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Abstract

The Prism family of algorithms induces modular classification rules in con-
trast to the Top Down Induction of Decision Trees (TDIDT) approach which
induces classification rules in the intermediate form of a tree structure. Both
approaches achieve a comparable classification accuracy. However in some
cases Prism outperforms TDIDT. For both approaches pre-pruning facili-
ties have been developed in order to prevent the induced classifiers from
overfitting on noisy datasets, by cutting rule terms or whole rules or by trun-
cating decision trees according to certain metrics. There have been many
pre-pruning mechanisms developed for the TDIDT approach, but for the
Prism family the only existing pre-pruning facility is J-pruning. J-pruning
not only works on Prism algorithms but also on TDIDT. Although it has
been shown that J-pruning produces good results, this work points out that
J-pruning does not use its full potential. The original J-pruning facility is
examined and the use of a new pre-pruning facility, called Jmax-pruning,
is proposed and evaluated empirically. A possible pre-pruning facility for
TDIDT based on Jmax-pruning is also discussed.

Keywords:
J-pruning, Jmax-pruning, Modular Classification Rule Induction,
pre-pruning

1. Introduction

The growing interest in the area of data mining has led to various de-
velopments for the induction of classification rules from large data samples

Preprint submitted to Knowledge-Based Systems June 16, 2011



in order to classify previously unseen data instances. Classification rule in-
duction algorithms can be categorised in two different approaches the Top
Down Induction of Decision Trees (TDIDT) [1] also known as the ‘divide and
conquer’ approach and the ‘separate and conquer’ approach. The ‘divide and
conquer’ approach induces classification rules in the intermediate form of a
decision tree, whereas the ‘separate and conquer’ approach directly induces
‘IF... THEN...’ rules. The ‘divide and conquer’ approach can be traced
back to the 1960s [2] and resulted in wide selection of classification systems
such as C4.5 and C5.0. The ‘separate and conquer’ approach [3] can also be
traced back to the 1960s. Its most notable member is the Prism family of
algorithms as a direct competitor to the induction of decision trees.

The original Prism algorithm described in [4] identified the tree structure
induced by ‘separate and conquer’ as the major handicap of decision trees
which makes them vulnerable to overfitting, especially on noisy datasets.
Prism has been shown to produce a similar classification accuracy compared
with decision trees and in some cases, even outperforms decision trees. This
is particularly the case, if the training data is noisy. There is also some
recent interest in parallel versions of Prism algorithms, in order to make
them scale better on large datasets. The framework described in [5], the
Parallel Modular Classification Rule Inducer (PMCRI) allows to parallelise
any member of the Prism family of algorithms.

Nevertheless also Prism, like any classification rule induction algorithm,
is prone to overfitting on the training data. For decision trees there is a
large variety of pruning algorithms that modify the classifier during or after
the induction of the tree in order to make the tree more general and reduce
unwanted overfitting [6]. For the Prism family of algorithms there is only
one method described in the literature, and that is J-pruning [7, 17]. J-
pruning is based on the J-measure [8], a information theoretic measure for
quantifying the information content of a rule. Also there is an extension of
the PMCRI framework mentioned above, the J-PMCRI framework [9] that
incorporates J-pruning into PMCRI, not only for quality reasons but also
because J-pruning reduces the number of rules and rule terms induced and
thus the runtime of Prism and PMCRI.

This paper examines the J-pruning method described in [7, 17] and pro-
poses a new pruning method Jmax-pruning, that aims to exploit the J-
measure further and thus further to improve Prism’s classification accuracy.
The basic Prism approach is described in Section 2 and compared with deci-
sion trees, also some particular members of the Prism family are introduced
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briefly. J-pruning is described and discussed in Section 2.3 and Jmax-pruning
as a new variation of J-pruning is introduced and discussed in Section 3.2
and evaluated in Section 4. The ongoing work is described in Section 5 and
discusses J-PrismTCS a version of Prism solely based on the J-measure and
more importantly proposes the development of a version of Jmax-pruning
for Decision Tree induction algorithms. Section 6 concludes the paper with
a brief summary and discussion of the findings presented.

2. The Prism Family of Algorithms

As mentioned in Section 1, the representation of classification rules differs
between the ‘divide and conquer’ and ‘separate and conquer’ approaches.
The rule sets generated by the ‘divide and conquer’ approach are in the
form of decision trees whereas rules generated by the ‘separate and conquer’
approach are modular. Modular rules do not necessarily fit into a decision
tree and normally do not. The rule representation of decision trees is the
main drawback of the ‘divide and conquer’ approach, for example rules such
as:

IF A = 1 AND B = 1 THEN class = x

IF C = 1 AND D = 1 THEN class = x

cannot be represented in a tree structure as they have no attribute in
common. Forcing these rules into a tree will require the introduction of
additional rule terms that are logically redundant, and thus result in unnec-
essarily large and confusing trees [4]. This is also known as the replicated
subtree problem [10]. Cendrowska illustrates the replicated subtree using the
two example rules above in [4]. Cendrowska assumes that the attributes in
the two rules above comprise three possible values and both rules predict
class x, all remaining classes are labelled y. The simplest tree that can ex-
press the two rules is shown in Figure 1 and the total rule set encoded in the
tree is:

IF A = 1 AND B = 1 THEN Class = x
IF A = 1 AND B = 2 AND C = 1 AND D = 1 THEN Class = x
IF A = 1 AND B = 3 AND C = 1 AND D = 1 THEN Class = x
IF A = 2 AND C = 1 AND D = 1 THEN Class = x
IF A = 3 AND C = 1 AND D = 1 THEN Class = x
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Figure 1: Cendrowska’s replicated subtree example.

The fact that modular rules cause trees to grow needlessly complex makes
them unsuitable for expert systems as they may require unnecessary expan-
sive tests by the user [4].

‘Separate and conquer’ algorithms aim to avoid the replicated subtree
problem by inducing directly sets of ’modular’ rules, avoiding unnecessarily
redundant rule terms that are induced just for the representation in a tree
structure. The basic ‘separate and conquer’ approach can be described as
follows, where the statement

Rule_set rules = new Rule_set();

creates a new rule set:

Rule_Set rules = new Rule_set();

While Stopping Criterion not satisfied{

Rule = Learn_Rule;

Remove all data instances covered from Rule;

rules.add(rule);

}

The Learn Rule procedure generates the best rule for the current subset
of the training data where best is defined by a particular heuristic that may
vary from algorithm to algorithm. The stopping criterion is also dependent
on the algorithm used. After inducing a rule, the rule is added to the rule
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set and all instances that are covered by the rule are deleted and a new rule
is induced on the remaining training instances.

In Prism each rule is generated for a particular Target Class (TC). The
heuristic Prism uses in order to specialise a rule is the probability with which
the rule covers the TC in the current subset of the training data. The stop-
ping criterion is fulfilled as soon as there are no training instances left that
are associated with the TC.

Cendrowska’s original Prism algorithm selects one class as the TC at the
beginning and induces all rules for that class. It then selects the next class as
TC and resets the whole training data to its original size and induces all rules
for the next TC. This is repeated until all classes have been selected as TC.
Variations exist such as PrismTC [11] and PrismTCS (Target Class Smallest
first) [7]. Both select the TC anew after each rule induced. PrismTC always
uses the majority class and PrismTCS uses the minority class. Both varia-
tions introduce an order in which the rules are induced, where there is none
in the basic Prism approach. However the predictive accuracy of PrismTC
cannot compete with that of Prism and PrismTCS (personal communica-
tion). PrismTCS does not reset the dataset to its original size and thus is
faster than Prism, which produces a high classification accuracy and also sets
an order in which the rules should be applied to the test set.

The basic PrismTCS algorithm is outlined below where Ax is a possible
attribute value pair and D is the training dataset. The statement

Rule_set rules = new Rule_set();

creates a new rule set which is a list of rules and the line

Rule rule = new Rule(i);

creates a new rule with class i as classification. The statement

rule.addTerm(Ax);

will append a rule term to the rule and

rules.add(rule);

adds the finished rule to the rule set.
The statements outlined in this paragraph are also used in the pseudo

code in Section 2.3 and Section 3.2.
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D’ = D;

Rule_set rules = new Rule_set();

Step 1: Find class i that has the fewest instances in

the training set;

Rule rule = new Rule(i);

Step 2: Calculate for each Ax p(class = i| Ax);

Step 3: Select the Ax with the maximum p(class = i| Ax);

rule.addTerm(Ax);

Delete all instances in D’ that do not cover rule;

Step 4: Repeat 2 to 3 for D’ until D’ only contains

instances of classification i.

Step 5: rules.add(rule);

Create a new D’ that comprises all instances of

D except those that are covered by all rules

induced so far;

Step 6: IF (D’ is not empty){

repeat steps 1 to 6;

}

We will concentrate here on the more popular PrismTCS approach but
all techniques and methods outlined here can be applied to any member of
the Prism family.

2.1. Dealing with Clashes

A clash set is a set of instances in a subset of the training set that are
assigned to different classes but cannot be separated further. For example
this is inevitable if two or more instances are identical except for their clas-
sification. Cendrowska’s original Prism algorithm does not take into account
that there may be clashes in the training data. However the Inducer soft-
ware implementations of the Prism algorithms do take clashes into account
[12, 11]. What happens in the case of a clash in Inducer is that all instances
are treated as if they belong to the TC. [12] mentions that the best approach
is to check if the TC is also the majority class. If it is then the rule currently
being induced is taken otherwise the rule is discarded. If a clash is encoun-
tered and the majority class is not the TC, then the rule is discarded and
all instances in the clash set that match the TC are deleted. The reason for
manipulating the clash set this way is that if the rule were discarded and the
clash set kept then the same rule would be induced all over again and the
same clash set would be encountered again.
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2.2. Dealing with Continuous Attributes

Continuous attributes are not handled by Cendrowska’s original Prism
algorithm. One way to deal with continuous attributes is discretisation of
the attribute values prior to the algorithm’s application, for example ap-
plying ChiMerge [13] before the application of a Prism algorithm. Bramer’s
Inducer software [11] provides implementations of Prism algorithms that deal
with continuous attributes. All Prism algorithms implemented in this work
deal with continuous attributes the same way as Inducer’s Prism algorithms
do. Dealing with continuous attributes can be integrated in step two in the
pseudo code above before the calculation of p(class = i|Ax). If Ax is contin-
uous then the training data is sorted for Ax. For example let Ax comprise
the following values after sorting, -3, -4.2, 3.5, 5.5 and 10, then the data is
scanned for these attribute values in either ascending or descending order.
For each attribute value, for example 5.5, two tests p(class = i | Ax < 5.5)
and p(class = i | Ax ≥ 5.5) are conducted. The one with the largest con-
ditional probability for all the values of the attribute is kept and compared
with those conditional probabilities from the remaining attributes.

2.3. J-pruning

As mentioned in the introduction, classifiers are generally pruned to pre-
vent them from overfitting. Pruning methods can be divided into two cate-
gories, pre-pruning and post-pruning. Post-pruning is applied to the classifier
after it has been induced whereas pre-pruning is applied during the rule in-
duction process. For Prism algorithms only one pruning method has been
developed so far, J-pruning [7], a pre-pruning method based on the J-measure
[8], a measure for the information content of a rule. J-pruning can also be
applied to decision tree induction algorithms and has shown good results
on both kinds of algorithms [7]. As also mentioned in the introduction, J-
pruning has found recent popularity in parallel versions of Prism [14, 9, 15],
as it reduces the number of rules and rule terms induced considerably and
thus increases the computational efficiency.

According to [8] the theoretical average information content of a rule of
the form IF Y = y THEN X = x can be measured in bits and is denoted by
J(X,Y=y).

J(X;Y = y) = p(y) · j(X;Y = y) (1)
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As shown in equation (1) J(X;Y = y) is essentially a product of p(y),
the probability with which the left hand side of the rule will occur, and
j(X;Y = y) which is called the j-measure (with a lower case j) and measures
the goodness-of-fit of a rule. The j-measure, also called the cross-entropy,
defined in equation (2):

j(X;Y = y) = p(x | y) · log2(p(x|y)p(x)
) + (1− p(x | y)) · log2( (1−p(x|y))(1−p(x)) ) (2)

For a more detailed description of the J-measure Smyth’s paper [8] is
recommended. Bramer’s essential interpretation of the J-measure is that if a
rule has a high J-value then it also is likely to have a high predictive accuracy
[7]. Hence the J-value is used as an indicator of whether appending further
rule terms is likely to improve a rule’s predictive accuracy or lower it due to
overfitting. The J-value of the rule may go up or down when appending rule
terms, also it may go down and up again. However it is possible to calculate
the maximum J-value that the rule with its current terms might maximally
achieve if additional terms were added. This upper bound cannot of course
be exceeded but its value is not necessarily achievable.

Bramer’s basic J-pruning is applied to Prism by calculating the J-value of
the rule before the induction of a new rule term and the J-value that the rule
would have after a newly induced rule term is appended. If the J-value goes
up then the rule term is appended. In the case where the J-value goes down,
the rule term is not appended and a test is applied to determine whether the
majority class of the instances that are covered by the rule is also the TC.
If the majority class is the TC then the rule is truncated and kept and all
instances in the current subset of the training set are treated as if they belong
to the TC. If the majority class is not the TC, then the rule is discarded and
all instances in the clash set that match the TC are deleted, as described in
Section 2.1.

A concrete example is used to show how the J-values is used to prune
a rule. The example used a dataset extracted from the UCI repository, the
soybean dataset [16]. Here we induce rules using our own implementation
of PrismTCS with J-pruning. The original dataset has been converted to a
training set and a test set where the training set comprises 80% of the data
instances. The 32nd rule is induced for classification powdery-mildew.

First Term
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The first rule term induced is (date = july), adding up to the intermediate
rule:

IF (date = july) THEN CLASS = powdery-mildew

(J-value = 0.01370)

Second Term

Now the second rule term is induced, which is in this case (crop-hist =
same-lst-yr). Now the J-value of the rule is calculated if the second rule
terms (indicated in bold letters) were appended.

IF (date = july) AND (crop-hist = same-lst-yr) THEN CLASS =
powdery-mildew

(J-value = 0.01157)

Now it can be seen that appending the second rule term would lower the
J-value of the rule by 0.00213 (0.01370-0.01157), hence the second rule term
is not appended leaving rule:

IF (date = july) THEN CLASS = powdery-mildew

This is checked to ensure that the target class powdery-mildew is the
majority class of the instances under consideration. This is true in this case,
hence the rule is taken into the rule set. If the majority class were not
powdery-mildew the rule would be discarded and clash handling as described
in Section 2.1 would be applied.

The basic PrismTCS algorithm incorporating J-pruning is outlined below
where Ax is a possible attribute value pair, D is the training dataset and C
the clash set which is empty at the beginning of the algorithm’s execution.
Some of the statements used in this pseudo code are outlined for the pseu-
docode of PrismTCS above. The Basic J-pruning technique can be found in
Step 4:
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initialise:

Rule_set rules = new Rule_set;

D’ = D;

Step 1: Find class i that has the fewest instances in the

training set;

double bestJValue = 0;

Rule rule = new Rule(i);

Step 2: Calculate for each Ax p(class = i| Ax);

Step 3: Select the Ax with the maximum p(class = i| Ax)

and calculate the rule’s J-value (tempJValue) if

Ax would be appended to the rule;

Step 4: IF(tempJValue > bestJValue){

rule.addTerm(Ax);

bestJValue = tempJValue;

Delete all instances in D’ that do not cover rule;

} ELSE{

IF((D’ has i as majority class) AND

(bestJValue > 0)){

rules.add(rule);

GO TO Step 6;

}ELSE{

C = C + (instances in D’ covered by rule

and Ax and match class i);

D = D - C;

discard the current rule;

GO TO Step 6;

}

}

Step 5: Repeat 2 to 4 for D’ until D’ only contains instances

of classification i. The induced rule is then a

conjunction of all selected Ax and i;

Step 6: Create a new D’ that comprises all instances of

D except those that are covered by all rules

induced so far;

Step 7: IF (D’ is not empty){

repeat steps 1 to 6;

}
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3. Variation of J-pruning

In general there is very little work on pruning methods for the Prism
family of algorithms. Bramer’s J-pruning in the Inducer software seems to
be the only pruning facility developed for Prism algorithms. This Section
critiques the initial J-pruning facility and outlines Jmax-pruning, a variation
that makes further use of the J-measure.

3.1. Critique of J-pruning

Even though J-pruning described in Section 2.3 achieves good results
regarding the overfitting of Prism, it does not exploit the J-measure to its
full potential. The reason is that even if the new rule term decreases the
J-value, it is possible that the J-value increases again when adding further
rule terms [8]. If the rule is truncated as soon as the J-value is decreased it
may result in the opposite of overfitting, an over generalised rule with a lower
predictive accuracy. The relatively good results for J-pruning achieved in [7]
could be explained by the assumption that it does not happen very often
that the J-value decreases and then increases again. However, how often this
happens will be examined empirically in Section 4.

3.2. Jmax-pruning

According to [8], an upper bound for the J-measure for a rule can be
calculated using equation (3):

Jmax = p(y)· max{ p(x | y) · log2( 1
p(x)

), (1− p(x | y)) · log2( 1
1−p(x))} (3)

If the actual J-value of the rule currently being generated term by term
matches the maximum possible J-value (Jmax) it is an absolute signal to stop
the induction of further rule terms.

A concrete example is used to show how the J-values of a rule can de-
velop. The example used a dataset extracted from the UCI repository, the
soybean dataset [16]. Here we induce rules using our own implementation of
PrismTCS without any J-pruning. The original dataset has been converted
to a training set and a test set where the training set comprises 80% of the
data instances. The 39th rule induced is:

IF (temp = norm) AND (same-lst-sev-yrs = whole-field) AND (crop-hist =
same-lst-two-yrs) THEN CLASS = frog-eye-leaf-spot
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This is a perfectly reasonable rule with a J-value of 0.00578. However
looking at the development of the J-values after each rule term appended
draws a different picture:

First Term

IF (temp = norm) THEN CLASS = frog-eye-leaf-spot

(J-value = 0.00113, Jmax = 0.02315)

Here the rule has J-value of 0.00113 after the first rule term has been
appended. The J-value for the complete rule (0.00578) is larger than the
current J-value, which is to be expected as the rule is not fully specialised
yet on the TC.

Second Term

IF (temp = norm) AND (same-lst-sev-yrs = whole-field) THEN CLASS =
frog-eye-leaf-spot

(J-value = 0.00032, Jmax = 0.01157)

Now the J-value is decreased to 0.00032 and Jmax to 0.01157. Here J-
pruning as described in Section 2.3 would stop inducing further rule terms,
the finished rule would be:

IF (temp = norm) THEN CLASS = frog-eye-leaf-spot

with a J-value of 0.00113. However looking at the value of Jmax, after
the second rule term has been appended, it can be seen that it is still higher
than the previous J-value for appending the first rule term. Thus it is still
possible that the J-value may increase again above the so far highest J-value
of 0.00113. Inducing the next rule term leads to:

Third Term

IF (temp = norm) AND (same-lst-sev-yrs = whole-field) AND (crop-hist =
same-lst-two-yrs) THEN CLASS = frog-eye-leaf-spot
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(J-value = 0.00578, Jmax = 0.00578)

In this case the rule was finished after the appending of the third rule
term as it only covered examples of the TC. However, the interesting part
is that the J-value increased again by appending the third rule term and is
in fact the highest J-value obtained. Bramer’s original method would have
truncated the rule too early leading to an overall average information content
of 0.00113 instead of 0.00578. The J-value and the Jmax value are rounded
to five digits after the decimal point and appear identical but are actually
slightly different. Looking at more digits the values are in fact for the J-value
0.005787394940853119 and for the Jmax 0.005787395266794598. In this case
no further rule terms can be added to the left-hand side of the rule as the
current subset of the training set only contains instances of the TC, but if
this were not the case it would still not be worthwhile to add additional terms
as the J-value is close to Jmax.

Overall this observation strongly suggests that pruning the rule as soon as
the J-value decreases does not fully exploit the J-measure’s potential. This
work suggests that J-pruning could be improved by inducing the maximum
number of possible rule terms until the current subset cannot be broken down
further or the actual J-value is equal to or within a few percent of Jmax. As
a rule is generated all the terms are labelled with the actual J-value of the
rule after appending this particular rule term. The partial rule for which
the largest rule’s J-value was calculated would then be identified and all rule
terms appended afterwards truncated, with clash handling as described in
Section 2.1 invoked for the truncated rule. We call this new pre-pruning
method Jmax-pruning.

The basic PrismTCS algorithm incorporating Jmax-pruning is outlined
below where Ax is a possible attribute value pair, D is the training dataset
and C the clash set. Some of the statements used in this pseudo code are
outlined in the PrismTCS pseudo code in Section 2. However the statement

rule.removeTerm(termIndex);

is new, it removes a term at the specified index. The Jmax-pruning pseudo
code can be found in Step 4:

initialise:

D’= D;
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Rule_Set rules;

Step 1: D’’ = D’;

Find class i that has the fewest instances in D’’;

Rule rule = new Rule(i);

int termCounter = 0;

double bestJValue = 0;

int bestTermIndex = 0;

Step 2: Calculate for each Ax p(class = i| Ax);

Step 3: Select the Ax with the maximum p(class = i| Ax);

rule.addTerm(termCounter,Ax);

Delete all instances in D’’ that do not cover rule;

double tempJValue = new J-value for rule;

IF(tempJValue > bestJValue){

bestJValue = tempJValue;

bestTermIndex = termCounter;

}

termCounter++;

delete all instances in D’’ that are not covered by

the selected Ax;

Step 4: IF(D’’ only contains instances of classification i){

IF(termCounter == bestTermIndex){

rules.add(rule);

}ELSE{

FOR(termCounter;termCounter > bestTermIndex;

termCounter--){

rule.removeTerm(termCounter);

}

IF(instances in D’ covered by rule having

i as majority class){

rules.add(rule);

}ELSE{

C = C + (instances in D’ covered by rule not

having i as majority class);

delete rule;

}

}

}ELSE{

Repeat Steps 2 to 4;

}

Step 6: D’ = D - C;
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Delete all instances in D’ that cover rules;

Step 7: IF (D’ is not empty){

repeat steps 1 to 6;

}

An interesting fact to note is that Jmax-pruning can be seen as a hy-
brid between pre- and post-pruning. That is because rules are firstly fully
induced and then pruned which applies to post pruning, however the fact
that each induced rule is ‘post-pruned’ before the next rule is induced can is
pre-pruning. Contrary to Jmax-pruning, J-pruning is completely based on
pre-pruning as rules are not fully induced before they are pruned.

4. Evaluation of Jmax-pruning

The datasets used have been retrieved from the UCI repository [16]. Each
dataset is divided into a test set holding 20% of the instances and a training
set holding the remaining 80% of the instances.

Table 1 shows the number of rules induced per training set and the
achieved accuracy on the test set using PrismTCS with J-pruning as de-
scribed in Section 2.3 and Jmax-pruning as proposed in Section 3.2.

What is also listed in Table 1 as ‘J-value recovers’, is the number of
times the J-value decreased and eventually increased again when first fully
expanding the rule and then pruning it using Jmax-pruning. Using the orig-
inal J-pruning as described in Section 2.3 would not detect these J-value
recoveries and lead to a rule with a lower J-value and thus lower information
content than it could possibly achieve.

What can be seen is that in all cases Jmax-pruning performs either better
than or produces the same accuracy as J-pruning. In fact seven times Jmax-
pruning produced a better result than J-pruning and nine times it produced
the same accuracy as J-pruning. Taking a closer look in the rule sets that have
been produced in the nine cases for which the accuracies for both pruning
methods are the same revealed that identical rule sets were produced in seven
out of these nine cases. The two exceptions are the ‘Car Evaluation’ and
‘ecoli’ datasets, however in these two exceptions the classification accuracy
was the same using Jmax-pruning or J-pruning. In the cases where there are
identical classifiers there were no J-value recoveries present. In Section 3.1
we stated that the good performance of J-pruning [7], despite its tendency
to generalisation, can be explained by the fact that there are not many J-
value recoveries in the datasets and thus the tendency to over generalisation
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Table 1: Comparison of J-pruning and Jmax-pruning on PrismTCS.
Dataset Number of Rules Accuracy (%) Number of Rules Accuracy (%) J-value recovers

J-Pruning J-max Pruning
monk1 4 79 12 86 4
monk3 3 98 3 98 0
vote 3 94 3 94 0
genetics 8 70 8 70 0
22 contact
lenses 4 95 4 95 0
breast
cancer 24 96 24 96 0
soybean 39 88 43 89 4
australian
credit 20 89 20 89 0
diabetes 29 75 31 76 1
crx 18 83 18 83 0
segmentation 83 79 86 82 2
ecoli 23 78 26 78 3
Balance
Scale 10 72 36 74 21
Car
Evaluation 4 76 4 76 1
Contraceptive
Method
Choice 19 44 28 45 8
Optical
Recognition
of
handwritten
Digits 456 57 467 58 6

is low. Looking into the last column of table 1 we can see the number of J-
value recoveries. In seven cases there are none, thus there is no potential for
over generalisation by using J-pruning and for the remaining datasets there
is only a very small number of J-value recoveries with the exception of the
‘Balanced Scale’ dataset for which a 2% higher accuracy has been retrieved
by using Jmax-pruning compared with J-pruning.

Loosely speaking, if there are no J-value recoveries present, then Prism
algorithms with Jmax-pruning will produce identical classifiers to Prism al-
gorithms with J-pruning. However, if there are J-value recoveries, it is likely
that Prism algorithms with Jmax-pruning will produce classifiers that achieve
a better accuracy than Prism algorithms with J-pruning.

What can also be read from Table 1 is the number of rules induced.
In all cases in which both pruning methods produced the same accuracy,
the classifiers and thus the number of rules were identical. However in the
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cases where the J-value recovered, then the number of rules induced with
Jmax-pruning was the same or larger than the number of rules induced with
J-pruning. This can be explained by the fact that in the case of a J-value
recovery the rule gets specialised further than with normal J-pruning by
adding more rule terms while still avoiding overfitting. Adding more rule
terms results in the rule covering fewer training instances from the current
subset. This in turn results in that before the next iteration for the next rule
fewer instances are deleted from the training set, which potentially generates
more rules, assuming that the larger the number of training instances the
more rules are generated.

5. Ongoing Work

5.1. J-PrismTCS

Annother possible variation of PrismTCS that is currently being imple-
mented is a version that is solely based on the J-measure. Rule terms would
be induced by generating all possible categorical and continuous rule terms
and selecting the one that results in the highest J-value for the current rule
instead of selecting the one with the largest conditional probability. Again
the same stopping criterion as for standard PrismTCS could be used, which
is that all instances of the current subset of the training set belong to the
same class. We call this variation of PrismTCS, J-PrismTCS.

5.2. Jmax-pruning for TDIDT

J-pruning has also been integrated into the TDIDT approach as a pre-
pruning facility and achieved a higher classification accuracy than TDIDT
without J-pruning [7]. Encouraged by the good results outlined in Section
4, which were achieved with Jmax-pruning in PrismTCS, we are currently
developing a version of Jmax-pruning for TDIDT algorithms. The following
pseudo code describes the basic TDIDT algorithm.

IF All instances in the training set belong to the

same class

THEN return value of this class

ELSE (a) Select attribute A to split on

(b) Divide instances in the training set

into subsets, one for each value of A.

(c) Return a tree with a branch for each non
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empty subset, each branch having a decendent

subtree or a class value produced by applying

the algorithm recursively

The basic approach of J-pruning in TDIDT is to prune a branch in the
tree as soon as a node is generated at which the J-value is less than at its
parent node [7]. However performing the J-pruning is more complicated than
for Prism algorithms as illustrated in the example below.

Figure 2: Example of a decision tree for J-pruning.

Figure 2 illustrates a possible tree which is used to explain J-pruning and
Jmax-pruning for TDIDT. The nodes labelled with ‘?’ are placeholders for
possible subtrees. Now assuming that a depth first approach is used and the
current node being expanded is node ‘D’. In this case J-pruning would take
the incomplete rule

(1) IF (A=0) AND (B=0) AND (C=0)...

the complete rule

(2) IF (A=0) AND (B=0) AND (C=0) AND (D=0) THEN class = 1

and the possible incomplete rule
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(3) IF (A=0) AND (B=0) AND (C=0) AND (D=1)...

into account. Rule (2) is completed as all instances correspond to the
same classification which is (class = 1). However instances covered by in-
complete rule (3) correspond in this case to more than one classification.

J-pruning now compares the J-values of the incomplete rules (1) and (3).
If the J-value of rule (3) is less than the J-value of rule (1) then rule (3) is
completed by assigning it to the majority class of the corresponding instances.
The complication is that the calculation of the J-value of a rule requires us to
know its right-hand side. In the case of a complete (non-truncated) rule, such
as rule (2), this is straightforward, but how can the J-value be calculated for
an incomplete rule?

The method described by Bramer [7] is to imagine all possible alternative
ways of completing the incomplete rule with right-hand sides class=1, class=2
etc., calculate the J-value of each such (completed) rule and take the largest
of the values as the estimate of the J-value of the incomplete rule.

In a similar way to J-pruning for Prism algorithms, J-pruning for TDIDT
in its current form does not necessarily exploit the full potential of the J-
measure as again it is possible that if rule (3) were not truncated at the node
labelled ‘?’ but expanded to complete the decision tree in the usual way the
J-value for some or possibly all of the resulting complete branches might be
at least as high as the J-value at node D.

Applying the idea of Jmax-pruning rather than J-pruning to TDIDT
may increase the classification accuracy. This could be done by developing
the complete decision tree and labelling each internal node with a J-value
estimated as described above. Each branch (corresponding to a completed
rule) can then be truncated at the node that gives the highest of the estimated
J-values, in a similar way to the method described in Section 3.2, with each
truncated rule assigned to the majority class for the corresponding set of
instances.

This method appears attractive but there is a possible problem. Using
the example from Figure 2 and assuming that the estimated J-value of rule
(1) is greater than the estimated J-value of rule (3) and that the majority
class of the instances at node D is ‘1’, then rule (1) would be truncated at
node D and rule (3) would cease to exist, giving two completed rules in this
subtree:

(1) IF (A=0) AND (B=0) AND (C=0) THEN class = 1
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and

(2) IF (A=0) AND (B=0) AND (C=0) AND (D=0) THEN class = 1

Both rules are illustrated in Figure 3. Rule (2) is now redundant. It
is just a special case of rule (1), with the same classification, and can be
discarded.

Figure 3: Example of a decision tree with a redundant rule

Now suppose instead that in the above the majority class of the instances
at node (1) were ‘2’ (rather than ‘1’). In this case a different picture would
emerge, with rules (1) and (2) having different classifications. How likely this
situation is to occur in practice and how it should best be handled if it does
both remain to be determined.

6. Conclusions

Section 2 discussed the replicated subtree problem introduced due to
the representation of rules in the form of decision trees. The Prism family
of algorithms has been introduced as an alternative approach to TDIDT
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that does induce modular classification rules that do not necessarily fit into
a tree structure. The Prism family of algorithms was highlighted and J-
pruning, a pre-pruning facility for Prism algorithms based on the J-measure,
which describes the information content of a rule, was introduced. Section 3
criticised J-pruning as it does not fully exploit the potential of the J-measure.
The J-value of a rule may go up or down when rule terms are appended to the
rule. J-pruning truncates a rule as soon as the J-value decreases even if it may
recover (increase again). The proposed Jmax-pruning exploits the possibility
of a J-value recovery and achieves in some cases, examined in Section 4, better
results compared with J-pruning, but in every case examined Jmax-pruning
achieved at least the same or a higher classification accuracy compared with
J-pruning.

The ongoing work comprises the development of J-PrismTCS, a version
of PrismTCS that is solely based on the J-measure, by using it also as a rule
term selection metric as discussed in Section 5.1. Furthermore the ongoing
work comprises the development of a TDIDT algorithm that incorporates
Jmax-pruning as discussed in Section 5.2.
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