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The evidence provided by modelled assessments of future climate impact on
flooding is fundamental to water resources and flood risk decision making. Impact
models usually rely on climate projections from global and regional climate
models (GCM/RCMs). However, challenges in representing precipitation events
at catchment-scale resolution mean that decisions must be made on how to
appropriately pre-process the meteorological variables from GCM/RCMs. Here the
impacts on projected high flows of differing ensemble approaches and application of
Model Output Statistics to RCM precipitation are evaluated while assessing climate
change impact on flood hazard in the Upper Severn catchment in the UK. Various
ensemble projections are used together with the HBV hydrological model with
direct forcing and also compared to a response surface technique. We consider an
ensemble of single-model RCM projections from the current UK Climate Projections
(UKCP09); multi-model ensemble RCM projections from the European Union’s
FP6 ‘ENSEMBLES’ project; and a joint probability distribution of precipitation and
temperature from a GCM-based perturbed physics ensemble.

The ensemble distribution of results show that flood hazard in the Upper Severn
is likely to increase compared to present conditions, but the study highlights the
differences between the results from different ensemble methods and the strong
assumptions made in using Model Output Statistics to produce the estimates of
future river discharge. The results underline the challenges in using the current
generation of RCMs for local climate impact studies on flooding. Copyright c© 2012
Royal Meteorological Society
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1. Introduction

Evidence from hydrological modelling impact studies based

on climate model projections is often used to try to

understand effects on future flooding (e.g. Kay et al.,

2006; Bell et al., 2007; Cloke et al., 2010; Prudhomme

et al., 2010; Chen et al., 2012). In using global climate

model (GCM) projections for assessing future flood impact,
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sources of uncertainty include: emission scenario; climate
model structure and parametrization; climate projection
downscaling and correction techniques; hydrological model
structure and parametrization; and observations. The use of
ensembles of models and techniques is one way to get a handle
on and to represent these uncertainties (e.g. Murphy et al.,
2004; Stainforth et al., 2007; Cloke and Pappenberger, 2009;
Weisheimer et al., 2011), and an ensemble of ensembles can
be termed a grand ensemble (Pappenberger et al., 2008).

Regional climate models (RCMs) are used to dynamically
downscale GCM projections to make them more useful
in climate impact studies. However, there remain a
number of challenges in producing precipitation projections
that are optimal for climate impact studies of flooding
(Teutschbein and Seibert, 2010; Beven, 2011). RCMs
have a relatively higher resolution than GCMs (∼25 km
compared to >200 km) while retaining the physical process
representation of the climate. However this resolution is
too coarse to capture the spatial resolution of precipitation
required to effectively model the hydrological processes
essential for determining flood risk (<1 km and often
smaller as related to hydrological response units). There
also remain challenges in correctly representing the physics
of precipitation in RCMs and for compensating for missing
larger-scale signals of extreme events in the GCMs. Although
future increases in resolution will undoubtedly improve
representation of precipitation, especially for convective-
scale events, significant challenges will remain for the
foreseeable future. More realistic precipitation fields for
use in local river runoff studies can be produced by
using statistical downscaling (Fowler et al., 2007a) or by
applying Model Output Statistics (MOS) (Maraun et al.,
2010). This correction procedure is also known as calibration
or bias correction and focuses on corrections to moments
of the climatology (rather than representation of forecast
uncertainty, such as the calibration of ensemble spread
and root mean square (RMS) error of the ensemble
mean forecast, as is common in weather forecasting). It
often includes simple corrections of the mean (’delta’
approach), using cut-off thresholds, distribution corrections
and increasing the variance (e.g. Yang et al., 2010; Wetterhall
et al., 2012). MOS removes much of the model error in the
precipitation, making it more useful in impact studies,
which is considered by many to allow confidence in the
examination of future changes in flow regimes in catchments
from Europe and the wider world (e.g. Bell et al., 2007,
Fowler et al., 2007b; Leander and Buishand, 2007; Akhtar
et al., 2009; Linde et al., 2010; Marke et al., 2011; Rojas et al.,
2011; Turco et al., 2011). However, MOS can potentially
also remove much of the spread in the driving variables,
which could disrupt signals of climate change. There is
also no guarantee that such statistics will be valid for
future precipitation, especially if the physical processes of
precipitation are expected to change. In addition, there
are significant uncertainties in historical observations of
precipitation used in MOS. Thus there remains an open
question as to whether or not MOS should be applied in
impact modelling.

The objective of this work is to evaluate the impacts
on projected high river flows of differing ensemble
approaches and the application of MOS to ‘calibrate’
precipitation from RCMs, using the example of assessing
future climate impact of flood events in the Upper
Severn catchment. In this paper we take the grand

ensemble approach and consider: (i) an ensemble of single-
model RCM projections from the current UK Climate
Projections (UKCP09); (ii) multi-model ensemble RCM
projections from the ENSEMBLES project; and (iii) a joint
probability distribution of precipitation and temperature
from a GCM-based perturbed physics ensemble. The
ensemble projections are used together with the HBV
hydrological model for observed and future projections
of high river discharge in the Upper Severn catchment in
the Midlands Region of the UK. First, the UKCP09 and
ENSEMBLES are used to directly force the HBV model
for continuous future river discharge projections. Both
uncorrected and MOS-corrected precipitation ensembles
are generated together with consideration of hydrological
model parameter uncertainty. Second, a continuous delta
response surface technique is used with the HBV model
in order to assess the perturbed physics ensemble climate
model outputs, which is then compared to response surface
results for UKCP09 and ENSEMBLES and also compared to
the direct HBV runs.

2. Methods and datasets

2.1. The Upper Severn river catchment, UK, and observed
datasets

The town of Shrewsbury, Shropshire, on the Upper River
Severn has suffered a number of serious floods, which
have caused severe damage to property and disruption to
people’s lives and livelihoods. Figure 1 depicts the Upper
Severn catchment, which is approximately 4062 km2, with
urban, forest and agricultural land accounting for 3%, 7.1%
and 48.5% of the area respectively, and loosely packed peat
soil dominating the catchment. River levels are generally
high in autumn and winter and low in summer (He et al.,
2009). The observed discharge data were provided by the
UK Environment Agency (EA) Midlands region and cover
1950–2007. In particular, the gauging station at Montford
is important for predicting flooding in the downstream
town of Shrewsbury. The digital elevation model of the
Upper Severn catchment was obtained from the NEXTMap
Britain dataset through the UK NERC Earth Observation
Data Centre. The observed precipitation and temperature
data used in this study were from the gridded data on
a 5 × 5 km grid provided by the UK Met Office. These
were interpolated using daily observations as main input,
incorporating geographical effects, latitude and longitude,
altitude, coastal influence and urban land use through
normalization with respect to the monthly 1961–1990
climate (Perry et al., 2008). The spatial distribution of the
observations is shown in Figure 1. The accumulated 5-day
maximum precipitation (5dmax), expressed as mm day−1,
is a useful measure of flood-inducing precipitation in semi-
humid meso-scale catchments such as the Severn and was
used in this study. It is calculated as the annual maximum
precipitation, as a mean over the entire catchment after the
data have been filtered with a 5-day running mean filter. The
rainfall statistics for the Upper Severn catchment upstream
of both Montford and Buildwas are summarized in Table 1,
as well as the statistics for the used RCMs.

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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Figure 1. Upper Severn catchment located in the Midlands Region of England. Observed precipitation grid from UK Met Office at 5 × 5 km, RCM
projection grid and Environment Agency river flow gauges are shown. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

Table 1. Precipitation characteristics for observed and control period RCM precipitation for the Upper Severn catchment upstream of Montford and
Buildwas. Uncorrected and MOS corrected values for the RCM precipitation are shown. Values show the mean and the standard deviation of the spread

from the models.

Upstream Montford Upstream Buildwas

Mean daily precipitation Observed 3.62 2.84
RCMs UKCP09 3.12 ± 0.26 2.55 ± 0.21
RCMs UKCP09 MOS 3.63 ± 0.3 2.84 ± 0.02
RCMs ENSEMBLES 3.56 ± 1.0 3.05 ± 0.68
RCMs ENSEMBLES MOS 3.79 ± 0.17 2.86 ± 0.01

Probability of wet day Observed 0.66 0.63
RCMs UKCP09 0.79 ± 0.05 0.77 ± 0.04
RCMs UKCP09 MOS 0.67± < 0.01 0.64± < 0.01
RCMs ENSEMBLES 0.93 ± 0.04 0.92 ± 0.04
RCMs ENSEMBLES MOS 0.66± < 0.01 0.63± < 0.01

Precipitation cutoff for MOS correction RCMs UKCP09 0.19 ± 0.08 0.18 ± 0.07
RCMs ENSEMBLES 0.59 ± 0.28 0.59 ± 0.28

Mean annual 5-day maximum (5dmax) Observed 87 ± 17 67 ± 14
RCMs UKCP09 77.6 ± 6.4 62.4 ± 5.0
RCMs UKCP09 MOS 92.0 ± 7.2 71.3 ± 5.6
RCMs ENSEMBLES 76 ± 19 68 ± 11
RCMs ENSEMBLES MOS 92.0 ± 3.1 74.6 ± 2.3

2.2. Hydrological modelling and parameter uncertainty

The hydrological model used in this study was HBV
(Bergström, 1992; Lindström et al., 1997), which is a
conceptual rainfall runoff model that is widely used for
flood forecasting and climate impact assessment both in
operations and research (e.g. Lidén and Harlin, 2000;
Olsson and Lindstrom, 2008; van Pelt et al., 2009; Arheimer
et al. 2011). There are many versions of the HBV model, and
the one implemented in this paper is based on HBV light

(Seibert, 2003). Meteorological variables that are required
input are precipitation, 2 m temperature and potential
evapotranspiration. Evapotranspiration was calculated with
the McGuinness model, which requires only the mean
daily temperature from the RCM output (McGuinness and
Bordne, 1972) modified by Oudin et al. (2005):

PE = Re

λρ

Ta + X2

X1
, if Ta + X2 > 0,

PE = 0 otherwise, (1)

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)



H. L. Cloke et al.

Table 2. Bounds of the parameter values for the HBV model.

Parameter Short name Min. Max.

Max. soil moisture content FC 25 600
Limit for potential evapo-
transpiration

LP 0.001 1

Soil routine parameter BETA 0.1 10
Percolation from the upper
to lower box

PERC 0.01 500

Upper zone limit UZL 0 1000
Recession coefficient from
upper zone

k0 0 1

Recession coefficient from
zone 1

k1 0 1

Recession coefficient from
zone 2

k2 0 1

Transformation of runoff MAXBAS 1 10
Evapotranspiration con-
stant

X1 40 400

Evapotranspiration con-
stant

X2 0 30

where Re is extraterrestrial radiation (depending only on
latitude and ordinal date), Ta is the mean daily temperature
(◦C), λ is the latent heat flux, ρ is density of water and
K1 and K2 are constants (◦C) that can be calibrated. This
simple formulation of evapotranspiration has been found
to be robust when applied in climate impact studies (Oudin
et al., 2005).

The HBV model (as all other hydrological models) is
best used together with an uncertainty analysis framework
(Seibert, 1997; Pappenberger and Beven, 2006). The model
has a number of free parameters (Table 2). HBV treats
snow melt with a degree-day factor combined with a
threshold temperature. These parameters were not varied
since their influence on the high flows in the test catchment
was very small. The HBV model was calibrated over the
period 1986–2006, covering the period when discharge
observations were available. The initial parameter space
was estimated by Monte Carlo simulation and visibly
detecting upper and lower limits for the parameters from
the resultant simulations. If no limit was detectable,
the limits were set according to physical constraints
or from literature. The final estimation of the optimal
parameter space of the free parameters was tested using
a base sample set generated through a quasi-random Lp
Tau method, which is an efficient method to generate
a quasi-random sequence for Monte Carlo experiments
(Sobol, 1979, 1993; see implementation in Cloke et al.,
2008). The base sample was 200 000 simulations, which
provides an adequate exploration of the parameter space
while considering computational constraints. The top 100
behavioural parameter sets were selected for use in the
response surface and RCM direct climate impact projections
and these all achieved Nash–Sutcliffe efficiency (NSE) values
over 0.895 (Nash and Sutcliffe, 1970) during the calibration
period.

2.3. Climate model projections

2.3.1. RCM grand ensemble projections

In this paper two ensemble sets of RCMs have been
considered: a multi-model RCM set provided by the

European Union’s FP6 ENSEMBLES project (van der Linden
and Mitchell, 2009) and the most recent UK Climate
Projections (UKCP09; Murphy et al., 2009), which provide
an ensemble of HADRM3 RCM projections using the
same model with different climate sensitivities achieved by
varying uncertain parameters within the model formulation.
In both cases scenario A1B was used and GCMs were
used to force the RCMs at a 25 × 25 km resolution
(Table 3). ENSEMBLES has 19 ensemble members and
UKCP09 has 11 ensemble members run with boundary
conditions from global GCMs. Since the RCM data
were on a coarser grid than the observational grid,
they were first interpolated to the same grid as the
observational data using linear interpolation for temperature
and nearest-neighbour interpolation for precipitation (in
order to preserve the amount of precipitation falling
over the catchment). We consider three periods: observed
(1961–2000 – forced with ERA40 reanalysis; Uppala et al.,
2005); control (1961–2000 – forced with GCM control
period); and future (2001–2100 – forced with GCM future
projections).

2.3.2. Model output statistics

The MOS used in this study was a double-gamma
distribution error correction (DBS; Yang et al., 2010).
The technique uses three steps: (i) a precipitation cut-
off (<1 mm) for days with small amounts of precipitation,
which changes the frequency of wet days (see Table 1);
(ii) an estimation of the distributions of the observed and
modelled precipitation on the remaining days; and (iii) a
shift of the modelled precipitation using the distributions.
The estimation of the cut-off frequency and the distribution
parameters was undertaken for the period 1961–2000, and
then applied to the model output of the scenario runs. The
method has proven useful in hydrological impact studies,
especially regarding the upper end of the precipitation
distribution (Yang et al., 2010):




P̂ = F−1
obs(αobs, βobs, Fsim(P, αCTL, βCTL))

if P < 95th percentile value

P̂ = F−1
obs(αobs,95, βobs,95, Fsim(P, αCTL,95, βCTL,95))

if P ≥ 95th percentile value,

(2)

where P is the simulated precipitation series, F−1
obs denotes the

inverse of the cumulative gamma distribution function, Fsim

is the cumulative gamma distribution for the observations,
and α and β are the gamma distribution parameters
estimated over the control period 1961–2000 for observed
values and simulated values respectively. The method uses
two distributions to represent the bulk of the distribution
(below 95th percentile) and the more intense precipitation
events (above 95th percentile). The reason for this split
is to better condition the top end of the distribution.
The precipitation series were first subject to a reduction
of the number of rainy days by using a cut-off threshold
of precipitation to have the same number of rainy days
in the control period for both the simulated and observed
precipitation. The MOS was applied to the interpolated RCM
grid on the 5 × 5 km resolution over the entire catchment,
which means that local effects, such as orography, were
implicitly accounted for. Here seasonal based corrections
were not applied, as they would have been inappropriate

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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Table 3. RCM climate projections used in this study.

Grand ensemble index Years simulated GCM RCM Reference

UKCP09 1-11 1950–2099 HADCM3 HADRM3 Collins et al. (2001); Pope et al. (2000)
ENSEMBLES 1 1951–2050 ECHAM5 C4I-RCA3 Jones et al. (2004); Kjällström et al. (2005)
ENSEMBLES 2 1951–2098 HadCM3 C4I-RCA3
ENSEMBLES 3 1951–2050 ARPEGE CNRM-RM4.5 Somot et al. (2004); Radu et al. (2008)
ENSEMBLES 4 1951–2100 ARPEGE DMI-HIRHAM5 Christensen et al. (2007)
ENSEMBLES 5 1951–2099 ECHAM5 DMI-HIRHAM5
ENSEMBLES 6 1951–2098 HadCM3 ETHZ-CLM Böhm et al. (2006)
ENSEMBLES 7 1951–2099 ECHAM5 ICTP-REGCM3 Giorgi and Mearns (1999)
ENSEMBLES 8 1951–2100 ECHAM5-r3 KNMI-RACMO2 Lenderink et al. (2003); van Meijgaard et al. (2008)
ENSEMBLES 9 1951–2050 BCM METNO-HIRHAM Haugen and Haakenstad (2006)
ENSEMBLES 10 1951–2100 ECHAM5 MPI-REMO Jacob (2001)
ENSEMBLES 11 1951–2050 CGCM3 Ouranos-CGCM Plummer et al. (2006)
ENSEMBLES 12 1961–2099 BCM SMHI-RCA Jones et al. (2004); Kjällström et al. (2005)
ENSEMBLES 13 1951–2100 ECHAM5 SMHI-RCA
ENSEMBLES 14 1951–2100 HadCM3 SMHI-RCA
ENSEMBLES 15 1951–2050 HadCM3Q0 UCLM PROMES Sanches et al. (2004)
ENSEMBLES 16 1951–2050 HadCM3Q0 VMGO-RRCM Shklolnik et al. (2000)
ENSEMBLES 17 1951–2050 HadCM3 METNO-HIRHAM Haugen and Haakenstad (2006)
ENSEMBLES 18 1951–2100 ARPEGE CNRM-RM5 Somot et al. (2004); Radu et al. (2008)
ENSEMBLES 19 1951–2099 ECHAM5 DMI-HIRHAM5 Christensen et al. (2007)

because of lack of data (the upper 5 percentiles are already
being considered).

2.3.3. Continuous delta response surface generation

A continuous delta response surface approach involves
applying impact models to probabilistic outputs from
climate models by identifying thresholds through sensitivity
analysis and then constructing response surfaces (Jones,
2001; Wetterhall et al., 2011). Scenario climate projection
outputs are then superimposed on to the constructed
response surface. The technique is very useful for
visualizing two or three variables together, which in the
case of hydrological studies mostly are temperature and
precipitation variables. The caveat of the method is that any
changes in the distribution of the variables of interest are
not taken into account – merely a change in the mean. Thus
there is an assumption that climate change only produces
an overall scaling of precipitation and no change in the
frequency and no change in the shape or spatial variation of
the climatology. However, information on seasonal signals
can be used.

Response surfaces were created by perturbing the
temperature and precipitation observations that were used
as input to the HBV hydrological model over the calibration
period 1986–2006. The perturbation for temperature was
constructed as an additive factor, varying from −1 to
8◦C with an increment of 0.1◦C. The perturbation for
precipitation was constructed as multiplicative factor,
ranging from 0.7 to 1.6 with an increment of 0.01
(Figure 2(a)). The ranges were selected to ensure coverage
of the range of expected changes to precipitation and
temperature. The perturbed series were constructed as
annual mean increases of precipitation and temperature,
but since the change in precipitation (and temperature) is
not uniform over the year a response surface with a seasonal
difference was also constructed. The seasonal differences
were calculated as the mean seasonal differences from the
UKCP09 and GCM perturbed physics runs, which predict
an increase in winter precipitation and a decrease in summer
precipitation (Figure 2(a)).

An evaluation of the modelled river runoff in a response
surface can be used to evaluate how water resources are
affected in a particular region. However, for flood-related
studies high flows are of more interest. Therefore, the
response surface was created by calculating the annual
frequency of the maximum river runoff exceeding the
Montford flood warning level of 331 m3 s−1 (Figure 2(b)).
The contour lines in Figure 2(b) correspond to the
probability of the warning level being overtopped in any
given year. Previously this technique has been used to
assess both flooding and low water levels (Wetterhall
et al., 2011), but the focus in this paper was on flooding.
Hydrological model parameter uncertainty was taken
into consideration in the response surface by using
several behavioural parameter sets (discussed in section
2.2). The response surface shows that an increase in
precipitation increases the probability of floods in the
future, which is expected. However, the annual and seasonal
threshold exceedance probabilities change nonlinearly with
precipitation increase. This underlines the importance of
translating projected precipitation increases into flood flows
with an understanding of hydrological processes and the use
of a hydrological model, rather than just by extrapolating
from precipitation behaviour. The decrease in probability
because of an increase in temperature (and therefore
potential increase in evapotranspiration) has much less effect
on the flooding than the precipitation change. This would
no doubt have a large effect on low flows in the summer, an
effect which we recommend for pursuit in future research.

2.3.4. Perturbed physics ensemble (PPE) for use with response
surfaces

The UK Met Office has constructed a joint probability
distribution (JPD) of future changes in temperature and
precipitation through an extensive experiment using GCMs,
downscaling and statistical emulators (Harris et al., 2010).
These data were used with response surfaces similar to the
method evaluated in Wetterhall et al. (2011). Based on the
SRES-A1B scenario, the JPD combines transient HadCM3
simulation output with a combined perturbed physics and

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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Figure 2. (a) Multiplicative factors used to calculate the response surfaces with the continuous delta change method. The dotted lines show the change
factors with a constant annual change, and asterisks denote the perturbations with a seasonal change, estimated from the expected changes in the
perturbed physics experiment. Increments for the annual perturbations in the figure are shown for each 0.05 level. (b) Response surface for the
Environment Agency warning level (331 m3 s−1) for Montford river gauging station. The contour plot indicates the probability that the selected threshold
is exceeded in a given year and takes into account parameter uncertainty in the HBV model.

emulator approach using equilibrium climate simulations.
Observations were used to constrain the JPD as well as
weightings based on the Coupled Model Intercomparison
Project (CMIP3; IPCC, 2007) and HADRM3 European
simulations. From the distributions 10 000 paired samples
of temperature and precipitation were drawn, for grid boxes
with areas of approximately 300 × 300 km, which were
provided as seasonal and annual changes over 20-year time
slices over the 21st century. Details on the methodology can
be found in Harris et al. (2010). On the response surfaces
the JPD is displayed as contour plots where the outer limits
were the 5 and 95 percentiles of the total runs.

3. Assessment of observed, control and future
precipitation projections for the Upper Severn

Our assessment is formed of two parts. In this section the
ERA-40 (Uppala et al., 2005) forced RCM projections over
1961–2000 were assessed to test how well the models could
reproduce observed precipitation events; then the future
projections of precipitation are considered, followed by an
analysis of the effects of the MOS. In section 4 the analysis is
extended to modelled river flooding.

3.1. Observed: ERA40 forced RCM output

Flooding in the Severn catchment usually occurs during
intense precipitation events from late summer to winter.
Figure 3 shows that precipitation is well modelled by the
RCMs during the dry season (February–July), but for the
wet season (August–January) the precipitation is generally
underestimated. Figure 3 also shows that the intra-annual
variation is also underestimated by the RCMs, and this bias
needs to be addressed in flood studies.

Figure 3. Annual variation of precipitation from the ERA40 forced RCM
output used in the study. The dark-grey area shows the 25–75 percentiles
of the RCMs and the light-grey area the 25–75 quantiles of observed
precipitation. The solid line denotes the observed precipitation and the
dotted black line the mean of the RCMs.

3.2. Control and future: GCM forced RCM output

Table 1 shows statistics comparing control period RCM
precipitation and observed. Notably, the performance of the
RCM precipitation is dependent on the size and geographical
characteristics of the catchment. For the smaller Upper
Severn (upstream of Montford), which has a large elevation
gradient, both the mean daily precipitation and the mean
annual 5-day maximum (5dmax) are underestimated for
UKCP09 and ENSEMBLES and the number of rainy days is
overestimated. However, for the larger Buildwas catchment
with more lowland, although the number of rainy days is
still overestimated and the UKCP09 is still underestimating

Copyright c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2012)
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the precipitation, for the ENSEMBLES there is now an
overestimation.

Figures 4 and 5 show precipitation cumulative distribu-
tion functions for the UKCP09 and ENSEMBLES RCMs.
Figure 4 shows the results for the annual precipitation.
The left panels show the control period and the right the
2071–2100 future projections. A comparison of the observed
and uncorrected RCM precipitation demonstrates the off-
set between observed and RCM annual precipitation for
the Severn. A comparison of panels (a) and (c) shows that
the ENSEMBLES control period results show a significant
change in the distribution shape, whereas the UKCP09 is
more uniformly underestimated. This is related to the fact
that UKCP09 is created by a single model with pertur-
bations, whereas ENSEMBLES are multi-model results and
thus likely to represent more variable model behaviours. The
ENSEMBLES here shows a wet bias for larger precipitation
values. The contribution of the spread in the precipitation
from the GCM/RCM is mainly from the GCM. Figure 5
shows the 5-day maximum precipitation (5dmax) measure,
which is an important indicator of flood-producing rain-
fall in the Severn catchment. A comparison of Figures 4
and 5 for both control and future periods demonstrates
that the offset and under/overestimation of precipitation
changes depending on the way the precipitation is assessed.
Here both UKCP09 and ENSEMBLES show an underesti-
mation and a change in distribution shape, widening at the
lower end, although the ENSEMBLES is still further away
from observed than UKCP09. The wet bias detected in the
annual precipitation higher values for ENSEMBLES is no
longer present in the 5dmax (Figure 5(c)), which is impor-
tant when using these results for climate impact studies in
flooding.

3.3. Model Output Statistics (MOS)

Here the DBS MOS technique is applied to the grand
ensemble of RCM projections as described in section 2.3.2.
Each individual GCM/RCM pair in the grand ensemble
was corrected for the bias, using the period 1960–2000 as
baseline for the observed climate. MOS was only applied
to the precipitation output as floods are mainly driven by
precipitation events. There is also bias in temperature (not
shown), and in catchments where the floods are snow-
melt driven, or in studies of low-flows, a MOS correction of
temperature would be necessary (Yang et al., 2010). Figures 4
and 5 show that the results after MOS correction are much
closer to the observed precipitation. However, the higher
ends of the distributions are not perfectly corrected, since
many values exceed the observed values. This is a common
problem with the application of MOS techniques and such
corrections have to be done with care since it is a rather
crude method to correct for RCM biases (see discussion in
Maraun et al., 2010).

It is also important that MOS does not affect the
climate change signal, which can be seen by comparing
corrected and uncorrected results in panels (b) and (d) of
Figures 4 and 5 and also in the monthly changes shown
in Figure 6. The change in precipitation before and after
MOS is very similar. The stationarity of the MOS is not
considered here and the assumption that the statistical
relationships do not change in the future should not be
considered insignificant. It will increase the uncertainty

over time, since the precipitation mechanisms, such as large-
scale circulations, increased humidity, blocking frequency
(blocking over mainland Europe can force Atlantic low
pressures to take a certain path over the UK that can
cause severe flooding), etc. might change (Maraun et al.,
2010). In general, future precipitation over the Upper Severn
shown in Figure 6 demonstrates an increase in winter and
a decrease in summer. There is quite a stark difference
between the UKCP09 and ENSEMBLES results, which is
much larger than the effects of MOS, although these are not
insignificant, especially in the ENSEMBLES results for winter
precipitation. In the last time slice, winter precipitation is
higher for ENSEMBLES and summer precipitation is lower
for UKCP09. Contrast these results with Figure 5, where
5-day maximum totals show ENSEMBLES to have the driest
bias.

4. Assessment of flood projections for Upper Severn

The HBV model was forced with ERA-40 -RCM projections
of ENSEMBLES and UKCP09 and then the grand-ensemble
GCM/RCM projections. The runs with the ERA40-forced
simulations are very useful in assessing the ability to model
current climate and the effects of MOS on the simulated
runoff. Note that the GCM/RCMs used in the ERA40-
forced experiments are not exactly the same as in the future
GCM/RCM simulations since the ENSEMBLES project did
not provide the full matrix for both experiments, but the
general performance of the RCMs can be assessed.

4.1. Observed: ERA40-RCM-forced river discharge
simulations

Figure 7 shows the HBV-modelled river discharge for the
November–December 2000 flood event on the River Severn
at Montford (including HBV model parameter uncertainty).
HBV has been forced by uncorrected (Figure7(a)) and MOS-
corrected (Figure7(b)) ERA40-forced RCM projections. In
comparison with the observed discharge, the MOS-corrected
discharges capture the shape and dynamics of the 2000 flood
event, but the spread is very large. The RCM ensemble
median is well below the peak of the event for the MOS-
corrected RCMs and the observations do not fall within the
RCM ensemble. Considering the Montford flood warning
threshold of 331 m3 s−1, for the November peak this level
is just exceeded by the RCM median and thus half of
ensemble members reach this level, but the RCM median
does not reach this level for the December peak and only
the tails of the RCM distribution exceed this threshold. As
these projections are forced by reanalysis and come from
individual models (in contrast to a well-calibrated short-
range ensemble prediction system) it can be inferred that
there is a systematic underprediction in the simulation of
discharge peaks by the RCMs. This could be very significant
in assessing future flooding, and it is worth noting that the
precipitation has already had MOS correction applied and
thus this should not be a major cause of the underprediction
(although the MOS is not perfect and may contribute to
this in a small way). One way to constrain the uncertainty
band and decrease the projected spread in climate impact
studies is to weight the RCMs that perform better during the
control period higher than the models that underperform.
In Figure 7(c), the RCMs were weighted based on their
NSE skill over the period 1986–2000. The reduction in the
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Figure 4. Annual precipitation cumulative distribution functions from the UKCP09 (upper panels) and ENSEMBLES (lower panels) RCMs. The
left panels show the control period (1961–2000) and the right panels show the future projections (2071–2100). The black line shows the observed
precipitation (also shown on the right panels for reference). The dark grey line (purple online) shows the uncorrected median and dark grey shading
(purple online) shows the 95% confidence interval for the uncorrected. The light grey line (green online) shows the MOS corrected median values
and the light grey shading (green online) shows the 95% confidence intervals for the MOS corrected. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

uncertainty bands is evident from the figure, and in the
later peaks the observed and ensemble distributions overlap
much more than that seen in Figure 7(b). Any reduction in
uncertainty presented can be useful in providing an ‘expert
judgement’ to the stake holder; however, it discredits the
models that behave less well during the control period but
that might be useful as extra information in climate impact
studies. It is also a very application-dependent outcome
(Kjellström et al., 2010) and so we do not continue this
weighting in our analysis of future projections, as a more
thorough consideration of the implications is beyond the
scope of this analysis.

4.2. Future flood discharge projections with direct approach

The HBV model was then forced by the future RCM
projections (again including parameter uncertainty). The
precipitation inputs were included as both uncorrected and
as MOS corrected. The MOS correction was undertaken for
each individual GCM/RCM combination. Figure 8 shows
the ensemble mean of the annual maximum discharge
from HBV simulations averaged across time slices for
the UKCP09 and ENSEMBLES. The results are separated
into those simulations forced by uncorrected and those

forced by MOS-corrected projections. In all cases the mean
annual maximum discharge is projected to increase across
the time slices by around 40 m3 s−1 by the end of the
century. Two things are immediately apparent from Figure 8.
(i) The ENSEMBLES mean annual maximum discharges are
much lower than that for UKCP09 HadRM3, which is very
interesting as this is opposite to the pattern seen in Figure 4
for the mean annual precipitation. This again highlights
that the annual precipitation is not a very useful indicator
for flood events, and the 5-day maximum precipitation
(shown in Figure 5) and the calculated discharge are more
useful. This supports the importance of using a hydrological
perspective and modelling approach in these types of studies.
(ii) The MOS correction is a very large correction, with
the MOS-corrected discharge ensembles of the order of
100 m3 s−1 higher than the uncorrected. This is a very
significant impact on the projected discharge in that all
time slices are above the observed maximum value of the
mean annual maximum discharge. The distribution of mean
annual maximum discharges across the time slices (gradient
across the time slices) is also slightly altered by the MOS
correction (see in particular the variability at the high end).
This application demonstrates quite effectively what is a
typical extreme difference in using MOS-corrected RCM
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Figure 5. As Figure 4 but for 5-day maximum precipitation (mm day−1). This figure is available in colour online at wileyonlinelibrary.com/journal/qj

precipitation for future discharge projections and illustrates
the importance of understanding what the MOS techniques
have done to the data.

4.3. Future projections with PPE JPD response surfaces

Figure 9 shows the annual changes in the probability that the
flood warning level is exceeded at Montford. Output from
the PPE JPD was overlain on the response surface (shown in
Figure 2), along with the RCM projections. Even though the
climate projections used in the grand ensemble and in the
PPE JPD are different (both in terms of the model used and
the fact that the PPE JPD is for a much larger area), their
comparison is useful in that if results reinforce each other
then it may support their robustness. The contours show
the probability of exceeding the threshold and the colour
plot shows the density of runs from the PPE. The annual
changes suggest that they are roughly within the same range
as the RCM projections, which could indicate that the GCM
PPE is likely to be useful in determining the effects on flood
warning levels. For example, for the PPE JPD the probability
that the flood warning level is exceeded is by 2030–2050
already up to 40% in the centre of the distribution and
extending towards 20% and 60%. The UKCP09 is for the
same period, centring on 40% and extending from 30% to
50%. The ENSEMBLES are centred on 50% and extending
from 30% to 60%.

However, looking at Figure 10, where the results for
only the winter season are shown (DJF), there is a
starker difference. The spread is larger and the differences
between the three components (PPE JPD, ENSEMBLES and
UKCP09) are more noticeable. Looking again at the example
of the 2030–2050 time slice period, the PPE JPD has a higher
ensemble mean than the other ensembles at around 50%
and a higher spread extending from 15% to 75%. The
ENSEMBLES centre on 40% and extend from 10% to 60%.
The UKCP09 centres on 25% and extends from 10% to
40%. Thus, from these results, it is clear that (i) it is essential
to consider the seasonal results rather than just the annual
mean projections as they can be very different, and (ii) within
the seasonal results, and also to a lesser extent within the
annual results, the different ensembles considered (PPE JPD,
ENSEMBLES and UKCP09) have quite different projections
of future flooding.

4.4. Comparing ensemble approaches for determining future
flood hazard change

Figure 11 shows a direct comparison of all the ensemble
methods used in the previous sections for projected changes
in the 2-year return period of flood warning level at
Montford. The left-hand panel shows the ENSEMBLES,
the middle panel the UKCP09 and the right-hand panel the
combined results. RCMs have been used for direct runs with
the HBV model as in section 4.2 (but have also been used
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with the response surface technique. Both uncorrected and
MOS-corrected runs have been shown for both direct and
response surface results. The PPE JPD and the interquartile
range is also shown for these results in order to bound the
other results (the uncertainties in the RCM results are not
shown here, for clarity, but have been explored in previous
figures).

As would be expected from Figure 10, the largest change is
noted for the PPE for the first half of the 21st century, whereas
there is a sign of decreasing flood hazard towards the end of
the century. The RCMs projected on the response surfaces
(black lines in Figure 11) show a more moderate increase,
and the ENSEMBLES RCMs (Figure 11(a)) differ from the
UKCP09 RCMs (Figure 11(b)). The former indicates an
increase towards the end of the century – something that is
not the case in the UKCP09 runs. The UKCP09 follows a
similar path to the perturbed physics with a decrease towards
the end of the century; however, the RCMs in general indicate
a much less pronounced change in comparison with today’s
climate. This result concurs with the direct runs using the
RCMs as direct input to the hydrological model. Contrary
to the response surface RCMs, the direct RCMs indicate that
UKCP09 models give a higher estimate of the flood events in
comparison to the direct runs with the ENSEMBLES RCMs.
MOS increases the effect of the direct runs much more than
for the response surfaces. The effects of MOS, where the
high precipitation events are treated especially, are seen in

the modelling of high flows. Response surfaces deal with
mean changes over an entire season, and the MOS has very
little effect on these results. However, the two approaches
do give very similar results in terms of the projected change
in flooding over the catchment. There is a larger increase
projected in the GCMs, but this result should be taken with
great care since it is the projected change over a very large
area.

5. Discussion

5.1. Ensemble techniques and uncertainty

Projections from ensemble modelling are useful for
exploring uncertainty in climate models. These projections
are being used in many impact modelling and decision-
making studies, including those looking at climate impact
on flood hazard. Here we have used projections from
three different ensemble techniques in a flood hazard
climate impact study: RCM projections from single
perturbed model (UKCP09), RCM multi-model projections
(ENSEMBLES) and compared these with GCM-perturbed
physics projections (also using the RCMs) used with
response surfaces (PPE JPD). The modelled control period
and projections of future precipitation and flood hazard
(and the uncertainties of these projections) certainly
varied between methods (e.g. Figures 10 and 11). In the
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control period assessment, there is an underestimation of
precipitation in the Upper Severn catchment evident in the
(uncorrected) UKCP09 results with a more varied bias in the
ENSEMBLES (Figures 4 and 5). Overall, for this particular
catchment, the combined results point towards an increase
in flood hazard, but the results are not significantly different
from the current situation. Certainly, the results highlight the
very large (and well-known) uncertainties associated with
projections of future climate whichever ensemble technique
is used. In particular, the PPE shows a strong trend in
the increase of flood hazard, but also a larger spread in
the ensemble, and therefore a larger uncertainty. Similar
results were found in Wetterhall et al. (2011) for response
surfaces on a Swedish catchment. We highlight again that in
the response surface method there is a crucial assumption
that climate change only produces an overall scaling of
the precipitation, whereas a hydrological model forced by
GCM/RCM predictions can, at least in principle, respond to
more detailed changes in climatology.

In terms of flood hazard, the difference in uncertainty
between the techniques is likely to come from both the
resolution (RCMs are downscaling the simulations to a
domain which is in comparison with the catchment size)
but also that the GCMs in the perturbed experiment sample

the model/scenario uncertainty to a much higher extent.
The RCMs from the UKCP09 do sample some of the model
uncertainty from the GCM (Figures 10 and 11), but it is a very
limited sample. An obvious problem in studies of climate
model uncertainty are the few numbers of realizations
possible, due to computational constraints. However, it
would be very useful for the climate impact community if
a large grand ensemble of high-resolution RCMs could be
created, consisting of a multi-model approach combined
with perturbed physics for each model (multi-model each
with many perturbed physics ensemble. This would enable a
comprehensive understanding of the RCM uncertainty that
is cascading into impact modelling. However, this will not
completely solve the problems of the bias evident in the
results or other issues surrounding the interpretation of the
ensemble results for decision making.

5.2. To MOS or not to MOS

Our assessment of RCM projections has shown that there
are deficiencies in the prediction of significant rainfall
events over catchment scales which is in line with the
findings of others (e.g. Rivington et al., 2008; Themessl
et al., 2012) and, more importantly, that this degrades
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further when quantifying extreme rainfall events that are
the cause of floods – the interest of this paper. For example,
in Figure 5 the large underprediction can be seen in the
differences in the cumulative distribution functions of the
5-day maximum precipitation between the observed data
and both the UKCP09 and ENSEMBLES RCM projections,
and for example Figure 7(a) highlights the issues with this
when these uncorrected projections are used to force a
hydrological model for a flood event, and the river discharge
is significantly underpredicted. Thus the solution to such
bias is usually to advocate the application of MOS in order
to adjust RCM projections, which is considered by many to
allow confidence in the examination of future changes in
flow regimes.

The influence of the application of MOS has been tested
here. What is clear is that MOS can (to a certain extent)
do what it is supposed to do, namely match distributions
of observed and modelled precipitation, allowing simulated
river discharges to be more compatible with those forced by
observed rainfall products. This in turn then significantly
alters future projections of precipitation and river discharge,
supposedly to give a more accurate picture. Even in data-
sparse regions there is nothing stopping such a methodology
being applied – it would just mean that the observed would
need to be treated more cautiously and the resolutions of the
RCM’s may be lower. These factors would have the result

of increasing the final uncertainties further. Typically, the
methodology would be applied only where data are available
to constrain the hydrological model predictions, but in fact
if the hydrological model parameters could be regionalized
this could also be applied in ‘ungauged’ basins.

However, there are some credibility issues in undertaking
such transformations and then relying on results for
interpreting future climate. First, RCMs are dynamically
downscaled physically based models of the climatological
processes, albeit a simplification due to the resolving
resolution. Thus transforming an output – in this case
rainfall, arbitrarily without understanding what that means
for the coupled fluxes and processes in the model – is
effectively ‘throwing away the physics’ and therefore reasons
why these models might provide feasible futures. Second,
there is an assumption that such a transformation is
stationary over multiple decades and hence holds as a
reliable predictor of the bias in future scenarios. There
are many reasons why this may not be a scientifically
defendable position to take, in the same way that any
nonlinear complex set of processes is unlikely to maintain
a simplistic transformation of the output variables under
changing conditions.

The more important question at this stage is what is the
alternative to using MOS-corrected RCM projections and
what is scientifically credible in order to express potential
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changes in flood hazard at the catchment scale in the
future. Certainly, our results have shown that by taking
a grand ensemble of potential changes the future becomes
very uncertain and that this uncertainty spread of annual
maximum discharge increases with the use of MOS. But
if we show that our current RCMs do not adequately
characterize the most important variable for quantifying
flooding impacts then why would we use them? Assuredly,
there is substantially more work to be done here before
they are used to define the limits of future changes. We
could adopt different strategies and not try to defend the
indefensible by using what could be seen as bias-corrupted
RCM projections. We could use RCMs with the response
surface method we have shown here, which may be a good
compromise between maintaining important downscaled
processes and features that are not evident in the GCM but
also using information that is not affected by MOS while still
maintaining links to observations (e.g. the change shown in
the median lines in Figure 11). However, the assumptions of
stationarity in the distributions and only changes in the mean
are quite important. A close consideration of the results we
have presented shows that with the two ways in which we
have used the RCMs the flood hazard signal predicted is not
completely different, which could be indicative of either a
more robust signal from using the two methods together or
of course alternatively they could both be equally wrong.

In the longer term, climate mitigation policies might be
better evidenced by studies considering narratives of feasible
futures (Beven, 2011), or ‘catchment change scenarios’,
which combine scenarios of land use, rainfall and many other
more ‘human factors’ (such as flood defence, agricultural

and development practice, financial stability and population
movements) with a focus on risk-based outcomes (such as
the changing number of people vulnerable to flooding).
There is also an opportunity to take the pragmatic route
and maintain concepts of freeboards from our current
observed continuous simulations of discharge (e.g. adding
20% on to current observed discharge time series), at least
for comparative purposes.

However, for those current and future studies where use
of climate projections is for some reason seen as mandatory,
and use of MOS is considered the way forward, we strongly
advocate: (i) also running uncorrected projections so that
the impact of MOS on results is clear; (ii) considering
catchment-based indicators of precipitation, such as 5-day
maximum precipitation (or whatever suits the catchment
and discharge levels you are studying); and (iii) considering
running alternative evidence streams alongside MOS-
corrected RCM projections, be this response surfaces or
other change factor analysis or freeboard estimates. If you
must use MOS then don’t use it alone.

6. Conclusions

A grand ensemble of projections from a number of
GCM/RCMs was used to force the HBV hydrological
model and analyse the resulting future flood projections
for the Upper Severn, UK, and the impact and implications
of applying MOS techniques to precipitation fields was
examined. The impact of hydrological model parameter
uncertainty was taken into account. The resultant grand
ensemble of future river discharge projections was compared
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with a response surface technique combined with perturbed
physics ensemble climate model outputs. The ensemble
distribution of results shows that future risk of flooding in
the Upper Severn increases compared to present conditions,
particularly with regard to the probability of exceeding the
flood warning threshold at Montford, but the study also
highlights the large uncertainties in results and the strong
assumptions made in using MOS to produce the estimates
of future discharge. MOS has a clear effect on the results
when the RCM output was used directly in combination
with the hydrological model.

Because of the potential problems associated with using
MOS without understanding the effects, here uncorrected
and MOS-corrected precipitation products and modelled
discharge have been presented together. We strongly
advocate this for all future climate impact studies in
order to make transparent what the RCMs are actually
producing in terms of precipitation and the effects that
MOS are having on the data. We also challenge the routine
use of MOS in climate impact studies. The inability of
the RCMs to produce realistic precipitation which can be
used in local climate impact studies on flooding, even
in present conditions, is a serious issue, and this should
be a focus for future development. We advocate using
multiple evidence streams, including using grand ensembles
of RCMs and different ensemble techniques in analysing
future flooding. We also acknowledge that climate model
projection techniques should be combined with alternative
strategies such as ‘catchment change scenarios’ in order to
present the most robust understanding of future flood risk.
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