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Abstract. We discuss the modelling of dielectric responses for an electromagnetically excited  
network of capacitors and resistors using a systems identification framework. Standard models 
that assume integral order dynamics are augmented to incorporate fractional order dynamics. 
This enables us to relate more faithfully the modelled responses to those reported in the 
Dielectrics literature.  

1.  Introduction 
Over the past several years, our group has been building Fourier transform spectrometers for the far-
infrared part of the spectrum and as a consequence, we have developed signal processing algorithms 
for de-noising and classification by decomposing the signals in the Fourier, windowed-Fourier, 
principal component and wavelet domains [1-3]. Furthermore, we have adopted a systems 
identification framework [4-7] for the direct analysis of signals in the time domain, obviating the 
commonly used ratioing procedure to evaluate the sample’s insertion loss. Our modeling approach has 
been only valid, however, when the dispersive phenomena are governed by de-embeddable 
Lorentzian, Debye and Drude responses. 

In addition, a significant body of literature has come to our attention, where the dielectric 
responses (frequency dependent permittivity and AC conductivity) of heterogeneous materials such as 
glasses, ceramics, amorphous semiconductors, heavily doped crystals, polymers, and composites can 
be modeled under the assumption that they behave as micro-structured electrical networks containing 
capacitive (insulating) and resistive (conducting) regions [8-18]. Often, the experimentally observed 
AC conductivity ( )σ ω  follows a Jonscher [19, 20] power law ( ) ( )0 qAσ ω σ ω= +  where ω  is the 
excitation angular frequency,  is the DC conductivity, ( )0σ A  is a proportionality constant and 

. From this power law, as 0 5 0 7. q< < . ω → ∞ , the well-known irrational Cole-Davidson formula for 
complex permittivity is obtained: 
 

( ) 1
1

1 ( )* qi
ε

ωτ −
≈

+
    (1) 

 
Since in the Laplace domain, the above expression is not of integral order, we propose the use of 

fractional order models [21] to describe such processes. The Riemann-Liouville definition of 
fractional integral and corresponding fractional order derivative is adopted to solve the corresponding 
fractional order differential equations of the underlying system dynamics:   
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where  denotes the Euler gamma function. ( )qΓ

2.  Signal processing schemes within a fractional order identification framework 
The dynamics of an unknown medium may be modeled using an input-output state space 
representation and a subspace multiple input-multiple output (MIMO) model may be fitted [21]. The 
fractional state space representation for the system is given from:  

 
( ) ( ) ( )aD t A t B t= +x x u      (3a) 

( ) ( ) ( )t C t D t= +y x u      (3b) 
 
where is the state vector,  is the input vector,  is the output vector and n∈x \ m∈u \ p∈y \ n nA ×∈\

0 2

, 
,  and  are the state, input, output and feed-through system constant 

matrices to be determined. As discussed in [22], such fractional order system is stable if 
n m× CB∈\ p n×∈\ p m×D∈\

α< <  and 
( ) 2/λ απarg k >  and ( )kargπ λ ≤ π− <  where kλ  corresponds to the kth eigenvalue of A . For time-

domain simulations of a system, a recursive distribution of poles and zeros is obtained to approximate 
the frequency behavior of as  over an interval ,A Bω ω⎡ ⎤⎣ ⎦ . Because the asymptotic behavior at the low 
and high limits of the above frequency interval can have a static error between the fractional order 
model and its approximation, it is common to minimize this using an integrator operating outside that 
interval.  

Given a large number of inputs and outputs related to the unknown dielectric system, the goal of 
the subspace algorithms is to determine the order of the system, , , ,A B C D  (to a similarity 
transformation). For simplicity, we are only considering the deterministic case where there is no noise 
in the measured inputs or process (estimated state) although the proposed approach is also valid to the 
stochastic case where an explicit augmented model in innovation form can be considered. In that case, 
an additional step is required to obtain an estimate of covariance matrices of the noise sequences.  

A linear order model is obtained after computing the successive α-order fractional derivatives of 
(3). After substitution, an extended linear model ( ) ( ) ( )i it t∗ ∗= Γ + Δy x u t  is obtained with input and 
output variables:  

( ) ( ) ( ) ( )
TT T it t D t D tα α T⎡ ⎤= ⎣ ⎦u u u u…    (4a) 

( ) ( ) ( ) ( )
TT T it t D t D tα α T⎡ ⎤= ⎣ ⎦y y y y…    (4b) 

where 
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i C CA CA∗ −⎡ ⎤Γ = ∈⎣ ⎦" ip n×\

×

   (5a) 

2

0 0

0
ip im

i

i

D
CB D

CA B CB D

∗

−

⎡ ⎤
⎢ ⎥
⎢ ⎥Δ = ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
% #

\
# % %

"

   (5b) 

 
correspond to the observability and controllability matrices.  

Because a successive differentiation of the input-output data introduces additional noise from the 
high-pass filter action, a fractional order low-pass filter with corner frequency fω  is introduced 

 where ( 1
1( )F s sατ

−
= + ) ( )f

α
τ ω

−
= to provide numerical stability. This filter multiplies the Laplace 

transform of (3) and the result is inverse Laplace transformed to the time domain to obtain: 
 

( ) ( ) ( )F Ft A t B tλ λ= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣x x ⎦u     (6a) 
( ) ( ) ( )t C t D t= +y x u      (6b) 
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where ,F FA I A B Bτ τ= + =  and ( )( )1 F sλ −= ℑ  with ℑ  denoting the Laplace operator and I  the 
identity matrix. Using recursion on expression (6b), new filtered input and output vectors are 
constructed as well as observability and controllability matrices:  
 

1 2( ) ( ) ( ) ( )
Ti it t tλ λ− − t⎡ ⎤= ⎣ ⎦U u u u…    (7a) 
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   (7d) 

 
The subsequent estimation of the , , ,A B C D  matrices follows the standard MOESP subspace 
identification routines discussed in the literature [23-27] by applying them to expressions 7a-7d. For 
brevity reasons these will not be further discussed here.  

The fractional derivative order  is considered unknown and is estimated by minimizing: (0 2,α ∈ )
 

( )
( ) 2

20 2

1
2,

ˆ ˆarg min c
α

α α
∈

= c−y y     (8) 

 
where  is the vector obtained by concatenating the system outputs and cy ( )ˆ c αy is the vector obtained 
by concatenating the outputs of the state-space representation estimated with the subspace model. 

3.  Modelling of dielectric responses 
Figure 1 shows a generic dielectric network composed of resistors and capacitors connected in either 
series or parallel configurations.  

 

 
Figure 1. Simulated frequency response (admittance) of the dielectric network including the source 
resistance. Each line corresponds to one of the 20 random realizations assuming 5 hidden layers of 
nodes and 5 nodes per hidden layer. The insets shows the current pulse excitation and the random 
network of R, C components considered. The output resistance of the source is denoted by Rs. 
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The term “layer” will refer to a layer of nodes. The top and bottom layers are connected to the source. 
The intermediate layers are termed “hidden layers”. The qualitative differences in the admittance 
responses can be ascribed to the position of the R, C components in the network. If there is any pure 
resistive path connecting the source with the ground, the low-frequency (DC) admittance will be 
different from zero. If there is no such path, the DC admittance will be zero (tending to minus infinity 
in dB). In the latter case, there is at least one capacitor blocking the DC current from the source to the 
ground. The presence/absence of pure resistive paths depends on the position of the components, 
which is chosen in a random manner. In the simulations performed, the elements have adopted values: 
Rs = 0.1, R = 1, C = 0.5 and different network realizations are considered. 

The simulations always incorporate a resistor at the source output. Such a resistor can be used to 
model the output resistance of the source or the resistance of the interface between the source and the 
dielectric material. Moreover, the presence of such a resistor is important to eliminate inconsistencies 
in the model. For example, it makes no sense to connect the terminals of an ideal voltage source to a 
capacitor, as the capacitor voltage cannot undergo instantaneous changes. Following the work by 
Almond’s group [10-14], the Matlab results presented here were further validated against those 
obtained by using the ORCAD 16.3 software to run SPICE simulations.  

Figure 1 shows results obtained for 20 random networks (5 hidden layers of nodes, 5 nodes per 
hidden layer) in response to a rectangular pulse excitation u(t) with duration 0.5 and unit amplitude. 
Figure 2 shows the time-domain current response of a particular network realization shown in the inset 
of figure 1 to a chirp excitation u(t) with frequency ranging from 0 to 20 Hz and the corresponding 
N4SID models for integral order ranging from one to five.  

 

 

      
Figure 2. Current time domain response of a particular network to a chirp excitation u(t) with 
frequency ranging from 0 to 20 Hz and N4SID models of integral orders n ranging from one to five.  
 
These responses were obtained by stimulating the model dielectric with the same chirp input employed 
in the identification. In this case, the actual order of the input-output dynamics is 22. As can be seen, 
the difference between the actual and predicted responses decreases as the order is increased from one 
to three. However, the results become poor when the order is further increased, which may point to ill-
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conditioning problems in the identification process. Integral order subspace algorithms may not 
capture faithfully the dynamics of the dielectric sample under consideration. 

Figure 3 presents the response of a fractional-order model identified by using customized 
simulations with a fractional order subspace algorithm. In this case, the identification was initialized 
by using the first-order N4SID model. As can be seen, the agreement between actual and predicted 
responses is a considerable improvement on the results of the integer-order models presented in Figure 
2. 

 
 

Figure 3. Time response of the identified fractional-order model. 
 

A voltage-to-current transfer function ( )( ) 10 88 0 29 0 910 098 0 52 0 0096 1. . .. . .s s s
−

+ + for the identified 

fractional-order model was obtained for the particular realization used in the simulations (where the 
notation s jω=  implies that the transfer function is in the Laplace domain). 

Figure 4 compares the frequency response of the best integer-order model (n = 3) and the 
fractional order model against the admittance of the actual circuit. As can be seen, the fractional-order 
model agrees with the expected response across a wider range of frequencies, which encompasses the 
spectral content of the chirp excitation employed in the identification procedure. 

 

 
Figure 4. Frequency response of the identified models of (a) integer order n = 3 and (b) fractional 
order. Better matching between the actual circuit and the model response over 2 decades is obtained 
with the fractional order model. 
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4.  Discussion 
In the current framework, from an experimental perspective, we are assuming there are no additional 
artifacts from the propagation of the broadband excitation within the sample or from the process of 
gating the detector. It must be noted, however, that for the case of broadband excitation using a 
continuous wave Fourier transform spectrometer, where the sample is located in front of the detector 
after the two partial beams have recombined, there may be leakage of cross-polar components from 
the interaction of the sample with the beam [28] or pseudocoherence errors [29, 30] because different 
parts of the beam travel different paths through different regions of the sample (if this is of non-
uniform thickness), interfering constructively or destructively with each other when they recombine. 
In addition, in the microwave and THz parts of the spectrum, in the case of continuous wave 
dispersive Fourier transform spectrometry, where the sample is located in one arm of the 
interferometer (here we are assuming a Michelson, Mach Zehnder or their polarization variance 
topologies) there could be some additional ‘beam dilution’ errors because the beam spreads 
diffractively at different rates along the axes of propagation in the reference and sample arms [31, 32]. 
This is further exacerbated in fast pulse spectroscopies where tight focusing of the IR beam is 
necessary unless an ASOPS detector interrogation scheme is utilized [8, 33]. Furthermore, in the case 
where a picosecond or femtosecond system has been used to electromagnetically excite the sample at 
the UV, optical, infrared, THz or microwave parts of the spectrum, there will be additional errors from 
the tight focusing of the beam to the sample or the detector and the beam may not be modeled under 
the assumption of plane wave incidence on the sample. Experimentally obtained dielectric responses 
often incorporate such artifacts and so the associated data-driven system identification models are 
expected to show deviations from theoretical responses. Interestingly, fractional order Fourier 
transforms can also be used to decompose the propagating EM beam modes inside the sample or in 
free space so the proposed formulation is also appropriate for the study of optical systems in general. 

5.  Conclusion 
Jonscher’s universal dielectric response of a random network of capacitors and resistors has been 
considered under a systems identification framework and a new approach using fractional order 
models is proposed. The scheme is particularly promising for modeling the responses of mixtures, 
where several species with different dielectric properties are present within the sample. It can also be 
used for de-noising purposes in a signal processing framework, as well as for sample classification 
purposes within a chemometric quality assurance context. Appropriate Matlab tools are currently 
under development to identify and validate fractional order models. The detailed mathematical 
formulation of fractional order identification tools and in particular the formulation of fractional order 
subspace models will be discussed at the conference.  
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