to results by previous authors, where wind profile effects on the

surface drag were neglected and critical levels acted as perfect absorbers. The linear results are compared with

linear and nonlinear numerical simulations, showing a considerable improvement upon corresponding results

derived for higher Ri.

1. Introduction

Mesoscale mountains interact with the large-scale

atmospheric circulation through the momentum fluxes

they produce. Since the troposphere is generally stably

stratified, for sufficiently large mountains, a major

fraction of these fluxes are caused by the generation of

internal gravity waves. At the surface, these gravity

waves produce a pressure drag on the mountains. By

Newton’s third law of motion, a reaction force must be

exerted by the mountains on the atmosphere. This re-

action force corresponds to the divergence of the mo-

mentum flux, which, in the linear approximation (by

Eliassen–Palm’s theorem), is only nonzero at critical

levels (for unidirectional flow) (Eliassen and Palm 1960)

or critical layers (in directionally sheared flow) (Broad

1995). These physical processes must be parameterized

in large-scale numerical models (Lott and Miller 1997;

Gregory et al. 1998) because the resolution of these

models is insufficient to explicitly represent them, as the

grid spacing is generally larger than the size of meso-

scale mountains. Therefore, investigating the momen-

tum fluxes and gravity wave drag produced by mesoscale

mountains is of great relevance for numerical weather

and climate prediction (McFarlane 1987; Kim et al.

2003). It is also a topic of importance on its own right

from a more fundamental fluid mechanics point of view.

Most studies of the effects of atmospheric gravity

waves have focused on two aspects: the surface drag,

which defines the total amount of momentum that be-

comes available to be distributed vertically as the reac-

tion force exerted on the atmosphere; and the variation

of the momentum flux with height, which is what has a

direct impact on the large-scale flow. The surface drag

has been the object of many studies, several of them

analytical (Phillips 1984; Smith 1986). The formulas

obtained from linear theory for the surface drag in

the case of an atmosphere with constant wind and

static stability and idealized topography are widely used
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in parameterization schemes (Lott and Miller 1997;

Garner 2005). Calculations of how the drag is affected

for simple nonconstant wind and stability profiles are

also numerous (Smith 1986; Keller 1994; Grubišić and

Smolarkiewicz 1997). Recently, Teixeira et al. (2004,

hereafter referred to as TMV04) and Teixeira and

Miranda (2004, 2006) used a second-order Wentzel–

Kramers–Brillouin (WKB) approximation to calculate

the drag for generic wind profiles that vary relatively

slowly with height. The impact of these effects on the

global atmospheric torque was assessed using reanalysis

data by Miranda et al. (2009) and found to be as high as

50% on the annual mean in Antarctica. Nonlinear ef-

fects on the surface drag have also been addressed since

long ago by Miles and Huppert (1969), with the deri-

vation of a correction to the drag using perturbation

methods, and by various other authors using numerical

simulations (Clark and Peltier 1984; Bacmeister and

Pierrehumbert 1988; Miranda and James 1992; Ólafsson

and Bougeault 1996).

The variation of momentum flux with height has been

the object of only more recent attention, perhaps be-

cause parameterization schemes initially employed drag

formulas derived for 2D flow (Palmer et al. 1986), and in

that case linear theory predicts that all momentum is

deposited at isolated, discrete critical levels. However,

the interest for flows with directional shear and critical

layers (where the wave momentum is deposited over

a continuous range of heights, as opposed to critical

levels) has increased recently, since these flows are much

more realistic. While most parameterization schemes

use some form of the saturation criterion derived by

Lindzen (1981) to determine the momentum flux pro-

files (see Kim et al. 2003) the importance of momentum

deposition at critical layers (a phenomenon that is

within the reach of linear theory) has recently been

recognized (Doyle and Jiang 2006). Shutts and Gadian

(1999, hereafter referred to as SG99), for example, used

linear theory to derive formulas for the momentum flux

divergence that corresponds to the drag force acting on

the atmosphere, using a WKB approximation. Since

they used the standard (first order) WKB approxima-

tion, their drag at the surface is not affected by the

variation of wind with height, and they assumed that the

wave momentum is perfectly absorbed at critical levels.

Both of these ideas are consistent with the relatively

high Richardson numbers they considered.

The present study presents a model that describes

how the momentum flux varies with height at lower

Richardson numbers (Ri), for which the surface drag is

appreciably affected by wind profile effects and critical

layers may not be perfect absorbers. This can be viewed

as an extension of the model of TMV04 to the whole at-

mosphere (i.e., focusing not only on surface quantities),

where the WKB approximation is used to obtain mo-

mentum flux profiles. As a first step in the development of

this theory, the mountains to be considered are assumed to

be circular, which is the choice of orography that simplifies

the calculations most. It is shown that, in hydrostatic

conditions and for generic wind profiles that vary relatively

slowly in the vertical, the momentum flux may be ex-

pressed as a simple 1D integral that can easily be evaluated

numerically, and the momentum flux divergence has a

closed analytical form. For high Ri, the obtained expres-

sions tend asymptotically to those derived by SG99.

This paper is organized as follows: in section 2, the

theoretical model is described, with an emphasis on the

calculation of the momentum flux. In section 3, results

are exemplified for two simple idealized wind profiles.

Some practical aspects, such as consideration of the fi-

nite dimensions of the domain in numerical simulations,

are also discussed. Finally, in section 4, the main findings

of this study are summarized.

2. Theory

Following TMV04 and Teixeira and Miranda (2006),

the inviscid, stationary, nonrotating, hydrostatic equations

of motion with the Boussinesq approximation, linearized

with respect to a given background state (which depends

only on height z) are considered. For a justification of

these assumptions, see TMV04. When these equations are

differentiated in various ways and combined, it is possible

to eliminate all other dependent variables so that a single

equation for w, the vertical velocity perturbation, is ob-

tained. Since flow over an isolated mountain is considered,

the flow perturbations may be expressed as Fourier inte-

grals along the horizontal directions. The corresponding

Fourier transforms are denoted by a hat. The Fourier

transform of the vertical velocity perturbation ŵ satisfies

ŵ0 1
N2(k2 1 l2)

(Uk 1 Vl)2
�U0k 1 V0l

Uk 1 Vl

" #
ŵ 5 0, (1)

where N is the Brunt–Väisälä frequency (assumed to

be constant) and (U, V ) is the basic wind velocity of

the incoming flow. This is a hydrostatic version of the

Taylor–Goldstein equation (cf. Lin 2007), where (k, l)

is the horizontal wavenumber vector and the primes

denote differentiation with respect to z.

In the WKB approximation (see, e.g., Bender and

Orszag 1999), the vertical coordinate z is rescaled as

Z 5 «z, where « is a small dimensionless parameter, so that

large variations of z correspond to O(1) variations of Z. In

terms of this new vertical coordinate, (1) may be written
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«2 €̂w 1
N2(k2 1 l2)

(Uk 1 Vl)2
� «2

€Uk 1 €Vl

Uk 1 Vl

" #
ŵ 5 0, (2)

where differentiation with respect to Z has been re-

placed by a dot, for simplicity of notation. The solution

to (2) is of the form

ŵ 5 ŵ(Z 5 0) exp i«�1

ðZ

0

[m
0
(j) 1 «m

1
(j) 1 «2m

2
(j) 1 «3m

3
(j) 1 � � �] dj

� �
, (3)

where i 5
ffiffiffiffiffiffiffi
�1
p

, and m0, m1, m2, and m3 are the

zeroth-, first-, second-, and third-order terms of the

series expansion of the vertical wavenumber of the in-

ternal gravity waves in powers of «. This expansion

was considered up to second order in TMV04 and

Teixeira and Miranda (2004, 2006) because that is the

only way the variation of the wind with height may

have an impact on the surface drag. This procedure

yields a surface drag expression that is accurate also to

second order. However, the momentum flux in the

whole atmosphere accurate to second order is only

obtained if the vertical wavenumber is determined

up to third order. This is easily shown by Taylor-

expanding the terms proportional to powers of « in the

exponent of (3) and is due to the fact that integration

lowers by one the order of the various terms contained

in this exponent. For the surface drag, this effect is

irrelevant, since this drag only depends on quantities

where the integral on the exponent of (3) is zero.

However, for the calculations presented next, m3 must

be determined.

Inserting (3) into (2), the solutions for m0, m1, m2, and

m3 are easily obtained, yielding

m
0

5
N(k2 1 l2)1/2

Uk 1 Vl
, (4)

m
1
5�1

2
i

_Uk 1 _Vl

Uk 1 Vl
, (5)

m
2

5�1

8

( _Uk 1 _Vl)2

N(k2 1 l2)1/2(Uk 1 Vl)
� 1

4

( €Uk 1 €Vl)

N(k2 1 l2)1/2
, (6)

m
3

5�1

8
i
(Uk 1 Vl)( Uk

���
1 Vl

...

)

N2(k2 1 l2)

� 1

4
i
( _Uk 1 _Vl)( €Uk 1 €Vl)

N2(k2 1 l2)
. (7)

The boundary conditions to be applied to the solution

(3) are the following: The wind must be tangent to the

terrain at the surface,

ŵ(z 5 0) 5 i(U
0
k 1 V

0
l)ĥ, (8)

where (U0, V0) 5 [U(z 5 0), V(z 5 0)] is the surface basic

wind vector and ĥ is the Fourier transform of the terrain

elevation. The wave energy must also be radiated upward

as z / 1‘. This last condition is incorporated in the

definition of m0, as given by (4), since in that expression

m0 has the same sign as (Uk 1 Vl), and it can be shown

that this corresponds to upward wave energy propagation.

This totally specifies the solution to the problem. To

have a closed-form analytical expression for (3), it would

be necessary to calculate the integral in the exponent.

Although terms m1 and m3 may be integrated analyti-

cally, for terms m0 and m2 this is generally not possible.

In TMV04 and Teixeira and Miranda (2006), there was

no concern with this integral, because only the surface

drag was calculated. This drag only depends on the

pressure perturbation at the surface, and that pressure

perturbation can be expressed in terms of ŵ and ŵ9 at

the surface, where the integral in the exponent reduces

to zero, as mentioned above. However, for the purpose

of calculating the momentum flux as a function of height,

it would seem necessary to determine the wave solutions

in the whole domain. Although this is possible for the

simple wind profiles considered in TMV04 and Teixeira

and Miranda (2006), by a fortunate quirk of the calcu-

lations, it is not necessary for obtaining the momentum

flux, as will be shown next. The consequence is that the

momentum flux may be cast in a fairly simple analytical

form for generic wind profiles.

a. The momentum flux

Multiplying the horizontal momentum equations by

the vertical streamline displacement h, and noting that

w 5 U›h/›x 1 V›h/›y, it may be shown that

D
x

5

ð1‘

�‘

ð1‘

�‘

p(z 5 0)
›h

›x
dx dy

5�r
0

ð1‘

�‘

ð1‘

�‘

uw(z 5 0) dx dy, (9)

D
y

5

ð1‘

�‘

ð1‘

�‘

p(z 5 0)
›h

›y
dx dy

5�r
0

ð1‘

�‘

ð1‘

�‘

yw(z 5 0) dx dy, (10)
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where r0 is a reference density (assumed to be con-

stant), u and y are the horizontal velocity perturbations

induced by the orography, p is the pressure perturbation,

h(z 5 0) 5 h and h(x, y) is the terrain elevation. So the

surface drag is numerically equal to the vertical flux of

horizontal momentum produced by the mountain at

the surface. Additionally, Eliassen–Palm’s theorem states

that, in the same circumstances, the momentum flux is

constant with height except at critical levels (Broad 1995).

For a directionally sheared flow and a 3D mountain, there

is no single critical level, but a distribution of them with

height, depending on the wavenumber of the gravity

waves (i.e., a critical layer). This study aims to calculate

the momentum flux in such situations of directional shear

and 3D orography, addressed first by SG99.

The momentum flux may be calculated in either

physical space or Fourier space, based on Parseval’s

theorem (see Lin 2007, p. 179), as

M
i
5�r

0

ð1‘

�‘

ð1‘

�‘

u
i
w dx dy

5�4p2r
0

ð1‘

�‘

ð1‘

�‘

û
i
*ŵ dk dl (i 5 1, 2), (11)

where the asterisk denotes complex conjugate, û
1

5 û

and û
2

5 ŷ are the Fourier transforms of the horizontal

velocity perturbations, respectively, along x and along y,

and M1 5 Mx, M2 5 My are the vertical momentum

fluxes in the same directions. We include the minus sign

in these definitions so that the momentum fluxes are

generally positive, although it should be understood that

they are in fact in the downward direction.

To proceed from (11), it should be noted that, from

the equations of motion, and from (3), û and ŷ are re-

lated to ŵ through

û 5
i

k2 1 l2
ikm� l

V9k�U9l

Uk 1 Vl

� �
ŵ, (12)

ŷ 5
i

k2 1 l2
ilm 1 k

V9k�U9l

Uk 1 Vl

� �
ŵ, (13)

where m 5 m0 1 «m1 1 «2m2 1 «3m3 is the vertical

wavenumber of the internal gravity waves. Using (12)

and (13), (11) becomes

M
x

5 4p2r
0

ð1‘

�‘

ð1‘

�‘

1

k2 1 l2
km*� il

V9k�U9l

Uk 1 Vl

� �
jŵj2 dk dl, (14)

M
y

5 4p2r
0

ð1‘

�‘

ð1‘

�‘

1

k2 1 l2
lm* 1 ik

V9k�U9l

Uk 1 Vl

� �
jŵj2 dk dl. (15)

Noting, additionally, that the momentum flux is a real quantity, and using (3) again, along with the boundary

condition (8), (14) and (15) simplify further to

M
i
5 4p2r

0

ð1‘

�‘

ð1‘

�‘

k
i

k2 1 l2
Re(m)(U

0
k 1 V

0
l)2jĥj2e�2Im(s) dk dl (i 5 1, 2), (16)

where k1 5 k, k2 5 l, s 5
Ð z

0 m(«j) dj, Re denotes ‘‘real

part’’ and Im denotes ‘‘imaginary part.’’

Hence, to calculate either Mx or My as a function of

height it is necessary to know both Re(m) and Im(s).

Concerning the calculation of Im(s), the facts that m1

and m3 may be integrated analytically and that m0 and

m2 are real [see (4) and (6)] explain why generic wind

profiles may be considered: the imaginary part of the

integral of the two latter quantities may only come from

singularities, as will be shown next.

From (4)–(7), it is straightforward to see that

Re(m) 5
N(k2 1 l2)1/2

Uk 1 Vl
1�1

8

(U9k 1 V9l)2

N2(k2 1 l2)
� 1

4

(Uk 1 Vl)(U0k 1 V0l)

N2(k2 1 l2)

" #
, (17)

correct to third order in «. The calculation of Im(s) is

somewhat more involved. To simplify this problem, it

should be noted first that, like m, s may also be expressed

as a power series of «, s 5 s21 1 s0 1 s1 1 s2, where
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s�1
5

ðz

0

m
0
(«j) dj, s

0
5 «

ðz

0

m
1
(«j) dj,

s
1

5 «2

ðz

0

m
2
(«j) dj, s

2
5 «3

ðz

0

m
3
(«j) dj. (18)

Each of these terms will be considered separately.

Since m0 is a real quantity, its integral, given by s21,

may only have an imaginary part due to singularities.

Assuming that m0 decays to zero sufficiently fast to-

ward infinity in the complex plane, the singularities

may only occur at the points where the denominator

of m0 is zero, namely critical levels. So, below any

critical levels (i.e., for z , zc), Im(s21) 5 0. Above

critical levels, the following contour integral should be

considered:

þ
C

m
0

dj 5

ð
C1

m
0

dj 1

ð
C2

m
0

dj 1

ð
C3

m
0

dj 1

ð
C4

m
0

dj

5 2pi Res(m
0
, z

c
), (19)

where the closed contour in the complex plane C is split

into four segments, C1, C2, C3, and C4, represented in

Fig. 1. In (19), the integral is equaled to the residue of m0

at zc, because that is the only singularity inside the in-

tegration path. This means that

Im

ð
C1

m
0

dj 1

ð
C3

m
0

dj

 !

5 Im 2pi Res(m
0
, z

c
)�

ð
C2

m
0

dj �
ð

C4

m
0

dj

" #
. (20)

When the radius of the inner semicircle C2(d) ap-

proaches zero, and the radius of the outer semicircle

C4(R) approaches infinity, the expression on the left-

hand side of (20) tends to Im(s21), because the parts of

the integral along the real axis for j , 0 or j . z have no

imaginary part. On the other hand the integral along

C4 on the right-hand side tends to zero. Therefore, it can

be concluded that

Im(s�1
) 5 Im 2pi Res(m

0
, z

c
)�

ð
C2

m
0

dj

" #

5 Im

ðp

0

N(k2 1 l2)1/2

(U9
c
k 1 V9

c
l)deiq

ideiq dq

" #
, (21)

where polar coordinates (in the complex plane) have

been adopted in the second equality, Uk 1 Vl has been

expanded in a Taylor series around the critical level,

and (U9c, V9c) are the vertical derivatives of the back-

ground wind at the critical level. Equation (21) is valid

when U9ck, V9cl . 0 because it can be shown that in this

case the singularity, with the addition of a Rayleigh

damping to the equations of motion, moves to the pos-

itive imaginary semiplane (cf. Booker and Bretherton

1967; Grubišić and Smolarkiewicz 1997). When U9ck,

V9cl , 0, on the other hand, this singularity moves to

the negative imaginary semiplane, and it is necessary

to use an integration contour that is the mirror image

with respect to the real axis of that shown in Fig. 1. This

gives a symmetric final result. This calculation therefore

yields

Im(s�1
) 5 0 if z , z

c
,

Im(s�1
) 5 p

N(k2 1 l2)1/2

jU9
c
k 1 V9

c
lj if z . z

c
.

(22)

s0 may be obtained by direct integration, and the result is

the following:

Im(s
0
) 5�1

2
log

Uk 1 Vl

U
0
k 1 V

0
l

����
����. (23)

For the calculation of s1, the same procedure must be

followed as for s21. It turns out that the terms involving

the second derivatives of the wind profile in m2 can be

integrated directly, and are purely real, so they do not

FIG. 1. Schematic diagram of the integration path used for cal-

culating the integrals of the vertical wavenumber. The various

segments of this path are C1, C2, C3, and C4; d is the radius of

the inner semicircle and R is the radius of the outer semicircle. The

complex coordinate is j and the height of the critical level (on the

real axis) is zc.

NOVEMBER 2009 T E I X E I R A A N D M I R A N D A 3423



contribute to Im(s1). Therefore, this quantity only re-

ceives a contribution from the critical level and is found

to be

Im(s
1
) 5 0 if z , z

c
,

Im(s
1
) 5�p

8

jU9
c
k 1 V9

c
lj

N(k2 1 l2)1/2
if z . z

c
.

(24)

Finally, s2 may also be obtained by direct integration,

yielding

Im(s
2
)5

1

16

(U9
0
k1V9

0
l)2

N2(k2 1 l2)
1

1

8

(U
0
k1V

0
l)(U0

0
k1V0

0
l)

N2(k2 1 l2)

� 1

16

(U9k1V9l)2

N2(k2 1 l2)
� 1

8

(Uk1Vl)(U0k1V0l)

N2(k2 1 l2)
.

(25)

Adding all the three terms, one obtains

Im(s) 5 Im(s
0
) 1 Im(s

2
) if z , z

c
,

Im(s) 5 Im(s
0
) 1 Im(s

2
) 1 p

N(k2 1 l2)1/2

jU9
c
k 1 V9

c
lj 1� 1

8

(U9
c
k 1 V9

c
l)2

N2(k2 1 l2)

" #
if z . z

c
.

(26)

Inserting the definitions of Re(m) and Im(s) given by (17) and (26) into (16) yields

M
i
5 4p2r

0
N

ð1‘

�‘

ð1‘

�‘

jĥj2
k

i

(k2 1 l2)1/2
jU

0
k 1 V

0
lj sgn(Uk 1 Vl)[1� S(k, l, z)]

3 exp[S(k, l, z)� S(k, l, z 5 0)] exp[�2pH(z� z
c
)C(k, l)] dk dl, (27)

for i 5 1, 2, where

S 5
1

8

(U9k 1 V9l)2

N2(k2 1 l2)
1

1

4

(Uk 1 Vl)(U0k 1 V0l)

N2(k2 1 l2)
, (28)

C 5
N(k2 1 l2)1/2

jU9
c
k 1 V9

c
lj 1� 1

8

(U9
c
k 1 V9

c
l)2

N2(k2 1 l2)

" #
, (29)

and where H(z) denotes the Heaviside step function.

Now, the critical level zc inside the argument of this

function, and consequently also (U9c, and V9c), are in

fact in general functions of the wavenumber for di-

rectionally sheared flows. So an alternative way to

express the transition of the wave solutions at the

critical level is by defining appropriately the limits of

integration in the integrals of (27), as will be done next

(cf. SG99). This is especially simple using polar co-

ordinates for representing the horizontal wavenumber

vector,

k 5 k cosu, l 5 k sinu, (30)

where k 5 (k2 1 l2)1/2 is the magnitude of the wave-

number. It is also convenient to express the incoming

wind velocity in polar coordinates:

U 5U cosc, V 5U sinc, (31)

where U is the wind speed and c is the wind direction. In

this case, the condition defining critical levels is simply

cos(u 2 c) 5 0, implying that the wavenumber and the

wind direction must be perpendicular, as is well known

(Teixeira et al. 2008, hereafter TMA08).

It should be recalled at this point that the mountain

that generates the internal gravity waves is assumed to

be circular. This is done for illustrative purposes, since a

circular mountain forces internal gravity waves pos-

sessing horizontal wavenumbers with all azimuthal an-

gles. This is useful for understanding how critical levels

affect the different wavenumbers. Additionally, using a

circular mountain enables further simplification of (27),

when expressed in polar coordinates, because in that

case ĥ(k, l) 5 ĥ(k) and the integrals in k and u may be

separated. Equation (27) thus becomes

M
x

5 4p2r
0
N

ð1‘

0

k2jĥj2 dk

ð2p

0

cosujU
0

cosu 1 V
0

sinuj sign(U cosu 1 V sinu)

3 [1� S(u, z)] exp[S(u, z)� S(u, z 5 0)] exp[�2pH(z� z
c
)C(u)] du,

(32)
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for Mx, where

S 5
1

8

(U9 cosu 1 V9 sinu)2

N2

1
1

4

(U cosu 1 V sinu)(U0 cosu 1 V0 sinu)

N2
, (33)

C 5
N

jU9
c

cosu 1 V9
c

sinuj 1� 1

8

(U9
c

cosu 1 V9
c

sinu)2

N2

" #
.

(34)

Note how, in the hydrostatic approximation, S and C are

only functions of u (apart from z). The only difference

for My is that the factor cosu in the integrand of the

second integral in (32) is replaced by sinu.

Noting that the surface drag in the absence of shear

for a generic type of circular mountain is given by

D0 5 4p3r0NU0

Ð ‘

0 k2jĥj2 dk, where U0 5 U(z 5 0), Mx

may be normalized by this value, as ~Mx 5 Mx/D0,

yielding

~M
x
5

1

p

ð2p

0

cosu cos(u�c
0
)

�� ��sgn[cos(u�c)][1�S(u, z)]

3exp[S(u, z)�S(u,z50)]

3exp[�2pH(z� z
c
)C(u)]du, (35)

where c0 5 c(z 5 0). This shows that ~Mx is independent

of the form of ĥ [or h(x, y)] for any circular mountain, as

happened for the normalized surface drag in TMV04

and TMA08.

It will be assumed additionally that the wind profile,

while having directional shear, only has one critical level

for each wavenumber; that is, the wind direction has a

monotonic variation with height and does not turn by

an angle larger than p. In that case, the wind, from the

surface to a generic level z, spans a certain range of wind

direction angles from c0 to c(z). To this range of angles

correspond two ranges of wavenumbers for waves that

have been ‘‘filtered’’ (not necessarily totally absorbed)

by the critical levels (see discussion in TMA08). These

filtered wavenumbers or, more exactly, wavenumber

directions, are represented as the horizontally hatched

regions in Fig. 2. Taking into account that, due to the

Heaviside function, the exponential in (35) only differs

from one for wavenumbers that have been filtered, ~Mx

may also be expressed as

~M
x

5
1

p

ðc01p/2

c�p/2

I
1

du 1

ðc013p/2

c1p/2

I
1

du�
ðc1p/2

c01p/2

I
1
I

2
du�

ðc13p/2

c013p/2

I
1
I

2
du

 !
, (36)

where

I
1

5 cosu cos(u� c
0
)[1� S(u, z)]

3 exp[S(u, z)� S(u, z 5 0)], (37)

I
2

5 exp[�2pC(u)], (38)

for a wind that turns counterclockwise with height. For a

wind that turns clockwise, c0 and c must be exchanged

in (36).

It turns out that the first and second integral and the

third and fourth integral in (36) are equal by symmetry,

so finally ~M
x

is given by

~M
x

5
2

p

ðc01p/2

c�p/2

I
1

du�
ðc1p/2

c01p/2

I
1
I

2
du

 !
(39)

for a counterclockwise–turning wind. Defining

I
3

5 sinu cos(u� c
0
)[1� S(u, z)]

3 exp[S(u, z)� S(u, z 5 0)], (40)

FIG. 2. Schematic diagram illustrating the angular interval

spanned by a wind profile that rotates counterclockwise with height

(vertical hatching), where c0 is the wind angle at the surface and c

is the wind angle at the (generic) height under consideration (z).

The ranges of angles of horizontal wavenumbers that have critical

levels between the surface and z are denoted by the horizontal

hatching.
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it is possible to express the momentum flux along y in a

formally similar way:

~M
y

5
2

p

ðc01p/2

c�p/2

I
3

du�
ðc1p/2

c01p/2

I
3
I

2
du

 !
, (41)

where My has also been normalized by the surface drag

in the absence of shear D0 (and is also independent of

the form of ĥ).

b. The momentum flux divergence

What is directly relevant to the parameterization of

gravity wave drag in numerical models is the divergence

of the momentum fluxes. Integrated over the area sur-

rounding the mountain, this divergence is simply the

vertical derivative of the ~Mx and ~My determined above.

If this calculation is performed, the following expres-

sions are obtained, correct to second order in «:

d ~M
x

dz
5�2

p
c9 sinc sin(c� c

0
)[1� S

c
(z)]

3 exp[S
c
(z)� S

c
(z 5 0)]

3f1 1 exp[�2pC
c
(z)]g, (42)

d ~M
y

dz
5

2

p
c9 cosc sin(c� c

0
)[1� S

c
(z)]

3 exp[S
c
(z)� S

c
(z 5 0)]

3 f1 1 exp[�2pC
c
(z)]g,

(43)

where

S
c
(z) 5

1

8

(U9 sinc� V9 cosc)2

N2
1

1

4

(U sinc� V cosc)(U0 sinc� V0 cosc)

N2
, (44)

C
c
(z) 5

N

jU9
c

sinc� V9
c

coscj 1� 1

8

(U9
c

sinc� V9
c

cosc)2

N2

" #
, (45)

and U9c, V9c are evaluated at the azimuthal angle c. Note

how (42) and (43) are in closed analytical form. It can

also be easily verified that these expressions satisfy the

equivalent to Eliassen–Palm’s theorem in three dimen-

sions (Broad 1995):

U
dM

x

dz
1 V

dM
y

dz
5 0. (46)

Finally, if the shear is weak, Sc / 0, and Cc / 1‘, and

it can be shown that (42) and (43) asymptotically tend to

expressions equivalent to Eqs. (22) and (23) of SG99,

with the appropriate normalization.

3. Results

The preceding formulas for the momentum flux will

be applied next to simple idealized wind profiles. The

simplest profiles with directional shear are those where

one or both of the wind components vary linearly with

height, or where the wind turns with height at a constant

rate maintaining its magnitude. Two of these profiles,

which have the simplifying property of having a con-

stant Richardson number, will be considered next (cf.

TMV04; Teixeira and Miranda 2006). In fact, linear

wind profiles do not strictly satisfy one of the assump-

tions used in deriving (39) and (41), namely that the

integral of m along C4 tends to zero as the radius of this

semicircle R tends to infinity. However, the log function

that arises in this case (which can be handled analyti-

cally) has a branch line along the negative real axis (see

TMA08). This branch line has a compensating effect on

the solutions, and it may be shown that (39) and (41) can

be used in this case as if the violated assumption was

satisfied. This was checked by computing the solutions for

this type of wind profile directly (as was done in TMA08,

i.e., without using the residue theorem arguments out-

lined above) and noting that the results were the same. A

wind profile where the wind turns with height maintaining

its magnitude (or other profile where the wind speed is

bounded) does not have this problem, as it satisfies the

above-mentioned assumption from the outset.

a. Practical aspects

A comparison of the results of the analytical model

presented above with numerical simulations entails

consideration of some practical aspects.

First, the analytical model uses the Boussinseq ap-

proximation, while numerical models do not. A leading-

order treatment of non-Boussinesq effects can be

achieved, as is well known (e.g., Smith 1979; SG99)

through multiplication of the velocity perturbations by a

factor (r0/r)1/2, where r(z) is a depth-dependent density.

For the momentum fluxes, this effect is irrelevant, since

the momentum fluxes computed numerically include the
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density, whose decay therefore cancels with the ampli-

fying factors affecting the velocity perturbations.

A second effect that must be accounted for is the

limited horizontal extent of the computational domain

in numerical simulations. As noted by SG99 and before

by Leutbecher (1998), the wave field generated by an

isolated mountain tends to widen and propagate later-

ally outside the domain as height increases. This is one of

the possible processes leading to a decay of the mo-

mentum fluxes with height in addition to the effect of

critical levels. Although, as will be seen, for relatively

low Ri, wave filtering by critical levels should be con-

siderably more dominant than in the numerical simula-

tions of SG99; the effect of the finite dimensions of the

domain should be evaluated here. For that purpose,

apart from using the previously derived expressions for

the momentum flux profiles, we also calculate the mo-

mentum fluxes in a domain of finite horizontal extent,

equal to that used in the numerical simulations. This is

done using the expressions

M
x

5�r
0

ð1L
x
/2

�L
x
/2

ð1L
y
/2

�L
y
/2

uw dx dy,

M
y

5�r
0

ð1L
x
/2

�L
x
/2

ð1L
y
/2

�L
y
/2

yw dx dy, (47)

where Lx and Ly are the dimensions of the domain along

x and y. In (47), the integrals are calculated numerically

and u, y, and w are evaluated using the analytical ex-

pressions for û, ŷ, and ŵ obtained from linear theory

with the WKB approximation. This implies calculating

not only the imaginary part of s (as before) but also its

real part, which can be done analytically for both wind

profiles considered next, but not in general.

b. Numerical simulations

The numerical simulations carried out use the NH3D

nonlinear and nonhydrostatic numerical model, which is

described in Miranda and James (1992). This model uses

a pressure-based terrain-following sigma vertical coor-

dinate. For all simulations, the model is run for a grid of

121 3 121 points in the horizontal directions, with grid

spacing of 3 km, by 200 levels in the vertical. For the

simulations with a linear wind profile, the top of the

domain is at 50 mb and the vertical resolution varies

between 40 m (at the surface) and 400 m (at the top of

the computational domain). For the simulations con-

sidering a turning wind with Ri 5 0.5 or 1, the top of the

domain is at 300 mb and the vertical resolution varies

between 29 and 75 m. For Ri 5 5, the top of the domain

is raised to 100 mb. Cosine-squared-type sponges are

applied laterally at the 10 outer points of the domain,

and also at the top of the domain, above z 5 10 km, for

the linear wind profile. It is unnecessary to use a sponge

at the top of the domain in the turning wind case.

The model is run in inviscid and nonrotating mode. A

Brunt–Väisälä frequency of N 5 0.01 s21 and a wind

speed at the surface of jU0j5 7.07 m s21 are considered

in all simulations. The circular mountain that forces the

internal gravity waves is a bell-shaped mountain, with

the form

h(x, y) 5
h

0

[1 1 (x/a)2
1 ( y/a)2]3/2

. (48)

The mountain half-width is assumed to be a 5 14.14 km

and the mountain height takes the following values: h0 5

7.07, 70.7, 141.4, 353.5 m. This implies that the dimen-

sionless mountain width is Na/jU0j 5 20 in all runs,

meaning that the flow is nearly hydrostatic. Addition-

ally, the dimensionless mountain height is Nh0/jU0j 5

0.01, 0.1, 0.2, 0.5, that is, highly linear to weakly non-

linear conditions. The simulations are carried out over a

number of 20 000 time steps of 6 s (approximately 33 h),

until the momentum flux stabilizes.

The momentum fluxes obtained in the numerical

simulations are integrated over the 101 3 101 inner grid

points of the domain, avoiding the lateral sponges,

where the flow field is unreliable. The domain limits

used in the limited-area WKB results given by (47) are

consistent with this procedure, being Lx 5 Ly 5 300 km.

c. Linear wind profile

The analytical expressions obtained in previous sec-

tions show that the impact of wind profile variations on

the momentum flux is purely local. This result only holds

for wind profiles that vary sufficiently slowly. It was

shown by TMA08 that the surface drag (and so neces-

sarily also the momentum flux) may be strongly influ-

enced by shear discontinuities existing aloft, due to wave

energy reflection, especially at low Ri, unless a large

fraction of the wave spectrum has critical levels beneath

those discontinuities. For that reason, wind profiles such

as the linear profile used by Shutts (1995) or SG99 are not

very appropriate for testing the present model, since the

wind turns at most by p/2, so the waves are very incom-

pletely filtered by critical levels. Realistic wind profiles

that can be approximated by this idealized profile near

the surface must have their magnitude limited aloft by

some sudden or less sudden variation of the shear rate,

so it is likely that the corresponding momentum fluxes

differ appreciably from those calculated assuming that

the constant shear extends indefinitely.

A linear wind profile more appropriate for the present

purposes, where the wind direction spans approximately
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one and a half quadrants, and so where there is more

complete momentum deposition at critical levels, is

U 5 U
0
�az, V 5 U

0
, (49)

where U0 . 0 and a . 0 are constants. This was one of

the wind profiles employed by TMV04 and TMA08.

TMA08, in particular, showed how the value of the

surface drag in this case was relatively insensitive to

shear discontinuities existing aloft.

For an infinite horizontal domain, the momentum flux

is given theoretically for this wind profile by (39) and

(41), but since V9 5 U0 5 V0 5 0 and U9 5 2a, I1, I2, and

I3 simplify to

I
1

5 cosu cos u� p

4

� 	
1� 1

8Ri
cos2u

� �
, (50)

I
2

5 exp �2p
Ri1/2

jcosuj 1� 1

8Ri
cos2u

� �" #
, (51)

I
3

5 sinu cos u� p

4

� 	
1� 1

8Ri
cos2u

� �
, (52)

where Ri 5 N2/a2 is the Richardson number of the in-

coming flow. On the other hand, the momentum flux di-

vergence is given theoretically by (42) and (43), but with

S
c
(z) 5

1

8Ri
sin2c, C

c
(z) 5

Ri1/2

jsincj 1� 1

8Ri
sin2c

� �
.

(53)

Figure 3 shows Mx and My as a function of dimensionless

height az/jU0j for Ri 5 0.5, 1, and 5 (Figs. 3a,b; 3c,d; and

3e,f, respectively) and for Nh0/jU0j 5 0.01, 0.1, 0.2, 0.5

(in each panel), normalized by the corresponding drag

components in the absence of shear. This alternative

normalization, which will only be used for the present

wind profile, amounts to multiplying ~M
x

and ~M
y
, as defined

previously, by
ffiffiffi
2
p

, and the aim is to make both com-

ponents of the momentum flux tend to 1 when Ri / 1‘.

Admittedly, Ri 5 0.5, the lowest Ri considered, is

rather low for the approach employed here. However,

previous studies by TMV04 and Teixeira and Miranda

(2004, 2006) have shown that at this value of Ri the WKB

approximation is still surprisingly accurate. Addition-

ally, although deep atmospheric layers with low Ri are

seldom found in nature, the aim here is to test the limits

of the present model and to show its differences from

that of SG99. Finally, it should be emphasized that the

present model may be applied to any wind profiles that

vary sufficiently slowly in the vertical, so this and other

ensuing results merely serve to illustrate is behavior.

In Fig. 3, the solid lines correspond to the present

WKB model, and the dotted lines to the momentum flux

expressions of SG99, which are valid as Ri / 1‘, both

for an infinite horizontal domain. The dashed lines

correspond to the WKB model, but for a domain of

limited extent (these results will henceforth be called

‘‘limited-area WKB model’’). The circles, squares, tri-

angles, and diamonds correspond to numerical simula-

tions using the NH3D nonlinear and nonhydrostatic

model, respectively, for Nh0/jU0j 5 0.01, 0.1, 0.2, 0.5.

The upper limit Nh0/jU0j 5 0.5 aims to avoid the pos-

sibility of wave breaking and the associated undesirable

unsteadiness of the flow.

It can be seen that, for all Ri, the numerical results for

Nh0/jU0j 5 0.01 are closest to the limited-area WKB

model. This shows that consideration of the limited

domain extent is an important aspect. However, both
~M

x
and ~M

y
are slightly lower in the numerical simula-

tions than in the WKB results, even taking the finite

extent of the domain into account, especially at larger

heights (and especially for ~My). This discrepancy is

probably due to additional momentum flux absorption

by spurious numerical dissipation. This idea is supported

by the behavior of the surface drag in simulations using

the same numerical model in Teixeira et al. (2005), or in

TMA08. Another interesting aspect is that, as Ri in-

creases, while the difference between the WKB results

and the theory of SG99 obviously decreases, the effect of

the finite extent of the domain becomes more apparent.

That can be attributed to the normalization of the hor-

izontal axis, where the same dimensionless height cor-

responds to a larger dimensional height at higher Ri. As

a consequence, in the latter cases, a greater fraction of

the wave perturbation is able to escape the computa-

tional domain, as the wave pattern widens upward. It is

also curious to note some spurious jumps in the nu-

merical results at the lowest level (see Figs. 3a,c), per-

haps due to interpolation problems (the values of u, y,

and w are interpolated from sigma model levels to

z-constant levels).

As Nh0/jU0j increases, the lower limit for height in the

numerical simulation data increases, as can be seen in

Fig. 3, because the lowest data point corresponds to the

height of the mountain top. But, in terms of the di-

mensionless height, this effect becomes less pronounced

as Ri increases, again because of the normalization

used for the horizontal axis. The momentum fluxes are

amplified progressively as Nh0/jU0j increases, due to

nonlinear effects. For the present wind profile, the y

component of the momentum flux is amplified consid-

erably more, and the x component is even smaller than

in linear conditions for Ri 5 0.5. This is probably related

to the fact that this component of the momentum flux
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becomes negative as height increases, due to the turning

of the mean wind. The momentum fluxes for Nh0/jU0j5
0.1 are still relatively close to those for Nh0/jU0j 5 0.01

(and to the WKB results), but at Nh0/jU0j 5 0.2 they

start to differ more, and at Nh0/jU0j5 0.5 the difference

is substantial, as a comparison between Figs. 3b,d,f

shows. Nonlinear effects seem to become stronger the

lower Ri is, although for example ~M
x

is more amplified

near the surface for Ri 5 5 than for Ri 5 0.5 or Ri 5 1.

But this may be simply due to the fact that the values of
~Mx are not displayed at the lowest heights, since these

would be below the mountaintop. Figure 3 shows that

the effects of nonlinearity at, for example, Nh0/jU0j 5

0.2 are clearly comparable to the effects of wind profile

shear at Ri 5 1 or Ri 5 0.5. This highlights the practical

importance of the present calculations.

d. Wind that turns with height

As a second example, a wind that turns with height

at a constant rate maintaining its magnitude is con-

sidered (cf. SG99; TMV04). In this case, the wind turns

indefinitely, so it spans the two quadrants required

for the wave momentum to be totally absorbed at

critical levels when Ri is large. The wind components

are

U 5 U
0

cos(bz), V 5 U
0

sin(bz), (54)

where U0 . 0 and b . 0 are constants. In this case,

curvature of the wind profile exists, so the expressions

of the coefficients in (39) and (41) are slightly more

complicated:

FIG. 3. Normalized momentum fluxes as a function of the normalized height for the linear

wind profile (49). Solid lines: WKB model; dotted lines: model of SG99; dashed lines: limited-

area WKB model; symbols: numerical results. Circles: Nh0/jU0j5 0.01; squares: Nh0/jU0j5 0.1;

triangles: Nh0/jU0j5 0.2; diamonds: Nh0/jU0j5 0.5. (a),(b) Ri 5 0.5; (c),(d) Ri 5 1; (e),(f) Ri 5

5; (a),(c),(e) x components; (b),(d),(f) y components.
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I
1

5 cos2u 1 1
1

8Ri
[2 cos2(u� bz)� sin2(u� bz)]

� �

3 exp
1

8Ri
[sin2(u� bz)� 2 cos2(u� bz)� sin2u 1 2 cos2u]

� �
, (55)

I
2
5 exp �2pRi1/2 1� 1

8Ri

� �
 �
, (56)

I
3

5 sinu cosu 1 1
1

8Ri
[2 cos2(u� bz)� sin2(u� bz)]

� �

3 exp
1

8Ri
[sin2(u� bz)� 2 cos2(u� bz)� sin2u 1 2 cos2u]

� �
, (57)

and the coefficients in (42) and (43) are

S
c
(z) 5

1

8Ri
, C

c
(z) 5 Ri1/2 1� 1

8Ri

� �
, (58)

where Ri 5 N2/(U0b)2 is the Richardson number.

Figure 4 displays the variation of ~Mx and ~My with

dimensionless height bz/p for the same values of Ri

and Nh0/jU0j as shown in Fig. 3. Symbols also have the

same meaning as in Fig. 3. This case is qualitatively

different in that the drag at the surface is enhanced

instead of reduced (see TMV04; Teixeira and Miranda

2006). In the numerical runs for Nh0/jU0j 5 0.01, ~M
x

shows good agreement with the limited-area WKB

model, and also with the WKB model for an infinite

domain for Ri 5 0.5 and Ri 5 1 (which differs little

from it). Both WKB models underestimate the nu-

merical results near the surface. A similar underesti-

mation was detected in the surface drag, for example,

in Fig. 7 of TMV04, being apparently inherent to the

WKB approach. Also inherent to this approach is the

large underestimation of the y component of the sur-

face drag (which is incorrectly predicted to be zero)

and the consequent underestimation of ~My elsewhere,

particularly at low Ri (see Fig. 4b). However, the

performance of the WKB models is especially good

for ~Mx at midlevels. The slope of the ~Mx curve is

particularly well captured, for all values of Ri, which

means that the momentum flux divergence along x is

accurately diagnosed. Additionally, at the top of the

displayed region, where the whole wave spectrum has

been filtered by critical levels, ~Mx is also quite accu-

rately predicted, as will be seen in more detail. In this

region, ~Mx has changed its sign, which corresponds to

waves that have been attenuated and had their phase

shifted by the critical levels (cf. TMA08).

As Nh0/jU0j increases, the magnitudes of both ~M
x

and
~M

y
become considerably larger. This enhancement is

somewhat more pronounced than for the linear wind

profile, and acts more equally in the two components. In

particular, ~M
y

is much larger in the numerical simula-

tions than in any theoretical model, especially at Ri 5

0.5 (this is partly enhanced visually by the different

scaling of the vertical axis in the graphs of Figs. 4b,d,f).

However, for ~Mx the agreement between numerical and

theoretical results is more acceptable, especially for

Nh0/jU0j 5 0.1 and 0.2. Although the ~Mx given by the

theoretical models underestimates both the values and

the slope of the curve of the same quantity given by the

numerical simulations for Nh0/jU0j 5 0.5, it is clear that

the present WKB calculations provide a substantial

improvement over the original model of SG99. This is

especially visible at midlevels (e.g., in Fig. 4a), where the

model of SG99 underestimates much more severely the

momentum flux divergence. Once again, it can be seen

that the effects of shear on the momentum flux, at least

for ~M
x
, have an impact comparable with nonlinear ef-

fects at Nh0/jU0j 5 0.2.

The values of the surface drag given by the present

model have been extensively tested in TMV04 and

Teixeira and Miranda (2004, 2006). The new decisive

aspect presented in this study is the way in which the

momentum flux is filtered by critical levels. A stringent

test of this aspect is provided by the value of the mo-

mentum flux at a height where all wavenumbers in the

mountain wave spectrum have passed through their

critical levels. The x component of this momentum

flux, which for the present wind profile is obtained at a

height bz/p 5 1, is presented in Fig. 5 as a function of

Ri. The solid line corresponds to the present model

for an unlimited domain, for which it can be shown that

~M
x

bz

p
51

� �
5� 11

5

32Ri

� �
exp �2pRi1/2 1� 1

8Ri

� �
 �
.

(59)
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(The y component of the momentum flux is not ad-

dressed here because it is predicted to be zero by the

WKB model.) Such a simple closed-form expression

does not exist for the linear wind profile considered

previously, since then the wave spectrum is not entirely

affected by critical levels. Additionally, the exponential

factor (51) then depends on the azimuthal angle u [un-

like (56)], and cannot be integrated analytically, so the

momentum flux remains a 1D integral.

As can be seen, in linear conditions (i.e., Nh0/jU0j 5
0.01), the theoretical model does an excellent job of

predicting this momentum flux up to Ri21 5 3, which

surprisingly is in even better agreement than the surface

drag for a similar range of Ri in, for example, TMV04. It

should be stressed that both the term 5/(32Ri) and the

term 1/(8Ri) inside the exponential in (59) (which are

intrinsically WKB results) are essential to obtain such a

good agreement. For higher values of Nh0/jU0j, how-

ever, critical-level absorption is considerably weaker, with

the momentum flux taking higher absolute values, es-

pecially, at low Ri. The numerical results for Nh0/jU0j 5
0.1 are still reasonably close to the WKB theoretical

prediction over the whole range of Ri, but at Nh0/jU0j5
0.2 the difference becomes large for Ri21 . 2, and at

Nh0/jU0j 5 0.5 the same happens for Ri21 . 1. Curi-

ously, at Ri21 5 4 the momentum flux is larger for Nh0/

jU0j5 0.2 than for Nh0/jU0j5 0.5. This is likely to be due

to saturation of the wave amplitude in the latter case,

presumably associated with incipient wave breaking.

This interpretation is confirmed by the fact that the

value of the normalized surface drag for Nh0/jU0j 5 0.5

starts to decrease as Ri drops below 0.5 (not shown).

The agreement with nonlinear results would be im-

proved slightly, but not substantially, if ~Mx(z 5 bz/p)

was normalized by the corresponding surface drag

(which is generally higher in nonlinear conditions). This

FIG. 4. Same as in Fig. 3, but for a wind that turns with height maintaining its magnitude (54).

Note that, unlike Fig. 3, here the vertical axes in (b),(d),(f) have a different scaling from those in

(a),(c),(e).
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shows that discrepancies are not simply due to the dif-

ferent value of the momentum flux that is available to be

absorbed, but also to the nature of the nonlinear ab-

sorption process itself (and possibly other phenomena,

like wave reflection; see Breeding 1971). The model of

SG99 (dotted line) would predict total momentum flux

absorption in this situation, that is, ~Mx(bz/p) 5 0.

4. Concluding remarks

The present study closes a series of papers (TMV04;

Teixeira and Miranda 2004, 2006; Miranda et al. 2009)

devoted to evaluating the effects of wind profile shear

and curvature on mountain waves using a WKB ap-

proximation. Whereas previous papers have concen-

trated on the surface drag, the present paper focuses on

the wave momentum flux. In this sense, it can also be

viewed as an extension of the study of SG99 to lower

Richardson numbers. The use of a WKB approximation

enables the treatment of generic background wind

profiles, as long as these profiles vary sufficiently slowly

in the vertical, and are smooth enough below critical

levels to preclude vertical wave reflections.

The effects of wind profile shear and curvature are of

two types: first, the value of the surface drag (and of the

momentum flux) may either be decreased (e.g., for a

linear wind profile) or increased (e.g., for a wind that

turns with height maintaining its magnitude). Second,

for sufficiently low Ri, the momentum flux is not totally

absorbed at critical levels, but rather filtered, with

both the magnitude and phase of the waves changing

(TMA08). For these effects to be captured correctly,

and so that the momentum fluxes are accurate to second

order in the small perturbation parameter used in the

WKB approximation, it is necessary that the wave so-

lutions are extended to third order.

This WKB model is only strictly valid in linear condi-

tions and relatively weak shear, although it may probably

be used for practical purposes for Ri as low as 0.5, as has

been seen. Obviously, it is at these relatively low values

of Ri that the model brings more substantial improve-

ments with respect to the model of SG99. For the two

wind profiles used to exemplify its capabilities, predic-

tions from the WKB model are in good quantitative

agreement with linear numerical simulations of the same

flows (for Nh0/jU0j 5 0.01), especially when the finite

horizontal extent of the domain is taken into account.

Although it may be argued that deep layers with low Ri

(such as were used to test the present model) seldom exist

in nature, it should be stressed that the model is also

applicable to more realistic wind profiles with variable Ri.

For the turning wind profile, there is a height where all

the components in the wave spectrum have passed

through their critical levels. The value of the momentum

flux at this height constitutes a stringent test on the

performance of the present model; namely, it assesses its

ability to correctly represent wave attenuation by criti-

cal levels. Concerning this aspect, the performance of

the model was seen to be very good in linear conditions

for Ri $ 1/3.

Nonlinear effects considerably modify the behavior

of the flow. In the weakly nonlinear cases considered

here, the momentum fluxes are somewhat enhanced,

but the linear predictions obtained using the WKB

approximation retain their usefulness. For Nh0/jU0j 5
0.1 the WKB model is still useful quantitatively, whereas

for Nh0/jU0j 5 0.2 and especially for Nh0/jU0 5 0.5

its value is mainly qualitative, with its departures from

the model of SG99 being, nevertheless, in the right di-

rection. The momentum flux corrections due to shear

effects, predicted by the model, correspond to a non-

negligible fraction of the uncorrected momentum fluxes,

and are of the same order of magnitude as the correc-

tions due to nonlinearity. This emphasizes their practical

relevance.

Since the momentum flux divergence expressions found

in this study are in closed analytical form, they should be

easy to implement in gravity wave drag parameterization

schemes. There are, admittedly, many improvements that

could be made to the model presented here, including, for

example, inclusion of the earth’s rotation, nonhydrostatic

effects, nonlinearity, boundary layer effects, or a differ-

ently shaped orography. This last improvement, which is

particularly relevant for drag parameterization, appears

to be the most feasible, for example, for the case of

FIG. 5. Normalized momentum flux along x at bz/p 5 1 for the

wind profile (54) as a function of Ri21. Solid line: WKB model (59);

dotted line: model of SG99; symbols: numerical results. Circles:

Nh0/jU0j5 0.01; squares: Nh0/jU0j5 0.1; triangles: Nh0/jU0j5 0.2;

diamonds: Nh0/jU0j 5 0.5.
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an elliptical mountain (as in Teixeira and Miranda 2006).

The other improvements are unlikely to be able to pre-

serve the analytical simplicity of the approach employed

here.
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graphic gravity waves into the stratosphere). Ph.D. thesis,

Lugwig-Maximilians-Universität, Munchen, Germany, 167 pp.

Lin, Y.-L., 2007: Mesoscale Dynamics. Cambridge University

Press, 674 pp.

Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave

and tidal breakdown. J. Geophys. Res., 86, 9707–9714.

Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic

drag parametrization: Its formulation and testing. Quart. J.

Roy. Meteor. Soc., 123, 101–127.

McFarlane, N. A., 1987: The effect of orographically excited

graivty-wave drag on the general circulation of the lower

stratosphere and troposphere. J. Atmos. Sci., 44, 1775–1800.

Miles, J. W., and H. E. Huppert, 1969: Lee waves in a stratified

flow. Part 4: Perturbation approximation. J. Fluid Mech., 35,
497–525.

Miranda, P. M. A., and I. N. James, 1992: Non-linear three di-

mensional effects on the wave drag: Splitting flow and break-

ing waves. Quart. J. Roy. Meteor. Soc., 118, 1057–1081.

——, J. P. A. Martins, and M. A. C. Teixeira, 2009: Assessing wind

profile effects on the global atmospheric torque. Quart. J. Roy.

Meteor. Soc., 135, 807–814.
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