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Abstract

We have calculated the equilibrium shape of the axially symmetric Plateau border along which a

spherical bubble contacts a flat wall, by analytically integrating Laplace’s equation in the presence

of gravity, in the limit of small Plateau border sizes. This method has the advantage that it provides

closed-form expressions for the positions and orientations of the Plateau border surfaces. Results

are in very good overall agreement with those obtained from a numerical solution procedure, and

are consistent with experimental data. In particular we find that the effect of gravity on Plateau

border shape is relatively small for typical bubble sizes, leading to a widening of the Plateau border

for sessile bubbles and to a narrowing for pendant bubbles. The contact angle of the bubble is

found to depend even more weakly on gravity.

PACS numbers: 47.57.Bc, 47.55.np
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I. INTRODUCTION

A liquid foam is an assembly of gas bubbles bounded by liquid films. Foams are encoun-

tered in many practical applications such as beverages, toiletries, cleaning products, fire

fighting, oil recovery, mixture fractionation, the manufacture of cellular materials, and ore

purification by flotation [1]. The behaviour of a foam with a low-viscosity liquid phase (e.g.,

an aqueous foam or a metal foam, as opposed to a polymeric foam) is dominated by surface

tension. Such foams thus serve as models for systems in which the interfacial area (in three

dimensions (3D)) or the perimeter (in two dimensions (2D)) is minimised at equilibrium.

In the limit of a perfectly dry foam, such as may be obtained after drainage of most of its

liquid content due to gravity, the films can be approximated as surfaces of zero thickness

endowed with a contractile tendency that is described by a film tension, denoted 2γ (a free

energy per unit length of a 2D film, or per unit area of a 3D film, which is twice that of the

liquid-vapour interface, γ). At equilibrium a dry foam satisfies Plateau’s laws [2]: films of

constant mean curvature meet in triple lines at 2π/3 angles; the triple lines meet in fourfold

vertices at the tetrahedral angles; and the different pressures in the bubbles equilibrate the

contractile forces on the films. The energy of such a foam is just the energy of its films.

In actual moderately dry foams (liquid content below about 5%), we may still neglect

the film thicknesses (of order 100 nm), but the triple lines are ‘decorated’ with regions of

triangular cross-section called Plateau borders (of width of order 0.1–1 mm) where most

of the liquid resides. In addition, where a foam meets a confining surface there are wall

Plateau borders. These are bounded by two liquid surfaces of tension γ and one solid

surface (the wall) of tension γWL (the wall-liquid interfacial tension). Wall Plateau borders

affect both the statics and the dynamics of foams: not only do they contribute to the total

foam energy, they also exert considerable drag on the walls in foam flow experiments. In

perfectly dry foams the film contact angle at a wall is π/2. In 2D wet foams, the (circular)

film prolongations into a wall PB also meet the wall at π/2 [3]. However, this appears not to

be the case in 3D wet foams in contact with walls: deviations from π/2 have been reported

for a single bubble on a wet porous substrate [4], e.g., φ ≈ 85◦ (measured inside the bubble

and extrapolated to the substrate surface – see figure 1) for a bubble of radius R = 2.4 mm.

The reason is that the Plateau border possesses curvature in the horizontal direction, due

to the axial symmetry of the bubble. Although generally weaker than that existing in the
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vertical direction, this curvature depends on bubble and Plateau border size, and modifies

the contact angle of the bubble.

In an earlier paper [5] the Plateau border shapes and the apparent contact angle of a

single bubble at a wall were calculated by numerical integration of the appropriate Laplace

equation. The usual disparity of scales between the two curvatures, however, suggests the

use of perturbation methods, which would allow greater insight into the physical mechanism

involved. Taking into account that, in most practical situations, the height of the Plateau

border h is considerably smaller than the radius of the bubble R, in this paper we develop

an approximate analytical solution for the Plateau border shape in powers of h/R. This

solution will also be used to study the relatively weak gravity effects on the Plateau border

(i.e., the difference between sessile and pendant bubbles). Gravity is important in many

aspects of foam research, e.g., drainage [1], and assumes ever greater relevance as it becomes

increasingly possible to carry out experiments in microgravity environments, e.g., aboard

the International Space Station. The analytical approach used in the present study has the

advantage of allowing a better control of input conditions, and consequently an easier and

quicker exploration of parameter space, than the numerical model used in [5] (where gravity

effects were not addressed).

This paper is organised as follows: in section II we describe our model, the Laplace

equation for the Plateau border around a single spherical bubble at a flat wall, and obtain

closed-form expressions for the inner and outer Plateau border surfaces. Our results for the

apparent contact angle, extrapolated contact angle and Plateau border shape are discussed

in section III: we compare results at different orders in h/R with those from numerical

solution of the Laplace equation, for different contact angles of the liquid on the substrate

and varying gravity strengths. Comparison is also made with what is, to our knowledge,

the only existing set of experimental results for this system [4]. Finally, section IV contains

some concluding remarks.
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II. THEORETICAL MODEL

The starting point is Laplace’s equation for an axisymmetric geometry, which may be

written:


1 +

(

dx

dz

)2




−3/2




−
d2x

dz2
+

1 +
(

dx
dz

)2

x





 =
∆p

γ
, (1)

where z is the height and x is the distance between the film surface and its axis of symmetry

(here assumed to be the z axis). ∆p is the pressure difference across the film surface (inner

minus outer) and γ is the surface tension of the fluid under consideration.

Defining cot θ = −dx/dz, θ is the angle, measured on a vertical plane containing the z

axis, between the film direction and the horizontal direction. The contact angle at which

the outer surface of the Plateau border intersects the substrate at the bottom of the bubble

will be called θ1 = θ(z = 0), while the corresponding contact angle of the inner surface is, of

course, π− θ1. Finally, the apparent contact angle of the bubble, defined as the angle of the

film at the top of the Plateau border, where both surfaces are tangent, is called θ2 = θ(z = h)

(see figure 1). Replacing the dependent variable x by θ in equation (1), that equation takes

the form
(

−
dθ

dz
+

1

R sin θ2 +
∫ h
z cot θdz

)

sin θ =
∆p

γ
. (2)

Applying equation (2) at the inner and outer surfaces of the Plateau border yields
(

−
dθ

dz
+

1

R sin θ2 +
∫ h
z cot θdz

)

sin θ =
pi − pb

γ
(inner), (3)

(

dθ

dz
−

1

R sin θ2 +
∫ h
z cot θdz

)

sin θ =
po − pb

γ
(outer), (4)

where pi, po and pb are the pressures inside the bubble, outside the bubble, and inside the

Plateau border, respectively. The pressure inside the Plateau border is assumed to be in

hydrostatic equilibrium, such that

pb = pb0 − ρgz, (5)

where pb0 is the pressure at the bottom of the Plateau border, g is the acceleration of gravity

and ρ is the density of the fluid under consideration. Additionally, it should be noted that

the pressure difference between the inside and the outside of the bubble is given by

pi − po = 4
γ

R
. (6)
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In their present form, equations (3)–(4) cannot be solved analytically. In order to make

this possible, they are first inverted, so that z becomes the dependent variable and θ the

independent variable. To do this, it is necessary to change the variable of integration of the

integral from z to θ, on noting that, at the surfaces bounding the Plateau border, θ is a

monotonic function of z:
∫ h

z
cot θdz =

∫ θ2

θ
cot θ

dz

dθ
dθ. (7)

When this is done, and equation (5) is also taken into account, equations (3)–(4) take the

form
(

pi − pb0

γ
+

ρgz

γ
−

sin θ

R sin θ2 +
∫ θ2

θ cot θ dz
dθ

dθ

)

dz

dθ
= − sin θ (inner), (8)

(

po − pb0

γ
+

ρgz

γ
+

sin θ

R sin θ2 +
∫ θ2

θ cot θ dz
dθ

dθ

)

dz

dθ
= sin θ (outer). (9)

At this point, it is useful to make the variables of this problem dimensionless, so that

the orders of magnitude of the various terms become clearer. θ is dimensionless by nature,

and takes values of O(1). Since these equations are going to be integrated over the Plateau

border height, which is h, a normalised height is defined as z′ = z/h. Then equations (8)–(9)

become




(pi − pb0)h

γ
+

h2

R2

ρgR2

γ
z′ −

h

R

sin θ

sin θ2

(

1 + h
R

1
sin θ2

∫ θ2

θ cot θ dz′

dθ
dθ
)





dz′

dθ
= − sin θ (inner),

(10)




(po − pb0)h

γ
+

h2

R2

ρgR2

γ
z′ +

h

R

sin θ

sin θ2

(

1 + h
R

1
sin θ2

∫ θ2

θ cot θ dz′

dθ
dθ
)





dz′

dθ
= sin θ (outer).(11)

These equations are subject to the lower boundary condition z′(θ = π − θ1) = 0 (at the

inner surface) or z′(θ = θ1) = 0 (at the outer surface) and the upper boundary condition

z′(θ = θ2) = 1 (at both surfaces).

Noting that h/R is small, when the factor involving the integral is expanded in powers

of h/R up to first order, equations (10)–(11) can be written approximately as
[

(pi − pb0)h

γ
+

h2

R2

ρgR2

γ
z′ −

h

R

sin θ

sin θ2

(

1 −
h

R

1

sin θ2

∫ θ2

θ
cot θ

dz′

dθ
dθ

)]

dz′

dθ
= − sin θ (inner),

(12)
[

(po − pb0)h

γ
+

h2

R2

ρgR2

γ
z′ +

h

R

sin θ

sin θ2

(

1 −
h

R

1

sin θ2

∫ θ2

θ
cot θ

dz′

dθ
dθ

)]

dz′

dθ
= sin θ (outer).

(13)
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In equations (12)–(13), it is clear that only the first term in square brackets is of O(1), to

balance the right-hand side of these equations, while the third term, related to the horizontal

curvature of the Plateau border, is of O(h/R). The last term, related to the fact that the

inner surface of the Plateau border is closer to the axis of symmetry than the outer surface,

is of O(h/R)2. Finally, the second term, related to gravity effects, is also of O(h/R)2. In

fact, whether this term is of second order or not depends on the value of the dimensionless

parameter ρgR2/γ, but in the cases that will be addressed – bubbles of radius R ≈ 1−3 mm,

as in [4] – this parameter is indeed of O(1), as required. For these values of R and using

γ = 33.6 × 10−3 J m−2 (see [4]) gives ρgR2/γ ≈ 0.3 − 2.6.

The problem is tackled by expanding both the dimensionless height z′(θ) and the dimen-

sionless inner and outer pressures in power series of h/R, as follows:

z′ = z′0 +

(

h

R

)

z′1 +

(

h

R

)2

z′2 + . . . , (14)

(pi − pb0)h

γ
= p′i0 +

(

h

R

)

p′i1 +

(

h

R

)2

p′i2 + . . . , (15)

(po − pb0)h

γ
= p′o0 +

(

h

R

)

p′o1 +

(

h

R

)2

p′o2 + . . . . (16)

Although a similar power series solution for θ could presumably be used to solve the equations

before inversion (i.e., equations (3) and (4)), calculations would certainly be less straight-

forward, because θ appears as the argument of sine and cosine functions. Additionally, this

would necessarily impose an a-priori dependence of θ2 on h/R (quadratic for a second-order

expansion) which, as will be seen, is not supported by the numerical simulations. The

solution procedure will first be described for the inner surface of the Plateau border.

A. Inner surface

Once equations (14)–(15) are inserted into equation (12), three equations result, valid at

zeroth-, first- and second-order in h/R, respectively:

p′i0
dz′0
dθ

= − sin θ, (17)

p′i0
dz′1
dθ

+

(

p′i1 −
sin θ

sin θ2

)

dz′0
dθ

= 0, (18)

p′i0
dz′2
dθ

+

(

p′i1 −
sin θ

sin θ2

)

dz′1
dθ

+

(

p′i2 +
ρgR2

γ
z′0 +

sin θ

sin2 θ2

∫ θ2

θ
cot θ

dz′0
dθ

dθ

)

dz′0
dθ

= 0. (19)
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These equations must be solved subject to the boundary conditions z′0(θ = π− θ1) = z′1(θ =

π − θ1) = z′2(θ = π − θ1) = 0 and z′0(θ = θ2) = 1, z′1(θ = θ2) = z′2(θ = θ2) = 0. Integrating

equations (17)–(19) between θ = π − θ1 and θ = θ2 using these boundary conditions yields

the following expansion coefficients of the inner pressure:

p′i0 = cos θ1 + cos θ2, (20)

p′i1 = −
1

2

θ2 − π + θ1 − sin θ2 cos θ2 − sin θ1 cos θ1

p′i0 sin θ2
, (21)

p′i2 = −
1

2

ρgR2

γ
+

p′i1
p′i0

−
p′2i1
p′i0

. (22)

In fact, as will be seen later, one does not need to find explicit expressions for z′0, z′1 and z′2

in order to obtain a relation between θ1, θ2 and h/R. However, this is necessary for plotting

the actual shapes of the Plateau border surfaces. To obtain such expressions, equations

(17)–(19) must be integrated instead between θ = π − θ1 and a generic θ, with the result

z′0 =
cos θ + cos θ1

p′i0
, (23)

z′1 = −
p′i1
p′2i0

(cos θ + cos θ1) −
1

2p′2i0 sin θ2
(θ − π + θ1 − sin θ cos θ − sin θ1 cos θ1) , (24)

z′2 = −
1

2

ρgR2

γ

(cos θ + cos θ1)
2

p′3i0
−

(

p′i2
p′2i0

−
p′2i1
p′3i0

)

(cos θ + cos θ1)

+

(

p′i1
p′3i0

−
1

2p′3i0

)

θ − π + θ1 − sin θ cos θ − sin θ1 cos θ1

sin θ2

. (25)

In order to specify the inner surface of the Plateau border, it is also necessary to know

its horizontal position. An equation analogous to equation (12) can be obtained if we define

x′ = x/h and ∆x′ = x′(θ = θ2) − x′(θ) (where x is the horizontal coordinate of the inner

surface). From these definitions it follows that, although x′ is of O(R/h), ∆x′ is of O(1). If

we note that dx′/dz′ = − cot θ, then it can be shown from equation (12) that
[

(pi − pb0)h

γ
+

h2

R2

ρgR2

γ
z′ −

h

R

sin θ

sin θ2

(

1 +
h

R

1

sin θ2

∆x′

)]

d∆x′

dθ
= − cos θ. (26)

If ∆x′ is expanded in a power series of h/R, as follows,

∆x′ = ∆x′

0 +

(

h

R

)

∆x′

1 +

(

h

R

)2

∆x′

2 + . . . , (27)

and equations (14)–(15) are also taken into account, three equations for ∆x′

0, ∆x′

1 and ∆x′

2

follow:

p′i0
d∆x′

0

dθ
= − cos θ, (28)
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p′i0
d∆x′

1

dθ
+

(

p′i1 −
sin θ

sin θ2

)

d∆x′

0

dθ
= 0, (29)

p′i0
d∆x′

2

dθ
+

(

p′i1 −
sin θ

sin θ2

)

d∆x′

1

dθ
+

(

p′i2 +
ρgR2

γ
z′0 −

sin θ

sin2 θ2

∆x′

0

)

d∆x′

0

dθ
= 0. (30)

The solutions to these equations satisfying the boundary conditions ∆x′

0(θ = θ2) = ∆x′

1(θ =

θ2) = ∆x′

2(θ = θ2) = 0 (which result from the definition of ∆x′ and equation (27)), are:

∆x′

0 =
sin θ2 − sin θ

p′i0
, (31)

∆x′

1 =
1

2p′2i0 sin θ2

(

sin2 θ2 − sin2 θ
)

−
p′i1
p′2i0

(sin θ2 − sin θ) , (32)

∆x′

2 =

(

1

2p′3i0
−

p′i1
p′3i0

)

sin2 θ2 − sin2 θ

sin θ2
+

(

p′2i1
p′3i0

−
p′i2
p′2i0

−
ρgR2

γ

cos θ1

p′3i0

)

(sin θ2 − sin θ)

−
ρgR2

γ

1

2p′3i0
(θ2 − θ + sin θ2 cos θ2 − sin θ cos θ) . (33)

This completely specifies the inner surface of the Plateau border.

B. Outer surface

Now the same procedure must be followed for the outer surface of the Plateau border.

Hence, from equations (14), (16) and (13), three equations result, again valid at zeroth-,

first- and second-order in h/R, respectively:

p′o0
dz′0
dθ

= sin θ, (34)

p′o0
dz′1
dθ

+

(

p′o1 +
sin θ

sin θ2

)

dz′0
dθ

= 0, (35)

p′o0
dz′2
dθ

+

(

p′o1 +
sin θ

sin θ2

)

dz′1
dθ

+

(

p′o2 +
ρgR2

γ
z′0 −

sin θ

sin2 θ2

∫ θ2

θ
cot θ

dz′0
dθ

dθ

)

dz′0
dθ

= 0.(36)

These equations are subject to the boundary conditions z′0(θ = θ1) = z′1(θ = θ1) = z′2(θ =

θ1) = 0 and z′0(θ = θ2) = 1, z′1(θ = θ2) = z′2(θ = θ2) = 0. Integrating them between θ = θ1

and θ = θ2 gives

p′o0 = cos θ1 − cos θ2, (37)

p′o1 = −
1

2

θ2 − θ1 − sin θ2 cos θ2 + sin θ1 cos θ1

p′o0 sin θ2
, (38)

p′o2 = −
1

2

ρgR2

γ
−

p′o1
p′o0

−
p′2o1
p′o0

. (39)
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On the other hand, integrating equations (34)–(36) between θ = θ1 and a generic θ yields

z′0 =
cos θ1 − cos θ

p′o0
, (40)

z′1 = −
p′o1
p′2o0

(cos θ1 − cos θ) −
1

2p′2o0 sin θ2
(θ − θ1 − sin θ cos θ + sin θ1 cos θ1) , (41)

z′2 = −
1

2

ρgR2

γ

(cos θ1 − cos θ)2

p′3o0
−

(

p′o2
p′2o0

−
p′2o1
p′3o0

)

(cos θ1 − cos θ)

+

(

p′o1
p′3o0

+
1

2p′3o0

)

θ − θ1 − sin θ cos θ + sin θ1 cos θ1

sin θ2
. (42)

An equation analogous to equation (26) may be obtained for the horizontal displacement

of the outer surface, ∆x′ = x′(θ = θ2) − x′(θ):

[

(po − pb0)h

γ
+

h2

R2

ρgR2

γ
z′ +

h

R

sin θ

sin θ2

(

1 +
h

R

1

sin θ2
∆x′

)]

d∆x′

dθ
= cos θ. (43)

Expanding ∆x′ in powers of h/R, as in equation (27), the following three equations are

obtained from equation (43):

p′o0
d∆x′

0

dθ
= cos θ, (44)

p′o0
d∆x′

1

dθ
+

(

p′o1 +
sin θ

sin θ2

)

d∆x′

0

dθ
= 0, (45)

p′o0
d∆x′

2

dθ
+

(

p′o1 +
sin θ

sin θ2

)

d∆x′

1

dθ
+

(

p′o2 +
ρgR2

γ
z′0 +

sin θ

sin2 θ2

∆x′

0

)

d∆x′

0

dθ
= 0. (46)

Subject to the same boundary conditions as enunciated before for the inner surface, these

equations have the solutions:

∆x′

0 = −
sin θ2 − sin θ

p′o0
, (47)

∆x′

1 =
1

2p′2o0 sin θ2

(

sin2 θ2 − sin2 θ
)

+
p′o1
p′2o0

(sin θ2 − sin θ) , (48)

∆x′

2 = −

(

1

2p′3o0
+

p′o1
p′3o0

)

sin2 θ2 − sin2 θ

sin θ2
−

(

p′2o1
p′3o0

−
p′o2
p′2o0

−
ρgR2

γ

cos θ1

p′3o0

)

(sin θ2 − sin θ)

−
ρgR2

γ

1

2p′3o0
(θ2 − θ + sin θ2 cos θ2 − sin θ cos θ) . (49)

This specifies the outer surface completely. It should be noted that, by design of the solu-

tions, the upper vertex of the Plateau border, where the inner and outer surfaces meet, is

located at ∆x′ = 0 and z′ = 1.
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C. Relation between θ1, θ2 and h/R

The relation between the inner and outer pressures (due to the bubble curvature) allows

us to relate θ1, θ2 and h/R. The dimensionless version of equation (6) is

(pi − po)h

γ
= 4

h

R
. (50)

This equation shows that, although the pressure differences between the inside of the Plateau

border and the inside or the outside of the bubble are of zeroth order in h/R, the difference

between these pressure differences is only of first order. This, of course, is consistent with

the assumed disparity of scales between the curvatures of the Plateau border surfaces and of

the bubble. Equation (50), combined with equations (15)–(16), gives the following equation

for h/R (accurate to second order in h/R),

(p′i2 − p′o2)

(

h

R

)2

+ (p′i1 − p′o1 − 4)

(

h

R

)

+ p′i0 − p′o0 = 0, (51)

which enables us to find h/R as a function of θ1 and θ2, through the solution

h

R
=

4 − p′i1 + p′o1 −
√

(4 − p′i1 + p′o1)
2 − 4(p′i2 − p′o2)(p

′

i0 − p′o0)

2(p′i2 − p′o2)
(52)

(where the pressures are specified by equations (20)–(22) and (37)–(39)). This formula

provides a relation between h/R, θ2 and θ1 accurate to second order in h/R. A relation

accurate to first-order may be obtained by retaining only the zeroth- and first-order terms

in equation (51), which gives:
h

R
=

p′i0 − p′o0
4 − p′i1 + p′o1

. (53)

Finally, a zeroth-order approximation can be obtained by neglecting both the first- and the

second-order terms in equation (51), yielding:

p′i0 = p′o0 ⇒ cos θ2 = 0 ⇒ θ2 = 90o. (54)

Note that in equation (52) the physically meaningful root, i.e., the one that reduces to the

first-order approximation as p′i2 and p′o2 tend to zero, has been selected.This can be checked

by rewriting equation (52) as

h

R
=

(4 − p′i1 + p′o1)

[

1 −

√

1 −
4(p′

i1
−p′

o1)(p′
i2
−p′

o2)
(4−p′

i1
+p′

o1
)2

]

2(p′i2 − p′o2)
(55)
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and expanding the term inside the square brackets in a Taylor series.

Note also that the procedure described above is not part of the formal power series solution

to the problem (where the coefficients multiplying successive powers of h/R would have to

be set to zero to satisfy equation (51)). In fact, these coefficients have been determined

previously in equations (20)-(22) and (37)-(39), so equation (51) is not valid for any arbitrary

h/R, but rather defines h/R as a function of θ1 and θ2. Equation (51) and its versions

truncated at lower orders, which give rise to the solutions of equations (52), (53) or (54),

may be viewed as akin to truncating the final result of a perturbation expansion solution at

the required order.

In equation (51), and unlike what is usual in perturbation expansions, what is determined

is the small parameter h/R as a function of other problem variables, instead of the other

way round. This was done for simplicity but we believe the procedure to be consistent,

as the ensuing results will show, despite the fact that it is not very standard. Obviously,

solutions analogous to equation (52) would be either much lengthier or impossible to obtain

analytically using this approach if the perturbation expansion was extended to third or

higher order.

III. RESULTS

A. Apparent contact angle of the bubble

Figure 2(a,b) shows the variation of the apparent contact angle of the bubble θ2 with

h/R for three values of θ1 (the contact angle between the Plateau border surfaces and the

substrate). Results in figure 2(a) are for zero gravity and those in figure 2(b) for two values of

the gravity parameter (positive and negative, corresponding to sessile and pendant bubbles,

respectively). In figure 2(a), the zeroth-order solution, equation (54), is coincident with the

upper horizontal axis, the upper set of lines correspond to the first-order solution, equation

(53), and the lower set of lines to the second-order solution, equation (52). The symbols

are numerical data obtained by the method of [5], where the approximation h/R ≪ 1 is not

made. In figure 2(b) the filled symbols correspond to ρgR2/γ = 2 and the open symbols

to ρgR2/γ = −2. The positive value is within the range of values taken by ρgR2/γ in the

experiments of Rodrigues et al. [4], as mentioned previously.
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It should be noted first of all that gravity has no effect on the analytical relation between

h/R, θ1 and θ2, at least at the current order of approximation. This is a consequence of the

fact that only the difference p′i2 − p′o2 appears in equation (52), and according to equations

(22) and (39), this difference does not depend on gravity, because the terms involving gravity

cancel exactly.

On the other hand, the zeroth-order solution, which only takes into account the vertical

curvature of the Plateau border, is trivial and a bad approximation: θ2 is not predicted to

depend on h/R or on θ1. The first-order approximation, where the horizontal curvature of the

Plateau border is taken into account, produces a reasonable prediction for θ2, up to h/R =

0.3, with the correct dependence on θ1. Finally, the second-order approximation, where

apart from the physical effects mentioned above, the horizontal thickness of the Plateau

border is taken into account, yields the best predictions. These are quite accurate up to

h/R ≈ 0.45. The analytical solutions nevertheless diverge considerably from the numerical

results above these limits, as expected.

In figure 2(b), the numerical results show that, contrary to what the analytical model

predicts, there is a dependence of θ2 on gravity, although this is relatively weak. For a

given value of h/R, positive gravity (corresponding to a sessile bubble) decreases θ2, while

negative gravity (corresponding to a pendant bubble) increases it.

Figure 2(c) compares the first-order and second-order analytical solutions and experi-

mental data [4]. Note that this comparison is carried out over a much smaller range of h/R

than in figure 2(a,b). Experimentally, the bubbles are formed by blowing air through a hole

in a porous glass substrate; the latter can be either ‘dry’, if only a few drops of surfactant

solution are placed on it, or ‘wet’, if it is connected to the surfactant solution reservoir

and therefore covered with a continuous liquid film [6]. Filled symbols are for bubbles on a

‘dry’ substrate, whereas open symbols are for bubbles on a ‘wet’ substrate. A contact angle

of θ1 = 0o was assumed in either case, which seemed the most sensible choice, since the

bubble was in contact with the fluid in both cases. The error bars were computed taking

into account that the measurement error of R is 0.05 mm, and the error of θ2 is 1o [4]. The

measurement error of h was estimated as 0.028 mm [6].

It can be seen that, while the agreement with the second-order analytical prediction is

not very good (it is outside the error bars), the data approximately follow a straight line

(which is consistent with the analytical results at any order of approximation for this range
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of h/R). However, the analytical results considerably overestimate θ2. The discrepancies

might be attributed to a systematic measurement error, since the value of h was estimated

visually from the optical opacity of the Plateau border. It is plausible that the upper region

of the Plateau border (which determines h) is very thin, and thus its upper limits are difficult

to detect from mere visual inspection. This could account for an underestimation of h (and

thus also of h/R), although there may of course be other sources of error. We emphasize

that these are the only experimental data that we know of which are relevant to the present

problem.

B. Extrapolated contact angle of the bubble

The extrapolated contact angle of the bubble φ is the angle at which the bubble would

intersect the substrate if the bubble’s hemispherical shape extended for z′ < 1. This angle

is defined, by the use of standard trigonometry, as

cos θ2 − cos φ =
h

R
. (56)

Like θ2, φ does not depend on gravity at the current order of approximation. Owing to the

way in which it is defined, φ is considerably closer to 90o than θ2, with a narrower range of

variation, and its relative error in the analytical approximation developed is thus expected

to be larger.

In figure 3 the variation of φ with h/R is presented for three values of θ1, for zero gravity

(figure 3(a)), and for positive and negative gravity (figure 3(b)). Lines and symbols have

the same meanings as in figure 2(a,b). Taking into account equation (56), it is clear that

the zeroth-order value of φ is equal to the corresponding value of θ2, namely φ = 90o, and

therefore does not depend on θ1 or on h/R.

In figure 3(a), it can be seen that the first-order approximation for φ has reasonable

accuracy up to h/R = 0.2, and the second-order approximation is accurate up to about

h/R = 0.4. Both first-order and second-order approximations diverge strongly from the

numerical results for larger values of h/R, but, again, this should be expected.

In figure 3(b), it can be seen that the dependence of φ on h/R including gravity becomes

inaccurate at approximately the same values of h/R as in the zero-gravity case. However,

discrepancies are slightly more marked for negative gravity (which is consistent with figure

13



2(b)). For positive gravity, φ is somewhat smaller than in figure 3(a), staying closer to the

prediction of the second-order approximation. In the case of negative gravity, on the con-

trary, φ is larger, and so departs more strongly from the second-order result. Qualitatively,

this contrasting behaviour of a sessile and a pendant bubble (i.e., positive and negative

gravity, respectively) appears intuitive, since a pendant bubble should portrude more from

the substrate due to its own weight.

C. Profiles of the Plateau border surfaces

The solutions for ∆x′ and z′ provided by equations (31)–(33) and (23)–(25) for the inner

surface and by equations (47)–(49) and (40)–(42) for the outer surface are studied next

for a bubble with h/R ≈ 0.4. This large value of h/R is chosen so that the effect of the

second-order corrections is clearly visible, and on the other hand so that we are still within

the limits of applicability of the theory (as suggested by figures 2 and 3).

Figure 4(a) shows the zeroth-, first- and second-order solutions for the shape of the

Plateau border (with the bubble to the right). It is assumed that θ1 = 10o and θ2 = 60o

(for the first- and second-order solutions), which corresponds to h/R = 0.408 accurate to

second-order in h/R (and h/R = 0.436 accurate to first-order). Also shown in figure 4(a)

is a solution intermediate between the zeroth-order and the first-order solutions, which we

have called 1/2th-order solution. This is equal to the zeroth-order solution, except that we

have prescribed θ2 = 60o (as in higher-order solutions), which is inconsistent at zeroth-order

(as equation (54) shows). The purpose of this is to understand more clearly the physical

processes involved.

In figure 4(a) it can be seen that in the zeroth-order solution θ2 = 90o (as it must be)

and the inner and outer surfaces of the Plateau border are symmetric arcs of circle. Relative

to the zeroth-order solution, in the 1/2th-order solution the inner and outer surfaces of the

Plateau border are translated to the left, due to the fact that θ2 6= 90o. To consistenly be

able to meet the substrate at the imposed value of θ1, the inner surface must increase its

curvature considerably, whereas the outer surface must decrease it.

In the first-order solution, the additional effect of the horizontal curvature of the bubble

is taken into account. This curvature has the same sign as the curvature of the inner surface,

but the opposite sign to the curvature of the outer surface, increasing further the latter, but
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decreasing the former (for an approximately constant pressure inside the Plateau border).

This effect is especially important when the surfaces are nearly vertical (i.e., near the top),

while it is much weaker when they are nearly horizontal (i.e., near the bottom). This explains

the slight translation of the surfaces to the left from the 1/2th- to the first-order solution.

This effect is also stronger in the outer surface than in the inner surface, because the latter

has larger curvature, and thus the relative effect of this correction is smaller. That explains

the larger translation of the outer surface, and thus the slight widening of the Plateau border

from the 1/2th- to the first-order solution. It is worth noting that although the changes on

going from the zeroth-order to the 1/2th-order solution and from the 1/2th-order solution to

the first-order solution are both of first-order (the former being associated with the vertical

bubble curvature and the latter with the horizontal bubble curvature) in practice the former

effect is much larger than the latter.

Changes on going from the first-order to the second-order solution are more subtle and

difficult to interpret. These changes are due to the difference between distances of the inner

and outer surfaces to the axis of symmetry (as was mentioned earlier), but this effect is not

easy to understand in terms of curvature. It can nevertheless be noted that the second-

order solution is much closer to the first-order solution than the latter is to the zeroth-order

solution. This suggests that the power series for ∆x′ and z′ are asymptotic.

In figures 4(b,c), only results for the second-order solutions (the most accurate) are shown.

Figure 4(b) displays the Plateau border surfaces for θ2 = 60o and θ1 = 0o, 10o, 20o. This

corresponds to h/R = 0.404, h/R = 0.408 and h/R = 0.417, respectively, accurate to

second-order. The Plateau border widens as θ1 decreases (i.e., as the fluid wets the solid

increasingly better), being considerably larger for θ1 = 0o than for θ1 = 20o. In figure 4(b),

agreement between the analytical and numerical solutions is excellent.

Finally, in figure 4(c), the dependence of the solutions on the gravity parameter is shown,

again for a Plateau border with θ1 = 10o and θ2 = 60o, corresponding to h/R = 0.408.

The effect of gravity is perhaps as expected, leading to a widening of the Plateau border

for positive ρgR2/γ (sessile bubble) and a narrowing for negative ρgR2/γ (pendant bubble).

This behaviour can be interpreted using hydrostatic equilibrium. For a positive g, the

pressure is lower in the upper part of the Plateau border than in the lower part. This

leads to an increase in the curvature of the inner and outer surfaces near the top, and

a corresponding reduction near the bottom. It is straightforward to conclude that this
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corresponds to a widening. The converse happens for negative g.

The displacement of the outer surface of the Plateau border due to the variation of either

θ1 or gR2/γ is much larger than the diplacement of the inner surface. This may be due,

again, to the fact that the curvature of the inner surface is considerably larger, and thus less

affected by higher order effects. Another possible cause is that the inner surface is closer

to vertical, and thus a smaller horizontal translation is necessary for it to adjust to the

variation of the parameters.

The agreement between analytical and numerical results, although qualitatively correct,

is not so good for non-zero gravity. It might be that the values of ρgR2/γ considered are

too high, although this should not be the case, since they are of O(1). We used these

values so that the differences between the various curves in figure 4(c) were sufficiently clear

(and also because the positive value is compatible with the experiments of [4], as remarked

above). It should be recalled that gravity is treated here as a second-order effect, so when it

becomes too large it would probably be better treated at lower order. But that approach, if

feasible, would certainly increase the mathematical complexity further. A more fundamental

mathematical reason for the worse performance of the analytical model including gravity

may be the assumption (made in the description of the theoretical model, in section II)

that θ is a monotonic function of z. When gravity effects are relatively large, the numerical

simulations show that the curvature of the lower part of the Plateau border in a sessile

bubble becomes weak and may even change its sign due to the hydrostatic increase of the

pressure (not shown). In this case, θ stops being a monotonic function of z, and thus a

one-to-one relation ceases to exist between these two variables (see figure 5).

IV. DISCUSSION

It appears that, for an accurate prediction of the contact angle of relatively small bubbles

(i.e., bubbles with sufficiently large h/R), it is crucial to consider at least a second-order

approximation in our analytical, perturbation expansion, model. This physically corresponds

to taking into account not only the horizontal curvature of the Plateau border (due to the

sphericity of the bubble), but also the difference in distances to the axis of symmetry of

the bubble from the inner and the outer surfaces of the Plateau border. Although gravity

has a considerable impact on the shape of the Plateau border, which is captured by the
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present theory, its effect on the relation between θ2, h/R and θ1 appears to be weak in

most situations. These differing impacts of gravity on different aspects of Plateau border

geometry seem to be corroborated by figures 2(b) and 4(c). Since bubbles with relatively

high h/R are generally small, and in that case ρgR2/γ is generally low, the choice of treating

gravity as a second-order effect may not be too inappropriate (it is in particular adequate

for bubbles such as those studied experimentally by Rodrigues et al. [4]). However, in

cases where gravity is more important, the calculations would need to be reformulated, for

example with gravity considered at lower order in the perturbation expansion applied to

the equations. Such calculations are, however, likely to be even more involved than those

presented here. Numerical results also suggest that, when gravity effects are sufficiently

strong, the curvature of the Plateau border surfaces may change sign locally (see figure 5).

This would place a much more definite limit on the range of applicability of the present

calculations, since they rely on the existence of a one-to-one relation between θ and z.

Within their limits of validity, the analytical calculations developed in the present paper

have the advantage of providing closed-form expressions for the shape of the Plateau border,

and an explicit relation between θ1, θ2 and h/R. This is a considerable improvement over

the numerical model used to address a related problem [5], where numerical solutions must

be integrated from the bottom of one of the Plateau border surfaces, and it is not possible

to impose, for example, the coordinates of the upper vertex of the Plateau border. This

limitation of the numerical model means that the contact angle of one of the Plateau border

surfaces with the substrate must be adjusted by trial and error. Besides addressing the effect

of gravity in a simple way, the analytical model proposed here therefore allows a much more

exhaustive exploration of the parameter space than the numerical model.
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FIG. 1: Schematic diagram of the model problem. A bubble, and its associated Plateau border,

are shown. R is the radius of the bubble. h is the height of the Plateau border. θ1 and π − θ1

are the contact angles of the Plateau border surfaces as they intersect the substrate. θ2 is the

apparent contact angle of the bubble (angle of the film at the top of the Plateau border). φ is the

extrapolated contact angle of the bubble in the absence of a Plateau border. z is the height and x

is the radial distance of the film to its axis of symmetry (the z axis).
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FIG. 2: Variation of the apparent contact angle of the bubble with the dimensionless height of

the Plateau border. Lines: analytical model, symbols: numerical or experimental data. (a) Re-

sults without gravity. Upper set of lines: 1st-order approximation, lower set of lines: 2nd-order

approximation. The 0th-order approximation coincides with the upper horizontal axis. Sym-

bols: numerical model. (b) Results with gravity from 2nd-order approximation. Filled symbols:

ρgR2/γ = 2, open symbols: ρgR2/γ = −2, both from numerical model. (c) Comparison with

experimental data (symbols) for θ1 = 0o. The point at (0.10, 74◦) does not follow the general trend

and may not be meaningful.
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FIG. 3: Variation of the extrapolated contact angle of the bubble with the dimensionless height

of the Plateau border. Lines: analytical model, symbols: numerical model. (a) Results without

gravity. Upper set of lines: 1st-order approximation, lower set of lines: 2nd-order approximation.

The 0th-order approximation coincides with the upper horizontal axis. (b) Results with gravity

from 2nd-order approximation. Filled symbols: ρgR2/γ = 2, open symbols: ρgR2/γ = −2.
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FIG. 4: Shapes of the outer (on the left) and inner (on the right) surfaces of the Plateau border

for a bubble with θ2 = 60o (except for the 0th-order solution) – h/R ≈ 0.4, near the limits of

validity of the theory. Lines: analytical model, symbols: numerical model. (a) 0th-, 1/2th-, 1st-

and 2nd-order solutions for θ1 = 10o, without gravity. (b) 2nd-order solution for θ1 = 0o, θ1 = 10o

and θ1 = 20o, without gravity. (c) 2nd-order solution for θ1 = 10o and three values of ρgR2/γ.
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(a) (b)

FIG. 5: Schematic diagram illustrating the approximate shape of the Plateau border of a sessile

bubble with (a) weak gravity (b) strong gravity. The convex curvature at the bottom in (b) is due

to the increase in pressure associated with hydrostatic equilibrium.
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