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ABSTRACT

The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave
drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by
the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic ap-
proximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as
long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including
the pressure, may be calculated analytically.

1. Introduction

Recently, Teixeira et al. (2004) presented a linear
model of mountain waves for wind profiles with shear
and curvature based on the Wentzel–Kramers–Brillouin
(WKB) approximation. This model provided new ana-
lytical expressions for the wave drag as a function of
the first and second derivatives of the background ve-
locity profile. These expressions were shown to be
asymptotically in agreement with previously known ex-
act formulas, and to reproduce to a good degree of ap-
proximation the results of numerical mesoscale simu-
lations for similar input conditions. They were able to
elucidate, in particular, why two flows that turn with
height in different ways lead to opposite dependencies
of the drag on the Richardson number.

Teixeira et al. (2004) considered the drag of hydro-
static flow over an isolated axisymmetric mountain.
Two-dimensional (2D) orography is also frequently used
in idealized studies of mountain waves, since it roughly
approximates elongated ridges, which are common in
nature. It is therefore of great practical interest to study
the drag on this type of orography, for which the equa-
tions of motion simplify considerably due to symmetry.
In this paper, the model of Teixeira et al. (2004) is
extended to calculate the gravity wave drag associated
with hydrostatic flow over an isolated 2D ridge.

The property that the corrections to the drag due to
the variation of the wind with height are independent
of the detailed shape of the orography is shown to also
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hold in the present case. However, the coefficients of
these corrections are different from the axisymmetric
case, due to the different geometry of the problem. Fur-
thermore, in the case of a bell-shaped ridge (and pre-
sumably also for other simple types of orography), the
perturbations of the flow variables at the surface may
be calculated analytically.

2. Model equations

Consider a stably stratified flow over an infinite iso-
lated 2D mountain ridge. If a reference frame is defined
such that the ridge is aligned in the y direction, and the
background state of the atmosphere is horizontally uni-
form, the perturbations associated with the internal grav-
ity waves generated by this orography are independent
of y. If the fundamental equations of motion with the
Boussinesq approximation are linearized with respect to
these perturbations (which can be done if they are suf-
ficiently small), and the perturbations are expressed as
Fourier integrals along x, an equation may be derived
for the vertical structure of ŵ, the Fourier transform of
the vertical velocity perturbation. This is the Taylor–
Goldstein equation (Nappo 2002):

2N U 0
ŵ 0 1 2 ŵ 5 0. (1)

21 2U U

Here, N is the Brunt–Väisälä frequency (assumed con-
stant), U is the background velocity (along x) and the
primes denote differentiation along the vertical direction
z. This equation was obtained by additionally assuming
that the flow is steady and hydrostatic. The linear and
hydrostatic approximations, although valid simulta-
neously only for very gentle orography, enable one to



1 NOVEMBER 2004 2639T E I X E I R A A N D M I R A N D A

isolate the effects that are the focus of this study from
nonlinear and nonhydrostatic effects. Compared with
Eq. (13) of Teixeira et al. (2004), (1) is simplified by
the symmetry along y, which means that the y com-
ponent of the horizontal wavenumber vector k 5 (k1,
k2) is k2 5 0. For that reason, the horizontal wavenum-
ber will be called simply k.

As is well known, when the coefficient multiplying
ŵ in (1) varies relatively slowly with z, this equation
may be solved using the WKB approximation. Follow-
ing Teixeira et al. (2004), the approximate WKB so-
lution of (1) valid up to second-order in the small per-
turbation parameter « is

z

ŵ 5 ŵ(z 5 0) exp i [m («z9) 1 «m («z9)E 0 15
0

21 « m («z9)] dz9 , (2)2 6
where m 0 , m1 , and m 2 are the zeroth-, first-, and second-
order coefficients of the series expansion of the vertical
wavenumber of the internal gravity waves in powers
of «.

When introduced into (1), the solution (2) yields the
following definitions:

N
m 5 sgn(k), (3)0 U

i U9
«m 5 2 , (4)1 2 U

21 U U9 U 0
2« m 5 2 sgn(k) 1 2 . (5)2 21 28 N U U

In (3)–(5), the radiation boundary condition at z → 1`
is implicitly assumed, since the sign of m0 and m2 is
the same as that of k, implying upward energy propa-
gation. These expressions are analogous to Eqs. (22)–
(24) of Teixeira et al. (2004), but simplified for 2D,
hydrostatic flow. With the addition of the boundary con-
dition at the surface,

ŵ(z 5 0) 5 iU kĥ,0 (6)

the solution to the problem is fully specified. Here, ĥ
is the Fourier transform of the surface elevation, and
U0 is the background velocity at the surface.

3. Mountain wave drag

For a 2D mountain ridge, the total gravity wave drag,
defined as the area integral of the pressure perturbation
times the gradient of the ground elevation, is infinite,
because the ridge is itself infinite along y, and it only
makes sense to define a drag per unit length in the
transverse direction. In the linear approximation, this is
given by

1` ]h
D 5 p(z 5 0) dx, (7)E ]x

2`

where p is the pressure and h is the surface elevation.
The drag can also be calculated in Fourier space,
through the integral

1`

D 5 2pi kp̂*(z 5 0)ĥ dk, (8)E
2`

where p̂* is the complex conjugate of the Fourier trans-
form of the pressure. In the present approximation, p̂(z
5 0) is given by

2p̂(z 5 0) 5 ir U m (z 5 0) 1 «m (z 5 0)0 0 0 1[
U90 21 i 1 « m (z 5 0) ĥ, (9)2 ]U0

where r0 is the reference density of air [cf. Eq. (31) of
Teixeira et al. 2004]. Using the results (3)–(5), (9) be-
comes

i U90p̂(z 5 0) 5 ir NU sgn(k) 10 0 [ 2 N

21 U9 U U00 0 02 sgn(k) 1 2 ĥ,
2 21 2]8 N N

(10)

where and are the first and second derivativesU9 U00 0

of the background velocity at the surface. Introducing
the complex conjugate of this equation into (8), the drag
may be written

21 U9 1 U U00 0 0D 5 2pr NU 1 2 20 0 2 21 28 N 4 N
1`

23 |k | | ĥ | dk. (11)E
2`

In (11), | k | appears inside the integral because of the
sign(k) factor in the terms of zeroth and second order
in « of the pressure perturbation p̂. The part of the drag
corresponding to the first-order term cancels, because
the sign(k) factor is absent. Since | | 2 is even whenĥ
the surface elevation function h(x) is real, this part of
the integral is zero, because the corresponding integrand
is odd.

Noting that, by (11), the drag in the absence of shear
is defined as

1`

2D 5 2pr NU |k | | ĥ | dk, (12)0 0 0 E
2`

the drag for the general case may be expressed more
compactly as
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FIG. 1. Normalized drag as a function of the inverse Richardson
number. (a) Linear background velocity profile (14). (b) Parabolic
background velocity profile (18). The NH3D model uses Na/U0 5
23, Nh/U0 5 0.01.

21 U9 1 U U00 0 0D 5 D 1 2 2 . (13)0 2 21 28 N 4 N

It is clear that the corrections to the drag due to shear
and curvature of the background wind profile do not
depend on the form of the function (note that theĥ
hydrostatic assumption is essential for this property to
be verified). This equation, which is analogous to Eqs.
(50)–(51) of Teixeira et al. (2004), is nevertheless much
shorter, due to the simplifications brought by the 2D
geometry.

The drag given by (13) is per unit length and so cannot
be directly compared with the drag calculated by Teix-
eira et al. (2004), but the relative corrections due to the
shear and curvature of the wind profile, put in evidence
by (13), are of a similar nature and may be compared.
These corrections differ from those valid for an axi-
symmetric mountain, with the 1/8 and 1/4 coefficients,
multiplying, respectively, /N 2 and U0 /N 2 in (13),2U9 U00 0

being larger by a factor of 4/3. This means that the effect
on the drag of the shear and curvature of the wind profile
is qualitatively similar, but stronger for 2D than for 3D
flow.

For a linear wind profile of the form

z
U 5 U 1 2 , (14)01 2zc

where zc is constant, (13) reduces to

1
D 5 D 1 2 , (15)01 28Ri

where Ri 5 N 2/ 5 N 2 / is the Richardson num-2 2 2U9 z U0 c 0

ber of the flow. This expression may be compared with
the corresponding result obtained analytically by Smith
(1986) for a linear profile with an arbitrarily large shear
rate. It may be shown that, in the present notation,
Smith’s drag expression [his Eq. (3.17)] is

1/21
D 5 D 1 2 , (16)01 24Ri

and it is straightforward to show that both expressions
are asymptotically equal in the limit of large Ri. The
consistency of the two approaches, which parallels the
asymptotic agreement found between the 3D model of
Teixeira et al. (2004) and the exact drag expression of
Grubis̆ić and Smolarkiewicz (1997), gives further con-
fidence in the WKB approach adopted here.

Figure 1a shows a comparison between the normal-
ized drag given by (15) and data taken from the me-
soscale, nonhydrostatic numerical model NH3D (Mi-
randa and James 1992). This model is 3D, but was run
here for a 2D ridge using a sufficiently wide domain of
integration. The domain comprises 65 3 65 3 120 grid
points, and the conditions considered in the runs were
very approximately linear and hydrostatic (Nh/U0 5
0.01 and Na/U0 5 23, where h is the maximum height

of the ridge and a is its half width), in order to isolate
the effect of shear. Also shown is the drag given by
Smith’s expression (16). It may be seen that the agree-
ment with (15) is nearly as good as with (16). However,
the value taken by D/D0 at Ri 5 1/4 is larger than zero,
in contradiction with what is predicted by (16). Since,
for this value of Ri, the flow should be close to becoming
hydrodynamically unstable, neither analytical result is
formally accurate, and this is perhaps why the numerical
results are not closer to the exact formula of Smith
(1986).

When the wind profile is more complicated than (14),
both shear and curvature terms are important in (13).
An early attempt to evaluate the effect of the curvature
of the wind profile on the surface drag on a 2D ridge
using a WKB approximation was made by Grisogono
(1994). In the present notation, and for inviscid con-
ditions, Grisogono’s drag expression [his Eq. (4.8)]
reads
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1 U U00 0D 5 D 1 2 . (17)0 21 22 N

The coefficient multiplying the curvature term is larger
by a factor of 2 than that present in (13) and the term
proportional to is absent. The reasons for these dis-2U90
crepancies have to do with an inconsistent application
of the WKB method and are discussed in detail by Teix-
eira et al. (2004).

When studying the effect of curvature of the wind
profile on mountain wave drag in 2D, it is not possible
to consider a flow simultaneously with a constant N and
a constant Richardson number, as was done for the 3D
situation by Teixeira et al. (2004). So, the simplest flow
with nonzero second derivative, a parabolic wind pro-
file, is considered next:

2z
U 5 U 1 2 . (18)0 1 2[ ]zc

In this flow 5 0, hence the Richardson number atU90
the surface is infinite. However, the curvature is 5U00
22U0/ , and this can be related to the Richardson num-2zc

ber at the critical level (z 5 zc), Ric 5 N 2 /4 , which2 2z Uc 0

is the important parameter for this flow. [Note that Ri
in the previous flow (14) is also the Richardson number
at the critical level.] It turns out that the drag expression
(13) reduces in this case to

1
D 5 D 1 1 . (19)01 28Ric

So, the drag increases as Ric decreases, unlike the pre-
vious case, despite the qualitative similarity of the back-
ground wind profiles (14) and (18).

In Fig. 1b, the drag calculated with (19) is compared
with data from numerical simulations of the NH3D mod-
el for approximately linear and hydrostatic conditions
(Nh/U0 5 0.01 and Na/U0 5 23). Also shown is the
prediction from Grisogono’s formula (17). It is clear
that the prediction of (19) is not as good as in the pre-
vious case, with some drag underestimation, especially
at relatively low Ric. This resembles the behavior of the
drag for a turning wind over an axisymmetric mountain
in Fig. 7 of Teixeira et al. (2004), where the curvature
is also negative at the surface. Nevertheless, qualita-
tively, and in order-of-magnitude terms, the agreement
is satisfactory. Curiously, (17) gives a better prediction
of the drag than expected, but is clearly inferior to (19),
especially for large Ric.

4. The surface pressure perturbation

In order to understand the behavior of the drag, it is
useful to calculate the surface pressure perturbation (as
was done in 3D by Teixeira et al. 2004). In fact, at the
surface, it is straightforward to calculate not only the
pressure but also all other relevant variables of the flow.

However, some of them, such as the vertical velocity
perturbation, the buoyancy perturbation b, and the span-
wise velocity perturbation y, are related in a trivial way
to the surface elevation h. Apart from the pressure, the
only other variable of the flow that is affected at the
surface by the vertical variation of the background ve-
locity is the streamwise velocity perturbation u (which
is relevant for downslope windstorms).

Note that p(z 5 0) may be obtained by calculating
the inverse Fourier transform of (10). Although the only
expressions depending on k in (10) are sign(k) and ,ĥ
and this renders the integration analytical in most cases,
the presence of sign(k) means that must be specified.ĥ
Here, an isolated bell-shaped ridge will be used as an
example. The corresponding Fourier transform is

1
2a | k |ĥ 5 hae . (20)

2

Then, it is found from (10) that

2p(z 5 0) 1 U9 1 U U0 x/a0 0 05 2 1 2 2
2 2 21 2r NU h 8 N 4 N 1 1 (x/a)0 0

1 U9 102 . (21)
22 N 1 1 (x/a)

The pressure perturbation thus comprises two parts: the
first one, which is antisymmetric with respect to the
ridge, produces drag; the second one, which is sym-
metric, and in fact proportional to the surface elevation,
does not produce drag.

Figure 2a shows the pressure perturbation as a func-
tion of streamwise distance for different values of Ri
for the linear background velocity profile (14). The con-
tinuous lines correspond to (21), while the symbols rep-
resent output from the NH3D numerical model for the
same conditions as considered in Fig. 1a. For high Ri,
the pressure distribution tends to be antisymmetric with
respect to the orography, in agreement with the linear
theory of Queney (see Smith 1979). As Ri decreases,
the antisymmetric component of the pressure pertur-
bation weakens and the symmetric component becomes
more prominent. The analytical expression reproduces
the numerical simulation data quite accurately, except
for Ri 5 0.25, confirming that the WKB approximation
can be used for Ri as low as 0.5 (as happened in the
3D case). Of course, this is also consistent with the
behavior of the drag in Fig. 1a.

Figure 2b presents the pressure perturbation for the
parabolic background velocity profile (18). In this case

5 0, and hence, according to (21), the symmetricU90
component of the pressure vanishes. The pressure per-
turbation is thus predicted to be perfectly antisymmetric.
When the analytical results given by (21) are compared
with the numerical results, this aspect is confirmed, ex-
cept for Ric 5 0.25, and to a much lesser degree for
Ric 5 0.5. However, the magnitude of the pressure is
considerably underestimated by the analytical model for
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FIG. 2. Normalized pressure perturbation at z 5 0 as a function of
normalized streamwise distance for the same conditions as Fig. 1.
(a) Linear background velocity profile (14). (b) Parabolic background
velocity profile (18). Analytic results are calculated from (21).

Ric , 1. This is consistent with the worse prediction of
the drag, when compared with the previous case, for
similar values of Ri.

Especially for the linear background velocity profile,
the pressure perturbation given by the NH3D model
tended to drift slightly in time, so as to appear in the
plots translated vertically upward or downward by a
constant when compared with the analytical result, al-
though its shape was in close agreement. This feature,
which is related to imperfections in the implementation
of the boundary conditions in the numerical model, has
been corrected by subtracting from the pressure pertur-
bation given by NH3D the integral of the pressure over
the domain,

L p(z 5 0) x
d , (22)E 1 2r NU h a0 02L

and adding to it the theoretical value of this integral,
which from (21) is seen to be

L p(z 5 0) x U9 L0d 5 2 arctanE 1 2 1 2r NU h a N a0 02L

L
21/25 2sign(U9)Ri arctan . (23)0 1 2a

In (22) and (23), L is the half width of the domain.
Obviously, in these expressions, only the symmetric part
of the pressure contributes to the integral of the pressure
perturbation so, for the parabolic velocity profile, the
integral is zero.

5. Discussion

The calculations carried out in this study might be
useful for including the effects of shear and curvature
of the wind profile in parameterizations of gravity wave
drag for flow over elongated ridges. The independence
of the drag expressions derived here from the detailed
shape of the ridge is probably more relevant than the
corresponding result for axisymmetric orography, since
approximately 2D mountains and mountain ranges are
relatively common.

As for an axisymmetric mountain, it appears that the
drag depends, to a first approximation, on the charac-
teristics of the background flow at the surface. The
slightly worse performance of the model for a velocity
profile with curvature, which is probably caused by the
variation of U and U9 with height (an effect that is not
accounted for), does not contradict this conclusion.

The effects of shear and curvature of the wind profile
are found to be qualitatively similar to those for flow
over an axisymmetric mountain (with negative curva-
ture increasing the drag and shear decreasing it), but
stronger. This happens because, in flow over a ridge,
the air is not deflected laterally, and this causes the
vertical wavelength of the internal gravity waves to be
larger, making the waves ‘‘sample’’ the shear more
deeply—a similar effect can be observed in Fig. 7 of
Grubis̆ić and Smolarkiewicz (1997), where the exact
results of these authors and of Smith (1986) are com-
pared.

For related reasons, it is necessary to be cautious
when extrapolating the present results to large amplitude
ridges: nonlinear effects are known to be more important
in 2D than in 3D geometries (Miranda and James 1992).
In fact, preliminary numerical simulations for higher
values of Nh/U0 (not shown) suggest that the drag in-
creases considerably, probably due to the strong non-
linearity that always exists at the critical level. Never-
theless, the drag retains some of its qualitative behavior
for the range of Ri considered here. Outside the scope
of this study are, of course, situations where nonlinear
or nonhydrostatic effects are overwhelming, such as
wave breaking, or wave trapping (Keller 1994).
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