
Adeno-associated virus-8-Mediated 
intravenous transfer of myostatin 
propeptide leads to systemic functional 
improvements of slow but not fast muscle 
Article 

Published Version 

Foster, K., Graham, I. R., Otto, A., Foster, H., Trollet, C., 
Yaworsky, P. J., Walsh, F. S., Bickham, D., Curtin, N. A., 
Kawar, S. L., Patel, K. and Dickson, G. (2009) Adeno-
associated virus-8-Mediated intravenous transfer of myostatin 
propeptide leads to systemic functional improvements of slow 
but not fast muscle. Rejuvenation Research, 12 (2). pp. 85-93. 
ISSN 1549-1684 doi: 10.1089/rej.2008.0815 Available at 
https://centaur.reading.ac.uk/29504/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://online.liebertpub.com/doi/abs/10.1089/rej.2008.0815 
To link to this article DOI: http://dx.doi.org/10.1089/rej.2008.0815 

Publisher: Mary Ann Liebert Inc. 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


REJUVENATION RESEARCH
Volume 12, Number 2, 2009
© Mary Ann Liebert, Inc.
DOI: 10.1089/rej.2008.0815

Adeno-Associated Virus-8-Mediated Intravenous Transfer 
of Myostatin Propeptide Leads to Systemic Functional

Improvements of Slow but Not Fast Muscle

Keith Foster,1 Ian R. Graham,1 Anthony Otto,2 Helen Foster,1 Capucine Trollet,1 Paul J. Yaworsky,3

Frank S. Walsh,3 Dale Bickham,4 Nancy A. Curtin,4 Susannah L. Kawar,1 Ketan Patel,2

and George Dickson1

Abstract

Myostatin is a member of the transformating growth factor-� (TGF-�) superfamily of proteins and is produced
almost exclusively in skeletal muscle tissue, where it is secreted and circulates as a serum protein. Myostatin
acts as a negative regulator of muscle mass through the canonical SMAD2/3/4 signaling pathway. Naturally
occurring myostatin mutants exhibit a ‘double muscling’ phenotype in which muscle mass is dramatically in-
creased as a result of both hypertrophy and hyperplasia. Myostatin is naturally inhibited by its own propep-
tide; therefore, we assessed the impact of adeno-associated virus-8 (AAV8) myostatin propeptide vectors when
systemically introduced in MF-1 mice. We noted a significant systemic increase in muscle mass in both slow
and fast muscle phenotypes, with no evidence of hyperplasia; however, the nuclei-to- cytoplasm ratio in all
myofiber types was significantly reduced. An increase in muscle mass in slow (soleus) muscle led to an in-
crease in force output; however, an increase in fast (extensor digitorum longus [EDL]) muscle mass did not in-
crease force output. These results suggest that the use of gene therapeutic regimens of myostatin inhibition for
age-related or disease-related muscle loss may have muscle-specific effects.
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Introduction

THE LOSS OF SKELETAL MUSCLE TISSUE has a major impact on
public health. A variety of conditions result in the loss

of muscle, including disease-related loss (cachexia), age-as-
sociated loss (sarcopenia), enforced inactivity, such as bed
rest and muscular dystrophies.1 Skeletal muscle develop-
ment is a complex process, with a number of regulatory fac-
tors for the different steps involved in muscle stem cell ac-
tivation, proliferation, and postmitotic differentiation having
been identified.2 Skeletal muscle size is dynamic and re-
sponsive to extracellular signals such as mechanical load,
neural activity, hormones, growth factors, and cytokines.
However, myostatin is a central determinant of muscle size
and mass; its role has been established from the effects of
gene-inactivating mutations in mouse.3,4 Inactivation muta-
tions of myostatin have now been described in several mam-
mals such as cattle, sheep, dogs, and humans,5–9 with the
central tenet being hypermuscularity and reduced adipoge-
nesis. Conversely, the overexpression of myostatin is a key
feature in cachexia10,11 and sarcopenia.12

Myostatin is a member of the transforming growth factor-
� (TGF-�) superfamily and is predominantly expressed in
and secreted from skeletal muscle. It is expressed through-
out embryonic and fetal development and in adult muscle,
which suggests a role in both prenatal muscle development
and in maintenance and/or repair of postmitotic muscle.3,13

Like other TGF-� family members, it is first synthesized as
a precursor protein (376 amino acids) that is processed at a
conserved cleavage site by calcium-dependent furin-like pro-
teases to yield the amino-terminal propeptide (or latency-as-
sociated peptide) and the carboxy-terminal mature peptide.4

The amino-terminal propeptide is capable of maintaining the
carboxy-terminal dimer in a latent state both in vitro and in
vivo, thus inhibiting its biological activity.4,14–16 This is also
achieved when circulating myostatin interacts with proteins
such as follistatin, follistatin-related gene, and GDF-associ-
ated serum protein-1 (GASP-1).4,14,17

It is becoming increasingly clear that the role of myostatin
in determining myogenic cell proliferation and differentia-
tion is highly complex. In the canonical signal transduction
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2School of Biological Sciences, University of Reading, Reading, UK.
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4National Heart and Lung Institute, Imperial College London, London, UK.



pathway, the propeptide domain is activated by the bone
morphogenetic protein-1 (BMP-1)/tolloid family of metallo-
proteases to release the mature peptide.18 The ‘free’ mature
peptide complexes the cell-surface activin receptor type IIb,
which recruits and phosphorylates activin receptor type I.
Subsequently, these heteromeric activin receptors phospho-
rylate SMAD2/3, and then bind co-SMAD4, facilitating
translocation to the nucleus; once there, they act as a tran-
scriptional modulator, affecting both muscle cell prolifera-
tion and differentiation.19–22

Myostatin has recently been shown to affect signal trans-
duction by both SMAD3-independent and -dependent
pathways. First, myostatin has been shown to abrogate the
mitogenic effects of the insulin-like growth factor-1/phos-
phoinositide-3 kinase/Akt (IGF-1/PI3K/Akt) nexus by tar-
geting cyclin D1 for polyubiquitination, resulting in G1–S
progression failure.23,24 Another sequela of perturbing the
IGF-1/PI3K/AKT pathway is that myostatin induces hy-
pophosphorylation of AKT, resulting in diminished phos-
phorylation levels of the transcription factor FoxO1, thus in-
creasing the levels of atrogin-1, a potent activator of the
ubiquitin E3 ligase. Additionally, myostatin can activate the
TGF-�-activated kinase 1 (TAK-1), leading to activation of
the p38 mitogen-activated protein kinase (MAPK) and up-
regulation of the cyclin-dependent kinase inhibitor P21, af-
fecting the phosphorylation status of the retinoblastoma pro-
tein.20,25,26 These processes are independent of SMAD3.
However, importantly, SMAD3-dependent interactions in-
duced by myostatin affect the Wnt signaling cascade, either
by formation of smad3/b-catenin/TCF-4 complex27 or in-
teracting with other Wnt signaling intermediates.28

Whereas myostatin has been described as the muscle
chalone, it is becoming increasingly apparent that it is not the
sole mediator of muscle mass. It has been shown that the in-
terference of other TGF-� family members coordinates signals
to manage the activation and differentiation of muscle.29,30

Given that myostatin is naturally inhibited by its own
propeptide, we have generated adeno-associated virus-8
(AAV8) vectors expressing a mutagenized propeptide fused
to a mouse immunoglobulin Fc molecule.18 AAV8, while able
to transduce muscle, is a potent transducer of liver tissue,
therefore ensuring ectopic production of the transgene from
the liver into the serum.31 We have used this vector to assess
the histological and physiological properties of muscle fol-
lowing systemic administration in normal muscle to evaluate
its potential use in muscle-wasting diseases and disorders.

Materials and Methods

Generation of vectors

The myostatin propeptide cDNA was obtained from Paul
Yaworsky (Wyeth Research, USA); the myostatin propeptide
sequence had been previously modified and fused to mouse
immunoglobulin G2a (IgG2a) moiety.18 The cDNA sequences
were cloned into a pDD-derived AAV plasmid under the
control of the CAGGs promoter32 to generate the plasmid
pProMyo. AAV8ProMyo vectors were produced and viral
genome titered by Nantes Vector Core (France).

Administration of AAV

Outbred MF-1 male mice were housed in minimal disease
facilities (Royal Holloway, University of London) with food

and water ad libitum. At 6 weeks of age, the mice were main-
tained at 40°C for 10 min housed in an incubator (Datesand
Ltd, Manchester, UK) prior to a viral injection. Mice were re-
strained and injected via the tail vein with 5 � 1011 vector
genomes. Histological assessments of tibialis anterior (TA)
and gastrocnemius muscles were performed at 4 weeks and
10 weeks following administration of AAV. Physiological as-
sessment of soleus and extensor digitorum longus (EDL)
muscle was performed at 4 weeks postadministration of
AAV. Tail vein bleeds of 75 uL were taken at 1, 4, and 10
weeks postadministration of AAV, and transgene expression
was assessed by western blotting.

Detection of transgene expression from serum samples

Plasma samples were pooled and diluted 1 in 150 with 1�
phosphate-buffered saline (PBS). A total of 5 uL was dena-
tured by the addition of sodium dodecyl sulfate-polyacry-
lamide gel electrophoresis (SDS-PAGE) sample buffer con-
taining 5 mM (wt/vol) dichloro-diphenyl-trichloroethane
and heating at 100°C for 5 min. Samples were then subjected
to 4–12% SDS-NuPAGE electrophoresis (Invitrogen, Paisley,
UK), and resolved proteins were transferred to Hybond-ECL
membranes (GE Healthcare, Amersham, UK).

Nitrocellulose blots were incubated with goat anti-mouse
IgG2a antibody (1:50 dilution; AbD Serotec, UK) to detect the
IgG2a moiety of the ProMyo-IgG2a Fc fusion transgene prod-
uct, followed by an anti-goat-horseradish peroxidase (HRP)
secondary antibody (1:3000 dilution; Sigma-Aldrich, Poole,
UK). Blots were developed using the ECL detection system
(GE Healthcare). Samples were compared against condi-
tioned media recovered from HEK293T cells transfected with
pProMyo (positive control) and serum derived from unin-
jected MF-1 males. No endogenous myostatin is detected by
this method.

Histology

Recovered tissues were mounted in Cryo-M-Bed (Bright
Instruments, Huntingdon, UK) and snap-frozen in liquid ni-
trogen-cooled isopentane. Laminin-�2 staining was carried
out on 10-um cryosections. Frozen tissue sections from con-
trol and treated mice were air dried for 30 min and blocked
in 5% marvel (wt/vol) in PBS/0.05% Tween20. Laminin-�2
was detected with a primary antibody (1:100 dilution; Sigma-
Aldrich) followed by an anti-rat-HRP secondary antibody
(1:3000 dilution; Sigma-Aldrich).

For muscle fiber typing, the primary antibodies used were
monoclonal mouse anti-type I myosin heavy chain (MHC)
IgM (Developmental Studies Hybridoma Bank, IA) at a di-
lution of 1:1, monoclonal mouse anti-type IIa MHC IgG (De-
velopmental Studies Hybridoma Bank, IA) at a dilution of
1:4 and monoclonal mouse anti-type IIb MHC IgM (Devel-
opmental Studies Hybridoma Bank, IA) at a dilution of 1:1.
MHC type I and type IIB primary antibodies were detected
using Alexa Fluor 633 fluorochrome-conjugated goat anti-
mouse IgM (Invitrogen; 1:200); mouse primary antibody
MHC type IIa was detected using Alexa Fluor 488 fluo-
rochrome-conjugated goat anti-mouse IgG (Invitrogen;
1:200). Samples were incubated in primary antibodies for 18
h at 4°C, the anti-rabbit secondary antibody was incubated
for 1 h at room temperature and all fluorescent antibody la-
beling was carried out at room temperature for 45 min. Sub-
sequent image analysis was performed using a Zeiss Axio-
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scop2 fluorescent microscope, an axiocam digital camera,
and Zeiss axiovision software.

Single myofiber isolation, satellite cell, and nuclei counts

Individual myofibers were isolated from the EDL muscle
and cultured as described previously.33 Briefly, EDL mus-
cles were digested in 0.1% (wt/vol) type 1 collagenase in
Dulbecco modified Eagle medium (DMEM) containing Glu-
tamax and 100 �g/mL penicillin/streptomycin for 2 h at
37°C. Using glass pipettes, single myofibers were separated
from the muscle bulk, washed in DMEM, and either fixed
immediately in 2% paraformaldehyde in PBS for 10 min or
cultured. Myofibers were mounted using a fluorescent
mounting medium (Dako) containing 2.5 �g/mL 4�,6-di-
amidino-2-phenylindole (DAPI) for nuclear visualization.
Fixed myofibers were permeabilized in a solution of 20 mM
HEPES, 300 mM sucrose, 50 mM NaCl, 3 mM MgCl2, and
0.5% Triton X-100, pH 7, at 4°C for 15 min. Fibers were
washed in PBS, and nonspecific binding was blocked using
wash buffer (5% vol/vol fetal calf serum [FCS] in PBS with
0.05% vol/vol Triton X-100) for 30 min. A primary antibody
used to detect satellite cells was monoclonal mouse anti-Pax7
IgG (Developmental Studies Hybridoma Bank, 1:4) and was
detected using Alexa Fluor 488 fluorochrome-conjugated
goat anti-mouse IgG (Molecular Probes A11029, 1:200). My-
ofibers were mounted using fluorescent mounting medium
(Dako Cytomation) containing 2.5 �g/mL DAPI for nuclear
visualization. Subsequent image analysis and manual quan-
tification of labeled cells was performed using a Zeiss Axio-
scop2 fluorescent microscope, Axiocam digital camera, and
Zeiss Axiovision software version 4.7.

Muscle contractile function

Experiments were performed on soleus and EDL muscles
from adult males. Mice were killed according to Schedule 1
of the Animals (Scientific Procedures) Act, United Kingdom.
During dissection and experiments, muscles were bathed in
a saline solution containing 118 mM NaCl, 4.75 mM KCl, 1.18
mM MgSO4, 24.8 mM NaHCO3, 1.18 mM KH2PO4, 2.54 mM
CaCl2, and 10 mM glucose, and continuously bubbled with
95% O2 and 5% CO2. T-shaped aluminium foil clips were
folded and glued (Loctite Gel, Loctite) onto each tendon. The
muscle was mounted in a Perspex bath between a combined
motor and force transducer (Cambridge Technology, Inc.,
model 300B) and a fixed hook. Saline solution was continu-
ously circulated through the bath and its temperature was
maintained at 20°C. Muscles were electrically stimulated
(Digitimer, MultiStim System-D330) using platinum wire
electrodes placed adjacent to the preparation. A program
was written in TestPoint (Keithley Instruments, UK) con-
trolled stimulation and motor arm position and recorded
force, length, and stimulation. A DAS-1800AO Series A/D
board (Keithley Instruments, UK) was used to send and ac-
quire data at 1 kHz.

The relationship between the stimulus strength (V) dur-
ing a single stimulus (1.0 msec pulse duration) and isomet-
ric twitch force was investigated in each muscle to establish
the supramaximal stimulus strength. The relationship be-
tween length and force was investigated in each muscle to
identify the fiber length (L0) at which the tetanic force was
maximal (100 msec tetanus at approximately 75 Hz for soleus

and 125 Hz for EDL). A “standard” 0.5-sec isometric tetanus
at L0 was recorded for each muscle.

At the completion of the experiment, muscles were placed
in 2% paraformaldehyde overnight and then rinsed with wa-
ter. Muscle length was measured under a dissecting micro-
scope. After removing all tendon and connective tissue, the
muscle fibers were dried at room temperature and weighed
on a Cahn microbalance. The cross-sectional area (CSA) was
calculated as:

CSA � (4.9M/d)/L0,

where M is dry mass (in mg), 4.9 is the wet-to-dry mass ra-
tio,34 d is density (assumed to be 1 mg � mm�3), and L0 is
muscle length (in mm) at which maximum isometric force
was produced. Specific isometric force was calculated be-
cause muscles that differ in size, but are otherwise the same,
produce the same specific force. Specific isometric force was
calculated as force/CSA. Isometric force is the sum of that
produced by all of the filaments in the muscle’s cross sec-
tion because the filaments are acting in parallel and their
forces add. Because the filaments are arranged in a highly
regular array, the number of filaments per unit CSA is a con-
stant and thus CSA can be used as a measure of the number
of filaments

Statistical analysis

All data are presented as mean values � standard error of
the mean (SEM) (cohort size stated per experiment). Muscle
fiber sizing was performed using SigmaScan Pro5 software
(SPSS Inc., USA). All statistical analyses were performed us-
ing either the Student t-test or the chi-squared analysis us-
ing Sigmastat 3.1 software (Systat, USA).

Results

Single intravenous administration of AAV8ProMyo leads to
a systemic increase in muscle mass

MF-1 male mice were weighed at weekly intervals from 2
weeks prior to the administration of the vector, thus ensur-
ing mass-matched cohorts, until 10 weeks postadministra-
tion. Blood samples were recovered from control and treated
cohorts to assess transgene expression by western blotting
at 1, 4, and 10 weeks post administration. At a 4-week time
point and at the end of the experiment, TA and gastrocne-
mius muscles were recovered and weighed.

Western blots to detect myostatin propeptide demon-
strated expression in MF-1-treated mice at all time points
analyzed (weeks 1–10), with no evidence that the level of
expression altered with time (Fig. 1A). Using an anti-mouse
IgG2a antibody to detect transgene expression, an extra
band was noted on the western blot that localizes with
IgG2a, and the fusion transgene product of ProMyo had a
higher position on a western blot membrane. MF-1 male
mice treated with AAV8ProMyo demonstrated a significant
increase in gross mass by 4 weeks postinjection (p � 0.036),
with the difference being maintained until the end of the
experiment, week 10 (p � 0.014, Fig. 1B). There was a sys-
temic increase in muscle mass from muscles recovered from
AAV8ProMyo-treated mice, typified by increases in both
the TA and gastrocnemius muscle by 24.8% (p 	 0.001) and
26.9% (p � 0.010), at 10 weeks postadministration (Fig.
1C–D).
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Myostatin inhibition in adult muscle results in muscle fiber
hypertrophy and not hyperplasia

Next we examined individual muscle fibers to determine
the cellular changes brought about by exposure to the myo-
statin propeptide. Given the systemic increase in muscle
mass, it was important to assess whether the increase re-
sulted from an increase in muscle hyperplasia, muscle hy-

pertrophy, or both. Slow (soleus) and fast (EDL) muscles
were recovered and examined histologically. First, the mus-
cles were sectioned at 10 different intervals along the length
of the muscle, allowing the maximal cross-sectional area
(CSA) for both the soleus and EDL muscles to be determined;
the subsequent analysis of individual fiber area was per-
formed from tissue sections that generated the maximal CSA.
Tissue sections were immunostained using an anti-laminin
antibody to define the muscle fibers.

At the 10-week time point, the maximal CSA of the mus-
cle was increased significantly in both soleus and EDL mus-
cles recovered from AAV8ProMyo-treated mice: 31.7% (n �
4, p � 0.004) and 51.7% (n � 4, p � 0.014), respectively (Fig.
2A). Analysis of CSA of individual muscle fibers for soleus
and EDL yielded significant shifts from smaller fibers to
larger fibers. The mean myofiber size for soleus increased
from 1306.7 mm2 in controls to 1764.0 mm2 in AAV8ProMyo
animals, with a general shift to larger fibers (�2 � 1099.31, 18
df p 	 0.001). The mean myofiber size in EDL increased from
1115.5 mm2 in controls to 1513.1 mm2 in AAV8ProMyo an-
imals, also demonstrating a general shift toward larger fibers
(�2 � 625.10, 18 df p 	 0.001) (Fig. 2B).

Satellite cell number and myonuclei number per fiber are
unaffected by myostatin propeptide but the myofiber
nuclear-to-cytoplasmic ratio is decreased

EDL muscles were recovered at 8 weeks postinjection from
control (n � 6) and AAV8ProMyo (n � 6) animals. The av-
erage number of satellite cells present on resting myofibers
obtained from control or AAV8ProMyo EDL muscles was
analyzed, and no significant difference was demonstrated in
satellite cell number per myofiber (7.27 � 0.28 compared to
6.95 � 0.31, respectively) (Fig. 3A).

The number of DAPI-positive myonuclei per myofiber
from EDL muscles was quantified from the individual teased
fibers, revealing no significant change between control and
AAV8ProMyo-treated myofibers (361.1 � 7.5 compared to
370.6 � 7.6, respectively) (Fig. 3B), suggesting that the my-
ofiber nuclear content is not affected by myostatin propep-
tide administration.

MHC staining revealed that all fiber types showed a sig-
nificant increase in CSA in the AAV8ProMyo-treated cohort
(type I 495.5 � 25.2 vs. 686.5 � 19.1 (p 	 0.001), type IIa
530.8 � 9.8 vs. 652.4 � 15.6 (p 	 0.001) and type IIb 2581.7 �
39.0 vs. 3625.7 � 55.2 (p 	 0.001); Fig. 3C). Importantly,
however, when these data were expressed as a ratio of
nuclei-to-cytoplasm (DAPI/�m2), there was a significant re-
duction in the ratio for type I, IIa, and IIb myofibers from
the AAV8ProMyo-treated cohort, when compared to control
(0.834 � 0.080 vs. 0.555 � 0.168 (p 	 0.001), 0.700 � 0.013 vs.
0.584 � 0.014 (p 	 0.001) and 0.154 � 0.003 vs. 0.107 � 0.002
(p 	 0.001), respectively) (Fig. 3D).

Physiological improvement in muscle force is restricted 
to slow muscle

From a separate experiment, the physiological function  of
freshly recovered soleus and EDL muscles at a 4-week time
point from euthanized animals, was tested, followed by mea-
surement of muscle CSA. In this experiment, the increase in
mass of soleus muscles recovered from the myostatin
propeptide cohort was 14.2% (p � 0.007), and this was re-
flected in an increase in CSA of 12.6% (p � 0.006). The tetanic
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FIG. 1. AAV8-mediated transfer leads to sustained myo-
statin propeptide expression and increases in both gross
body and individual muscle masses. (A) Western blot anal-
ysis of ProMyo transgene expression from pooled serum
samples at 1, 4, and 10 weeks postinjection. (B) Gross body
mass recorded at weekly intervals, starting from 2 weeks
prior to gene transfer until 10 weeks postinjection (control
n � 8 weeks 1–4, n � 4 weeks 5–10; AAV8ProMyo n � 10,
weeks 1–4 and n � 5 weeks 5–10). (C) Mass of TA and gas-
trocnemius muscles recovered at 10 weeks postinjection. Er-
ror bars are mean � SEM (control n � 4; AAV8ProMyo n �
5, *p 	 0.001, **p 	 0.01).



isometric force generated from soleus muscles excised from
the AAV8ProMyo cohort was significantly greater than that
of the control (256.7 mN vs. 220.6 mN, respectively; p �
0.008) (Fig. 4A). This increase in force of 16.0% was reflec-
tive of the increases in mass and CSA; however, when the
specific force was calculated, which takes account of the
CSA, the results between the control and AAV8ProMyo
group were normalized (p � 0.760; Fig. 4B). EDL muscles re-
covered from the myostatin propeptide-treated group were
heavier by 18.1% (p � 0.005), with an increase in CSA of
15.8% (p � 0.008). Neither the tetanic isometric force of the
AAV8ProMyo EDL muscles nor their specific forces differed
from those of the control; thus the force improvement was
restricted to the slow muscle phenotype (Fig. 4C,D).

Discussion

This study has focused on the application of
AAV8ProMyo-mediated systemic gene transfer to normal
MF-1 mice to evaluate the histopathological and physiolog-

ical effects in both slow and fast muscle. In vitro analysis of
cultured C2C12 myoblasts with conditioned medium de-
rived from HEK293T cells transfected with pProMyo dem-
onstrated a significant increase in the proliferative capacity,
compared to C2C12 myoblasts grown in conditioned
medium from sham-transfected HEK293T cells (data not
shown). Subsequently, the in vivo effect of myostatin propep-
tide was assessed. AAV8ProMyo was administered by tail
vein injection into 6-week-old MF-1 male mice, and their
gross mass was recorded at weekly intervals for 10 weeks.
Expression of gene transfer-mediated myostatin propeptide
was evident in the serum of injected mice at the first time
point analyzed (1 week), with no evidence that the amount
of expression declined throughout the experiment. At 4
weeks postinjection, there was a significant difference in the
gross mass of the treated cohort, which was maintained and
became more significant up to the end of the experiment. At
4 and 10 weeks postinjection, the TA and gastrocnemius
muscles were recovered and weighed. The mass of both the
TA and gastrocnemius muscles was increased significantly
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in AAV8ProMyo-treated animals at 4 weeks (data not
shown), with this degree of increase being maintained at the
10-week time point. This increase in whole body mass and
individual muscle mass is consistent with previous postna-
tal inhibition of myostatin in different strains of mice.35–38

Laminin-�2 is expressed in the basal lamina surrounding
myofibers, and therefore was used to assess the gross CSA
and CSA of individual fibers. Histological examination of
midbelly sections of soleus and EDL muscle recovered at 10
weeks after administration of AAV8ProMyo demonstrated
that there was a significant increase in CSA area of both mus-
cles. Individual muscle fibers for soleus and EDL yielded sig-
nificant shifts from smaller fibers to larger fibers; the mean
myofiber size for both muscles increased significantly, show-
ing a general shift to larger fibers, consistent with previous
findings.35,37,38 The increase in gross CSA was greater for the
EDL than the soleus muscle, but of the same magnitude to
that described in myostatin null mice.39 However, it is im-
portant that there was no increase in the total number of my-
ofibers within each muscle in this experiment, nor was there
an increase in the number of myonuclei per CSA myofiber,
thus confirming that the postnatal increase in muscle mass
results from muscle hypertrophy and not hyperplasia. The
differential in the response between soleus and EDL mus-
cles may be due in part to a greater amount of ActIIb re-
ceptors being expressed on the surface of EDL muscle,39 or

because the intrinsic level of myostatin is greater in ‘fast’
myosin type IIb myofibers,40 which could potentially lead to
a greater release from the inhibitory effects of myostatin on
the EDL muscle. The general increase in fiber CSA in both
the soleus and EDL muscles is indicative of a general shift
in fiber type from an oxidative to a glycolytic phenotype.
This is supported by the downregulation of muscle-specific
genes such as slow myosins in myostatin null mice.41,42

Given the histological results suggesting that the increase
in adult muscle mass was solely due to muscle hypertrophy,
we wished to study the in vivo effects of myostatin inhibi-
tion on satellite cells. Adult satellite cells that associate with
myofibers are a model of self-renewal of muscle; their acti-
vation essentially controls the number of myoblasts and the
number of myoblasts that terminally differentiate and fuse
into postmitotic muscle fibers.11,43,44 Therefore, assessing the
proliferative capacity of myofiber-associated satellite cells is
a model of muscle regeneration. In a separate experiment,
EDL muscles were recovered at 8 weeks postadministration
of AAV8ProMyo with single myofibers being isolated and
satellite cell analyses made. There was no significant differ-
ence in the number of satellite cells associated with my-
ofibers from EDL muscles of control and myostatin propep-
tide-treated mice. Given that we provide no evidence for a
greater number of myonuclei per myofiber, but an increase
in CSA, this demonstrates that the nuclear-to-cytoplasmic ra-
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FIG. 3. Hypertrophy without hyperplasia is independent of satellite cell activity and results in a decrease in the nuclear-
to-cytoplasmic ratio. EDL muscles were recovered at 8 weeks postinjection (control n � 6, AAV8ProMyo n � 6). (A) Aver-
age satellite cell number per myofiber in control and AAV8ProMyo-treated EDL muscles. (B) Average myonuclei number
per EDL myofiber. (C) Average CSA of individual type I, IIa, and IIb myofibers (*p 	 0.001). (D) Ratio of EDL myonuclei
per myofiber-to-CSA ratio of individual type I, IIa, and IIb myofibers (*p 	 0.001).



tio is lower in both slow and fast muscles and is not depen-
dent on myosin fiber type. This observation seems to be at
odds from the data that can be inferred from observations
in myostatin null mice, in which the extent of the increase in
CSA mainly reflected the increase in myofiber number.39 In-
deed, from our data, the increase in CSA was greater in MHC
type IIb fibers than type I or type IIa, again suggesting that
this increased response in type IIb fibers could be due to a
greater amount of ActIIb receptors being expressed on the
surface of type IIb fibers.40

Our data are supported by other observations following
postnatal inhibition of myostatin in which an increase in
muscle mass solely resulted from muscle hypertrophy.38

Taken together, these observations suggest that the hyper-
trophy resulting from postnatal inactivation of myostatin
does not affect the recruitment of muscle precursor cells to
the fiber, which is contrary to myostatin null mice in which
there is a positive correlation with satellite cell activation and
myoblast recruitment.45,46 Furthermore, this positive effect
in null mice may be restricted to the promotion of secondary
myogenesis, which is thought to promote a fast myosin type
IIb phenotype.47 Overall, this suggests that postnatal inacti-
vation of myostatin does not lead to enhanced activation of
satellite cells, which contradicts the current dogma of myo-
statin inhibition being implicit in satellite cell activation.
Whether or not the lack of maintenance of a defined nuclear-

to-cytoplasmic ratio in postnatal inactivation of myostatin
impairs normal cellular function may have implications for
its use in the treatment of muscle wasting disorders requires
further investigation, especially given the general glycolytic
shift and dysregulation of mitochondrial number and struc-
ture noted in fast muscle.48

We next examined the effects on force generation for both
soleus and EDL muscles using an ex vivo protocol. Muscles
were recovered at 4 weeks post AAV8ProMyo injection, with
both soleus and EDL muscles having a significant increase
in muscle mass. The tetanic isometric force significantly in-
creased in soleus muscle in the AAV8ProMyo group and was
consistent with the increase in muscle mass. When normal-
ized against the CSA, thus generating the specific force, we
found that there was no difference between treatment
groups. However, an increase in mass of EDL muscle was
not accompanied with a concomitant increase in tetanic iso-
metric force; thus, when normalized against CSA, there was
a trend that the specific force was lower, but not significantly
so. Therefore, there is a disparity in the functional response
to myostatin inhibition between adult soleus and EDL mus-
cles. The enhancement of function in outbred mice muscle
following myostatin inhibition is restricted to a slow muscle
phenotype. Similar results have been reported on a C57Bl/10
background following postnatal inhibition of myostatin. Al-
though there was a general increase in muscle mass and CSA,
interestingly there was no functional improvement when an-
other fast muscle, TA, was analyzed.38

In myostatin null mice, the tetanic isometric forces of
soleus and EDL muscles are not increased but the specific
force of EDL is reduced; the corollary of this is that the EDL
is more prone to contraction-induced injury,39 consistent
with our findings in adult muscle. This suggests that for fast
muscle phenotypes there may be a threshold above which
an additional increase in muscle mass is deleterious to mus-
cle function by breaching a cytoplasmic-to-nuclear ratio. In-
deed, in mice heterozygous for myostatin mutation, the in-
crease in muscle mass is moderate compared to knockout
mice, but significant compared to controls. However, the
higher tetanic isometric force does not compromise the spe-
cific force,39 which is supported by the heterozygous ad-
vantage noted in both dogs and humans.49,50 Additionally,
there is a difference in the fiber length/muscle length ratio
for soleus (0.7) and EDL (0.44) muscles, which may also con-
tribute to our findings. Potentially the degree of pennation
is not so pronounced for the soleus muscle, whereas the pen-
nation angle may surpass a threshold limit for which EDL
function begins to be compromised.

Allied with the significant reduction in the specific force of
the EDL muscle of myostatin null mice, the mitochondrial
content is also lower39,48; interestingly, a reduction in force
output is a clinical feature consistent with patients with a mi-
tochondrial depletion disorder.51 It is seen that mitochondria
serve as a fast Ca2
 sink, as well as generating adenosine
triphosphate (ATP) for the active transport of cytosolic Ca2


into the sarcoplasmic reticulum.52 Therefore, the result of the
reduction in the oxidative capacity of the muscle cell may be
that Ca2
 homeostasis is impaired, thereby perturbing the ex-
citation–coupling reaction affecting force output. This theory
is potentially supported by the fact that myostatin-deficient
muscle has a reduced capillary density.53 The fact that the
specific force of soleus muscle is not impaired in myostatin
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FIG. 4. Intravenous administration of myostatin propep-
tide leads to greater improvements in functional properties
of soleus but not EDL muscles. Soleus and EDL muscles were
recovered at 4 weeks postinjection (n � 7). Maximal tetanic
isometric force was determined for soleus (A) and EDL (C)
muscles. Maximal tetanic isometric force was normalized
against the CSA to generate the specific force for soleus (B)
and EDL (D) muscles. Error bars shown as mean � SEM
(**p 	 0.01).



null mice suggests that, although there is a shift from an ox-
idative to a glycolytic phenotype, a reduction in the oxida-
tive capacity may not be sufficient to reach a threshold be-
low which an impairment of mitochondrial and Ca2


homeostasis occurs, and thus the force output is unaffected.
However, the effects on muscle cell mitochondrial content
and Ca2
 homeostasis need to be evaluated in a model of
postnatal myostatin inhibition to assess the feasibility of a
myostatin inhibitory regimen in the management of muscle
wasting disease in combination with exercise induced fatigue.
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