Accessibility navigation


Controls on development and diversity of Early Archean stromatolites

Allwood, A.C., Grotzinger, J.P., Knoll, A.H., Burch, I.W., Anderson, M.S., Coleman, M. L. and Kanik, I. (2009) Controls on development and diversity of Early Archean stromatolites. PNAS, 106 (24). pp. 9548-9555.

Full text not archived in this repository.

To link to this article DOI: 10.1073/pnas.0903323106

Abstract/Summary

The ≈3,450-million-year-old Strelley Pool Formation in Western Australia contains a reef-like assembly of laminated sedimentary accretion structures (stromatolites) that have macroscale characteristics suggestive of biological influence. However, direct microscale evidence of biology—namely, organic microbial remains or biosedimentary fabrics—has to date eluded discovery in the extensively-recrystallized rocks. Recently-identified outcrops with relatively good textural preservation record microscale evidence of primary sedimentary processes, including some that indicate probable microbial mat formation. Furthermore, we find relict fabrics and organic layers that covary with stromatolite morphology, linking morphologic diversity to changes in sedimentation, seafloor mineral precipitation, and inferred microbial mat development. Thus, the most direct and compelling signatures of life in the Strelley Pool Formation are those observed at the microscopic scale. By examining spatiotemporal changes in microscale characteristics it is possible not only to recognize the presence of probable microbial mats during stromatolite development, but also to infer aspects of the biological inputs to stromatolite morphogenesis. The persistence of an inferred biological signal through changing environmental circumstances and stromatolite types indicates that benthic microbial populations adapted to shifting environmental conditions in early oceans.

Item Type:Article
Divisions:Faculty of Science > School of Archaeology, Geography and Environmental Science
ID Code:3193
Uncontrolled Keywords:microbe; paleontology; biosignature; carbonate; reef
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation