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ABSTRACT

Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations
of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial � plane,
including a leading order representation of the Coriolis force terms due to the poleward component of the
planetary rotation vector.

A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler
equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional
is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential
vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular
momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes
earlier results for hydrostatic and incompressible systems and for systems that do not account for the
nontraditional Coriolis force terms.

The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable
case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular
momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its
satisfying both the centrifugal and convective stability conditions.

1. Introduction

The simplest instability of a flow in a planetary at-
mosphere that one might consider is that of an axisym-
metric (longitude independent) equilibrium subject to
axisymmetric perturbations. This is the problem of
symmetric stability. When viscosity and diabatic effects
are neglected, the problem may be phrased in terms of
the distributions of entropy and zonal angular momen-
tum, both materially conserved quantities, and is ac-
cordingly a generalization of convective stability to
nonresting flows and of inertial instability to stratified
flows. It is of particular interest for flows in the equa-
torial region, where zonal angular momentum has its
maximum value and inertial instability is readily ob-

served. However, it is also in the equatorial region that
the planetary rotation vector becomes tangent to the
surface and the usual neglect of the effect of its tangen-
tial component is most tenuous.

When the atmosphere is shallow compared to the
radius of the planet, a suite of approximations is com-
monly made to the governing equations, consisting of
hydrostatic balance in the radial direction, the neglect
of the explicit radial dependence in the Lagrangian de-
rivative and metric terms, and the neglect of the Corio-
lis force terms due to the poleward component of the
planetary rotation vector. The third of these, known as
the “traditional approximation” after Eckart (1960), is
necessitated by the desire to retain exact conservation
of energy and angular momentum (Phillips 1966; Vero-
nis 1968; Lorenz 1967) and is justifiable in many mid-
latitude Earth problems because of the smallness of the
Coriolis parameter compared to the buoyancy fre-
quency (see, e.g., Gill 1982). The question of its justifi-
ability in general and especially near the equator has
been raised by Veronis (1963) and more recently by
White and Bromley (1995) and Colin de Verdière and
Schopp (1994), who all conclude that, at least in the
immediate vicinity of the equator, the approximation is
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not obviously valid on the basis of the length and time
scales of typically observed motions. Colin de Verdière
and Schopp argue that, for the neglect of the nontradi-
tional terms, the meridional length scale of the motion
should be large compared to (Ha)1/2, where H is a char-
acteristic vertical scale of the motion and a the radius of
the planet. For the middle atmosphere, (Ha)1/2 can be
on the order of 5° latitude. The Met Office currently
uses a forecasting model based on a nontraditional
“quasihydrostatic” model (White 1999). Hua et al.
(1997) did not make the approximation in a study of
equatorial inertial instability, and Kasahara (2003),
Durran and Bretherton (2004), Thuburn et al. (2002),
and Gerkema and Shrira (2005) have studied linear
wave propagation in the more general system.

An immediate consequence of the traditional ap-
proximation is that curves of constant planetary angular
momentum, meaning the angular momentum about the
planetary rotation axis of fluid parcels at rest in the
rotating frame, become lines of constant latitude,
whereas in the unapproximated system they are the
curves on which r2 cos2� is constant. This is illustrated
in Fig. 1. As a result, when the traditional approxima-
tion is made, static and inertial stability are in a sense
orthogonal: static stability requires that entropy in-
crease with height above the surface, and inertial sta-
bility requires that zonal angular momentum increase
toward the equator on surfaces of constant pressure.
The latter is an expression of Rayleigh’s (1917) cen-
trifugal stability theorem. In addition, symmetric stabil-

ity requires that potential vorticity have the same sign
as latitude, which is to say that angular momentum
must also increase toward the equator on surfaces of
constant entropy (see, e.g., Stevens 1983; Bowman and
Shepherd 1995).

Dunkerton (1981) addressed the simplest interesting
case of inertial symmetric instability, that of uniform
stable stratification and constant meridional shear in
the relative zonal velocity. It is easily seen that, with
respect to the traditional hydrostatic equatorial �-plane
equations, this configuration is inertially unstable in an
interval between the equator and a latitude propor-
tional to the value of the velocity shear. Unstable solu-
tions to the linearized equations exist for all nonzero
values of velocity shear, and the fastest growing modes
for each vertical scale exhibit a column of vertically
stacked cells of overturning motion in the vertical–
meridional plane, known as Taylor vortices, centered
over the unstable region—a pattern familiar from un-
stable Taylor–Couette flow between coaxial rotating
cylinders. The corresponding pattern in the zonal ve-
locity perturbation field is a column of alternately
signed jets over the equatorward side of the unstable
region and, in the potential temperature perturbation
field, two columns of alternately signed anomalies, an-
tisymmetric about the unstable region and 90° out of
phase with the zonal velocity anomaly (see Fig. 2).

Hitchman et al. (1987) identified the characteristic
inertial instability pattern in Northern Hemisphere win-
ter temperature data from satellite observations of the

FIG. 1. Contours of constant planetary angular momentum�r 2 cos2� without the traditional
approximation (solid lines) and with r � a (dashed) as functions of latitude � and distance
above the surface z. Contour values are in 109 m2 s�1. Contours that meet at the surface have
the same value. The approximately parabolic contours correspond to cylinders of constant
distance from the rotation axis of the spherical earth.
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lower mesosphere. Oppositely signed columns of tem-
perature anomalies with amplitudes of about 5 K and
vertical wavelengths of about 15 km were observed
over the equator, persisting for periods of one to two
weeks. Similar features were identified by Hayashi et
al. (1998), with further evidence that they represent
inertial instability provided by corresponding out of
phase patterns in winter midlatitudes, consistent with
the Dunkerton solution. In both studies, the events
were seen to be preceded by breaking Rossby waves at
midlatitudes, which pull air with negative (positive) po-
tential vorticity into the Northern (Southern) Hemi-
sphere over a longitude interval of about 60°, thus vio-
lating the symmetric stability condition. The signature
of inertial instability activity is routinely noted in nu-
merical studies of the middle atmosphere (e.g., Hunt
1981).

In addition, the observed temperature and momen-
tum fields in the middle atmosphere suggest that iner-

tial adjustment is an important part of the general cir-
culation during solstice seasons, when solar forcing is
maximum in the summer hemisphere. In other words,
the system is constantly being forced toward an iner-
tially unstable radiative equilibrium state and adjusting
itself toward a dynamically stable or neutral state fea-
turing approximately flat meridional profiles of tem-
perature and angular momentum throughout the equa-
torial region (Dunkerton 1989; Semeniuk and Shep-
herd 2001).

It should be noted that the observed fields suggesting
inertial instability are themselves rarely globally axi-
symmetric. Indeed, the role of breaking Rossby waves
in precipitating inertial instability events ensures that in
nature they are quite asymmetric (Knox and Harvey
2005). While it can be argued that the relevant physics
is largely contained in the meridional and vertical gra-
dients of angular momentum and entropy and can be
well represented by an axisymmetric treatment, studies
(e.g., Dunkerton 1983, 1993) have shown that there are
circumstances when asymmetric, propagating modes of
instability dominate over symmetric instability modes.

In this paper, the problem of the stability conditions
for a zonally symmetric equilibrium flow in a shallow
atmosphere is revisited, but without invoking the tradi-
tional approximation or hydrostatic balance. An equa-
torial � plane is used, which simplifies the mathematics
compared to the corresponding problem in spherical
geometry and adequately accounts for the effect of the
nontraditional Coriolis terms. Exploiting the conserva-
tion properties of the inviscid, adiabatic, zonally sym-
metric compressible Euler equations, an adaptation of
the energy–Casimir method (Holm et al. 1985; Shep-
herd 1990; Cho et al. 1993) is applied. The method
entails finding a functional conserved by the dynamics
and the class of equilibrium solutions at which the func-
tional takes local extrema. It is then shown that such
equilibria are stable with respect to small amplitude
perturbations.

In section 2, the Euler equations on a generalized
equatorial � plane are presented along with their con-
servation laws. In section 3 conditions for linear stabil-
ity are derived using the energy–Casimir method. Ex-
amples, including the Dunkerton case of linear zonal
velocity shear, are presented in section 4. Finally, in
section 5 the difficulty of extending the result to apply
to stability with respect to perturbations of finite am-
plitude is discussed.

2. Symmetric Euler equations

Consider adiabatic, compressible x-independent
flow in a domain with rectangular cross section

FIG. 2. Schematic diagram showing features of the Dunkerton
(1981) solution to the primitive equations linearized about a basic
state with linear meridional shear in the zonal velocity and stable
stratification. The basic state is inertially unstable in the shaded
interval. The fastest growing mode features a single column of
Taylor vortices over the unstable region. Solid (dashed) contours
are vortices with anticlockwise (clockwise) circulation. The
shaded circles with � and � represent eastward and westward
anomalies in the zonal wind on the equatorward side of the un-
stable region associated with, respectively, equatorward and pole-
ward transport of angular momentum. The cold and warm cells
represent the “pancake structures” in the temperature field asso-
ciated with, respectively, upward and downward motion.
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D � {(y, z) |�L � y � L, 0 � z � H} governed by the
Euler equations,

ut � ��uy � wuz � �y� � �w, �2.1a�

�t � ���y � w�z � �yu �
1
�

py , �2.1b�

wt � ��wy � wwz � �u � g �
1
�

pz , �2.1c�

�t � �����y � ��w�z , and �2.1d�

�t � ���y � w�z , �2.1e�

where u, 	, and w are the components of velocity in the
x, y, and z directions; 
, p, and � are density, pressure,
and entropy; and � � 2�/a and  � 2� are the param-
eters of the Coriolis force, with � the angular rotation
rate of the planet and a its radius. Subscripts denote
partial differentiation. For convenience, we assume the
no-normal-flow boundary condition 	 � 0 on y � �L
and w � 0 on z � 0, H. This is not a restriction on
possible instability because symmetric instability is a
local (parcel) instability (Holt and Thorpe 1991; Cho et
al. 1993). If the domain were instead chosen to be in-
finite in y, as is commonly the case for analyzing equa-
torially trapped linear wave solutions to (2.12), the ap-
propriate boundary condition would be that the veloc-
ity vanish as y → ��. The conserved integrals defined
below would still be conserved under this boundary
condition, and the stability conditions derived un-
changed.

The system is closed by an equation of state

F ��, p, �� � 0, �2.2�

such as the ideal gas law.
The equations conserve energy

H �x� � ��
D

��1
2
�u2 � �2 � w2� � gz � E��, ��� dy dz,

�2.3�
where x � (u, 	, w, 
, �) and E(
, �) is internal energy,
satisfying the thermodynamic identity

dE �
p

�2 d� � �d�, �2.4�

where �(
, �) is temperature. Also conserved are func-
tionals of the form

C �x� � ��
D

�C�m, �� dy dz, �2.5�

where C(m, �) is any function, and m is defined by

m � u �
1
2

�y2 � �z. �2.6�

Up to an additive constant, m is proportional to the
�-plane approximation to the component of absolute
angular momentum parallel to the earth’s rotation axis
(Grimshaw 1975) and will be referred to hereafter sim-
ply as angular momentum. Note the term z in (2.6),
which is absent when the traditional approximation is
made.

Functionals of the form (2.5) are related to the Ca-
simir invariants of the noncanonical Hamiltonian rep-
resentation of the system (2.1) (Shepherd 1990), and
their conservation is a consequence of the material con-
servation of m and � by the flow. We note also that
fluid parcels conserve potential vorticity

q �
1
�

���, m�, �2.7�

where �(·, ·) is the Jacobian operator, defined by

��f, g� � fygz � fzgy � ��f � �g� · i, �2.8�

where i is the unit vector in the x direction. The sign of
�( f, g) is given by the “right-hand rule” applied to �f
and �g: positive if �f points in the semicircle clockwise
of �g.

a. Steady solution and linearized equations

We seek to determine the stability of an equilibrium
solution (the “basic state”) x�X of (2.1) with u�U(y,
z), 	 � w � 0, � � N(y, z), and 
 � D(y, z), with
associated m � M(U; y, z) and � � T(D, N). The pres-
sure field P(D, N) balances the velocity and mass fields:
from (2.1b) and (2.1c),

��yU �
1
D

Py � 0, and �2.9a�

�U � g �
1
D

Pz � 0, �2.9b�

which may be combined to obtain the thermal wind
balance relation

��U, M �p�� �
1

D2 ��P, D�, �2.10�

where

M �p� � �
1
2

�y2 � �z �2.11�

is the planetary angular momentum. Equation (2.10)
relates the basic-state baroclinicity vector �P � �D to
the basic-state velocity field.
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The system (2.1) linearized about X is

u	t � �Uy�	 � Uzw	 � �y�	 � �w	, �2.12a�

�	t � ��yu	 �
1
D

p	y �
1

D2 Py�	, �2.12b�

w	t � �u	 �
1
D

p	z �
1

D2 Pz�	, �2.12c�

�	t � ��D�	�y � �Dw	�z , and �2.12d�

�	t � �Ny�	 � Nzw	, �2.12e�

where x � � (u�, 	�, w�, 
�, ��) represents the departure
from X, and the perturbation pressure p� is related to
the perturbation density 
� and entropy �� by

p	 � � �P

�D�
N

�	 � ��P

�N�D
�	, �2.13�

where (�P/�D)N � (�p/�
)� | (D,N), etc.
We assume that the mapping from (y, z) to (M, N)

has nonzero Jacobian everywhere in D except perhaps
on a finite number of curves and partition D accord-
ingly into a finite number of subregions D (i) (i � 1, . . . ,
n), such that

Q �
1
D

��N, M�
 0 �2.14�

inside each of the D (i) (see Fig. 3): Q is the potential
vorticity associated with the basic state. By construc-
tion, the mapping from (y, z) to (M, N) has a unique
inverse inside each D (i), which we denote by [Y (i) (M,
N), Z (i) (M, N)].

b. A conservation law for the linearized dynamics

We employ the energy–Casimir approach to derive
linear stability conditions. This method normally in-

volves constructing a functional that is exactly con-
served by the nonlinear equations and has a critical
point (in the sense of functionals) at the basic state
(Holm et al. 1985; Cho et al. 1993). The functional typi-
cally takes the form of a sum of the Hamiltonian and a
Casimir invariant, and its second variation evaluated at
the basic state is an exact quadratic invariant of the
corresponding linearized equations. Conditions for the
second variation to be sign-definite correspond to the
condition that the basic state be a local minimum or
maximum of the conserved functional, and imply linear
stability of the basic state.

In our case, finding such a functional is problematic
(see section 5 below), but we can still apply this “non-
linear method” to the linear problem using a functional
that is not conserved by the nonlinear equations, but
whose second variation about the basic state is a qua-
dratic invariant of the linearized equations. Consider
the “Casimir”

CL ��
i�1

n ��
D�i�

�C�i��m, �� dy dz, �2.15�

where each of the C (i) are arbitrary twice-differentiable
functions of m and �. We observe that unless Q is no-
where zero, in which case there is only a single subdo-
main, CL is not conserved by the nonlinear system (2.1)
and hence not really a Casimir invariant. Differentiat-
ing CL with respect to time and substituting from (2.1)
gives

d

dt
CL �

1
2 �i, j�1

n �
�D�i�∩�D�j�

� �C �j� � C �i��� · �̂ �i� dl �i��y, z�,

�2.16�

where � � (	, w), �D (i) is the boundary of the region
D (i), �̂ (i) is the outward-pointing unit vector normal to

FIG. 3. Sample partition of D into regions with nonzero Q.
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�D (i), and dl (i) is the element of arclength along �D (i).
The outer boundary terms vanish because the velocity
� is tangential to the boundary of D by assumption. The
quantity dCL /dt vanishes if the functions C (i) in neigh-
boring regions always match along the boundaries but,
since the C (i) are in general different, this is not gener-
ally the case once the system is displaced from X.

We nevertheless choose the functions C (i) so that CL

is tangent to H (in the sense of functionals) at the basic

state. This ensures that the combined functional H� CL

has a critical point at the basic state, a prerequisite for
it having a minimum or maximum. That is,

��H � CL� |X � 0, �2.17�

where �(H � CL)X is the first variation of H � CL evalu-
ated at X. For arbitrary variation �x � (�u, �	, �w, �
,
��),

��H � CL� |X ��
i�1

n ��
D�i�

����1
2

U2 � gz � E �D, N� � DE ��D, N� � C �i��M, N��� D��U � Cm
�i��M, N ���u

� �E ��D, N� � C�
�i��M, N ������ dy dz. �2.18�

Hence �(H � CL) |X vanishes if

C �i��M, N� � ��1
2

U2 � gz � E �D, N� � DE ��D, N��,

�2.19a�

Cm
�i��M, N� � �U, and �2.19b�

C�
�i��M, N� � �E ��D, N� �2.19c�

for each i. Note that z, U(y, z), and D(y, z) are im-
plicit functions of (M, N) in each D (i) through the in-
verse mappings [y, z] � [Y (i) (M, N), Z (i)(M, N)]. It
may be verified that the conditions (2.19) are mutually
consistent by differentiating C (i)(M, N ) and using
(2.10).

We now construct the quadratic invariant of the lin-
earized equations based on the second variation of H �
CL evaluated at X, which is

�2�H � CL� |X ��
i�1

n ��
D�i�

�D�1 � Cmm
�i� �M, N����u�2 � D����2 � D��w�2 � �2E ��D, N� � DE ���D, N������2

� D�E ���D, N� � C��
�i� �M, N������2 � 2DE ���D, N����� � 2DCm�

�i� �M, N��u��� dy dz.

�2.20�

The second partial derivatives of C (i)(m, �) at (M, N)
are obtained by differentiating (2.19b) and (2.19c), giv-
ing

Cmm
�i� �M, N� � �1 �

1
DQ

��yNz � �Ny�, �2.21a�

Cm�
�i� �M, N� �

1
DQ

���yMz � �My�, �2.21b�

C�m
�i� �M, N� �

1
DQ

E ���D, N��DyNz � DzNy�, and

�2.21c�

C��
�i� �M, N� � �E ���D, N�

� E ���D, N�
1

DQ
�DyMz � DzMy�,

�2.21d�

since �DQ is the Jacobian of the transformation from
(y, z) to (M, N).

Identifying the primed variables in the linear system
(2.12) with the variation �x in (2.20), we define HL[x �;
X] � �2 (H � CL) | X [�x; X]. Using (2.21), the no-
normal-flow boundary condition, and standard thermo-
dynamics relations, it can be shown that HL is conserved
by (2.12).
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3. Conditions for linear stability

We rewrite HL so that the coefficients of the pertur-
bation quantities all have the same dimensions:

HL�x 	; X� � �
i�1

n ��
D�i�

�DU0
2�1 � Cmm

�i� �M, N��� u	

U0
�2

� D�	2 � Dw	2 � D0
2 �2E ��D, N� � DE ���D, N��� �	

D0
�2

� DN0
2 �E ���D, N� � C��

�i� �M, N��� �	

N0
�2

� 2DD0N0E ���D, N�
�	�	

D0N0

� 2DU0N0Cm�
�i� �M, N�

u	�	

U0N0
� dy dz, �3.1�

where U0, D0, and N0 are arbitrary positive constants
with the dimensions of velocity, density, and entropy,
respectively. Here, HL will be strictly positive if the

integrands are strictly positive, or equivalently, if
(U0, D0, N0) can be found such that the matrices

��i��D, N, M� � �
D0

2

D2 cs
2�D, N� D0N0E ���D, N� 0

D0N0E ���D, N� N0
2 �E ���D, N� � C��

�i� �M, N�� U0N0Cm�
�i� �M, N�

0 U0N0Cm�
�i� �M, N� U0

2 �1 � Cmm
�i� �M, N��

	, �3.2�

where c2
s � (�P/�D)N is the square of the speed of

sound, are positive definite for all triples (D, N, M) that
occur in the corresponding region D (i).

The condition for all of the �(i) to be positive definite
is equivalent to the condition that all subdeterminants
that include the top left (or bottom right) element be
positive (see, e.g., Perlis 1952, p. 103). Hence,

D0
2

D2 cs
2�D, N� 0, �3.3a�

det�
D0

2

D2 cs
2�D, N� D0N0E ���D, N�

D0N0E ���D, N� N0
2 �E ���D, N� � C��

�i� �M, N��
	

 0, and �3.3b�

det��i��D, M, N� 0. �3.3c�

We will see later that (3.3) can be rephrased in terms
of the geometric properties of the basic state, notably
the gradients of M(y, z) and N(y, z): (3.3b) is a state-
ment of inertial stability and (3.3c) of the symmetric
stability condition on potential vorticity. But before
elaborating on the interpretation of the conditions, we

show that positive definiteness of HL implies the stabil-
ity of x � � 0 with respect to a suitably defined norm.

Under the hypothesis that the �(i) are symmetric,
positive-definite matrices, their eigenvalues �(i) are all
positive, and there exists a complete set of mutually
orthogonal eigenvectors �j [ j � 1, 2, 3] for each �(i).
Any vector x �1 � (
�/D0, ��/N0, u�/U0) can be written as
a linear combination of the �j (for any particular i).
Thus

x 	1 ��
j�1

3

�j�j �3.4�

and

x1	
T��i�x	1 ��

j�1

3

�j
�i��j

2 |�j |
2 �3.5�

because the �j are mutually orthogonal, and

�min
�i� |x 	1 |2 � x 	1

T��i�x 	1 � �max
�i� |x 	1 |2, �3.6�

where �(i)
min and �(i)

max are the smallest and largest of the
eigenvalues of �(i) [that a largest eigenvalue exists re-
quires that the elements of �(i) are finite for all (y, z) in
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the domain D (i)]. Note that because the matrices vary
with D, N, and M, so do the eigenvalues. Let �� and ��
be the smallest and largest eigenvalues of the �(i) con-
sidering all triples (D, N, M) and all i. Defining the
norm ||x � ||� by

||x 	 ||�
2 � ��

D

D���� �	

D0
�2

� � �	

N0
�2

� � u	

U0
�2�

� �	2 � w	2� dy dz, �3.7�

we have

||x 	 ||��

2 � HL�x 	�� ||x 	 ||��

2 . �3.8�

But this is true for all time, and, since HL is conserved
in time, we have

||x 	�t� ||��

2 � HL�x 	�t�� � HL�x 	�0��� ||x 	�0� ||��

2

�
��
��

||x 	�0� ||��

2 �3.9�

so that for any �, if ||x �(0) ||�� � (��/��)1/2�, then
||x �(t) ||�� � � for all t.

Therefore, if the conditions (3.3) are satisfied and all
coefficients of disturbance quantities in (3.1) are
bounded, then x � � 0 is stable, and we may say that the
solution to the full equations of disturbance quantities
in (3.1) x � X is linearly stable.

We now turn to the physical interpretation of the
stability conditions (3.3). Equation (3.3a) is satisfied by
any fluid. For example, for an ideal gas with equation of
state

p � R��, �3.10�

where R is a constant, it is readily shown that c2
s �

(cp /c	)R� � 0, where cp and c	 are the specific heat
capacities of the gas at constant pressure and volume,
respectively.

Using (2.4), (2.21d), and (2.9), condition (3.3b) can
be written

1

D3Q
��P

�N�D
��M, P� 0, �3.11�

and condition (3.3c) can be written

g�

D ��P

�N�D

y

Q
 0. �3.12�

Using thermodynamics identities, we find

��P

�N�D
� ��T

�N�D
��P

�T�D
�

T

c�
��P

�T�D
, �3.13�

where the heat capacity c	 need not be constant, but is
surely positive. The derivative (�P/�T)D is also posi-

tive—pressure increases with increasing temperature
for fixed density. Hence, (�P/�N)D � 0.

Equation (3.12) is therefore the well-known symmet-
ric stability condition that potential vorticity be positive
(negative) in the Northern (Southern) Hemisphere
(Stevens 1983). Assuming that Q is continuous across
the equator, this implies that Q � 0 at the equator.
Equation (3.11) may then be interpreted as a general-
ization of the Rayleigh criterion for inertial stability: the
angular momentum gradient must be clockwise (anti-
clockwise) of the pressure gradient in the Northern
(Southern) Hemisphere, when viewed with the North-
ern Hemisphere on the right (see Fig. 4). For example,
if the pressure gradient is directly downward, then �M
must be toward the equator for stability. The shape of
the pressure contours depends on the velocity field U.
From (2.9),

Pz

Py
�

g � �U

�yU
, �3.14�

so the pressure contours are concave down for eastward
flow (U � 0) and concave up for westward flow (U �
0). The effect of  is to steepen the pressure contours
for eastward flow and flatten them for westward flow
(we have assumed that g �  |U | ). Since g/ � 7 � 104

m s�1, much greater than any plausible U, condition
(3.11) is hardly changed from the traditional case.

Equations (3.11) and (3.12) are formally the same
stability conditions as those of Bowman and Shepherd
(1995), where the hydrostatic approximation is used,
namely y(�M/�y) |p � 0 and yQ � 0, but, of course, the
definitions of M and Q are different because of the
difference in the geometry and in the assumptions un-
derlying the dynamical equations.

FIG. 4. Inertial stability condition. Dashed curves are contours
of constant pressure with the curvature exaggerated by a factor of
10 compared to a typical atmospheric state. Pressure contours are
concave down, implying U � 0. For stability, the direction of �M
must be in the shaded regions determined by �P.
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If the �(i) are positive definite, then it also follows
from the theorem cited earlier that the bottom right
element of �(i) is positive; that is,

1 � Cmm
�i� �M, N� 0, �3.15�

which, by (2.21a), is equivalent to

1
DQ

��yNz � �Ny� �
1

DQ
��N, M �p�� 0, �3.16�

and may be interpreted as the condition that the com-
ponent of the entropy gradient in the direction of the
local planetary rotation vector

� �
1
2
��j � �yk� �3.17�

be positive (negative) in the Northern (Southern)
Hemisphere. Here, j and k are the unit vectors in the y
and z directions, respectively. Equivalently, the entropy
gradient must be clockwise of the planetary angular
momentum gradient in the Northern Hemisphere, and
anticlockwise in the Southern Hemisphere (see Fig. 5).
This is a generalization of static stability since the
“static” state in the rotating frame is determined by the
planetary rotation parameters � and . For example, if
the  term is neglected (as in the traditional hydrostatic
primitive equations), then �M (p) is toward the equator,
and (3.16) reduces to Nz � 0. Recall from our earlier
discussion that an effect of  is to create the slope in the
planetary angular momentum contours (see Fig. 1). The
corresponding figure for the traditional case would
have �M (p) horizontal and stability requiring that �N
point in the upper half-circle. This effect of including
the  terms was discussed by Sun (1995) in the context
of an analysis of symmetric stability in the Boussinesq
equations on an f plane with the  terms. He found that

the value of Ny, and in particular its sign, affects
stability and the growth rate of instability if  is in-
cluded.

Note that the potential vorticity condition (3.12) and
either of (3.11) and (3.16) imply the remaining condi-
tion. However, it is possible for a state to be inertially
and statically stable but to violate the potential vorticity
condition. Such a situation is depicted in Fig. 6: both
�M and �N point within their respective “semicircles
of stability,” but they are unstably oriented with respect
to one another. Also recall that the coefficients in HL

have to be bounded to ensure that the matrices �(i)

have a maximum eigenvalue. This potentially restricts
the functional form of M(y, z) and N(y, z) in the limit
as y → 0.

Equivalent conditions to those derived here can be
found using a heuristic approach based on forces on
displaced fluid parcels, along the same lines as the
method of Shutts and Cullen (1987). Considering an
infinitesimal displacement from equilibrium of an in-
finitesimally thin line of fluid (a line and not a parcel
because of the symmetry in x) such that its density and
zonal velocity adjust in order to conserve entropy and
angular momentum and assuming that the pressure
field is unchanged by the perturbation, it can be shown
that (3.11) and (3.12) imply that the component of net
force on the displaced parcel in the direction of the
displacement will be in the opposite sense to the dis-
placement (Fruman 2005; §3.1.5). The advantage of the
approach chosen in the present paper is that it is rigor-
ous in the sense of not requiring any assumptions on the
perturbations other than those implicit in the equations

FIG. 5. Static stability condition. Dashed curves are contours of
constant planetary angular momentum. For stability, the direction
of �N must be in the shaded regions determined by �M (p).

FIG. 6. An example of a basic state that satisfies the inertial and
static stability conditions but fails the symmetric stability (poten-
tial vorticity) condition. The contours and shaded regions are as in
Figs. 4 and 5. If they both fall in the darkly shaded region, it is
possible to have both �N and �M satisfy the conditions for static
and inertial stability, respectively, but be oriented relative to each
other such that Q has the wrong sign for stability.
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of motion. Furthermore, when applied to constrained
models like the anelastic and Boussinesq equations, it
can be extended to finite amplitude perturbations in
certain circumstances. On the other hand, the parcel
displacement approach has the advantage of predicting
instability when the stability conditions are not satis-
fied, thus yielding necessary and sufficient conditions
for stability when the perturbation does not alter the
pressure field.

4. Examples

a. Example 1: Isothermal ideal gas atmosphere in
solid-body rotation

We now show that an isothermal ideal gas atmo-
sphere in solid-body rotation is linearly stable. In the
equatorial �-plane system, the state corresponding to
solid-body rotation is that with uniform zonal relative
velocity U � U00.

By the ideal gas equation of state (3.10) and the con-
ditions for balance (2.9), we have

�

�y
lnP � ���U00

RT00
�y, and �4.1a�

�

�z
lnP � ��g � �U00

RT00
�, �4.1b�

where T00 is the uniform temperature from which we
can solve for the basic-state pressure field:

P�y, z� � P00 exp�� 1
2 ��U00

RT00
�y2 � �g � �U00

RT00
�z�,

�4.2�

where P00 is the pressure at the origin. The potential
vorticity satisfies

DQ � ��N, M� � �
1

T00D
��P, M �p � � � � �g

T00
�y,

�4.3�

where D � P/RT00.
The coefficient matrix � for this state is [noting that

since the basic state is an even function of y, there is
only one function C(m, �) required]

� � �
D0

2
cp

c�

RT00

D2 D0N0

1
c�

RT00

D
0

D0N0

1
c�

RT00

D
N0

2
T00

c�

0

0 0 U0
2

	,

�4.4�

where we have used thermodynamics identities and
(2.21). Choosing

N0 � �Rc��
1�2, U0 � �RT00�

1�2, and

D0 � �c�

R�1�2

D00, �4.5�

where D00 � P00/RT00, recalling that the constants D0,
N0, and U0 are arbitrary and are included to make the
dimensions of the elements in � uniform, we get

� � RT00�
cp

R �D00

D �2 D00

D
0

D00

D
1 0

0 0 1
	. �4.6�

The eigenvalues of � are �3 � RT00 and

�
2
1 �

1
2��cp

R �D00

D �2

� 1�
�
�cp

R �D00

D �2

� 1�2

� 4�D00

D �2�RT00,

�4.7�

which are positive for all D � 0. The minimum value of
�2 in the domain occurs at the origin and is equal to �3,
and an upper bound on �1 is the trace of the upper-left
principal subdeterminant of �. We have, therefore, that
the minimum and maximum eigenvalues are bounded
from below and above by, respectively,

�� � RT00, and �4.8a�

�� � RT00�1 �
cp

R
exp���U00

RT00
�L2

� 2�g � �U00

RT00
�H��. �4.8b�

This confirms that the basic state is linearly stable.

b. Example 2: Linear velocity shear at the equator
and nearly uniform temperature

We show that constant meridional velocity shear at
the equator is inertially unstable. This is the case con-
sidered by Dunkerton (1981).

Consider again an ideal gas in equilibrium with tem-
perature independent of height and velocity U(y, z) �
�y, where � � g/L is a constant [� � g/L would imply
negative temperatures in the domain; for earth values
of g and , and L � 103 km, g/L  100 (m s�1) km�1].

To proceed, we must specify pressure and density
fields that are in balance with U [i.e., which satisfy
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(2.9)]. Eliminating density D between (2.9a) and (2.9b),
we find

�1 �
��

g
y�Py � �� ��

g
y2�Pz � 0. �4.9�

We solve for P(y, z) using, for example, the method of
characteristics (see, e.g., Zauderer 1989), finding

P�y, z� � P00�1 �
��

g
y�b

� exp� � g

RT00
�z �

�

� � g

��
y �

1
2

y2���,

�4.10�

where

b � � g

RT00
���

��� g

���2

. �4.11�

The corresponding density and temperature fields are

D�y, z� �
P

RT00

1

�1 � ����g�y�
, and �4.12a�

T�y, z� � T00�1 �
��

g
y�. �4.12b�

Notice that there is a very slight meridional tempera-
ture gradient to balance the velocity shear (a physically
plausible value of � over a substantial latitude range
might be �10�4 s�1, making �/g � 10�9, a tempera-
ture gradient of 0.001T00 per 1000 km).

In Dunkerton (1981), it is shown that this basic-state
velocity field is linearly unstable in a hydrostatic sys-
tem, with perturbations leading to the formation of
Taylor vortices in the latitude interval 0 � y � �/� and
corresponding changes to the m and � fields. In the
present system, the potential vorticity is

Q �
�g

DT ��1 �
��2

�g �y �
�

� �1 �
�2

g2 cpT00��.

�4.13�

The latitude y0 at which Q � 0 (the width of the un-
stable latitude interval) is

y0 �
�

� �1 �
�2

g2 cpT00

1 �
��2

�g
� , �4.14�

which has its maximum value (��/2�) for � � (g/a)1/2.
For � K (g/a)1/2, y0 � �/�, its value in the traditional

system, and for � k (g/a)1/2, y0 → 0 like ��1. For the 
correction to the interval of anomalous potential vor-
ticity to be significant, one would need �  (g/a)1/2. For
earth, this is approximately 1 (m s�1) km�1, which is
possible, although not over a wide latitude interval as it
would entail unrealistically large velocities. Hence, the
result of Dunkerton for the traditional case is approxi-
mately valid for a large range of values of the horizontal
shear.

The change in the width of the unstable latitude in-
terval is due to the increasing curvature of the pressure
contours with increasing velocity. At the equator, �P
points vertically down, so the clockwise edge of the
semicircle of stability (see Fig. 4) is vertically up; �M
points clockwise of vertically up at the equator (for � �
0) and turns toward the vertical linearly with y. Mean-
while, the semicircle of stability rotates clockwise (to-
ward �M) quadratically with y. Here �M enters the
semicircle of stability at y0.

c. More examples

The preceding two examples and three others are
summarized in Table 1.

In example 3, we consider an angular momentum
field that decreases with latitude like �! |y |k (! � 0, k
� 1). Such a solution is continuous and differentiable
for all y and satisfies the Rayleigh criterion for stability.
For 1 � k � 2, the solution is stable in the neighbor-
hood of the equator for all !. However, for k � 2 and
small enough !, and for k � 2 and all !, there is an
interval of anomalous potential vorticity straddling the
equator. In particular, this implies that a flat angular
momentum profile is not stable. This instability is nei-
ther inertial nor convective, since both (3.11) and (3.16)
hold, but of the “symmetric” type illustrated in Fig. 6.
This can be seen by looking at the gradients of M and
N to leading order in y, normalized to have unit z com-
ponent, for k � 2:

�nM  ���k

�

|y |k

y �j � k , and �4.15a�

�nN  ����cpT00

g2 y�j � k , �4.15b�

where �n is the normalized gradient. At the equator,
both gradients are pointing upward. For small y, �nN
tips toward the equator linearly with y, faster than
�nM, implying anomalous Q in both hemispheres. As
an example, for the case k � 4 and ! � 10�23, corre-
sponding to an angular momentum difference between
the equator and y � 1000 km of 10 m s�1 (a velocity
difference of about 5 m s�1), the interval of instability is
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only about 100 m in width for typical earth values. This
effect is dependent on the nontraditional terms—note
the appearance of  in (4.15b). However, since inertial
adjustment tends to be localized to the region of
anomalous potential vorticity (Dunkerton 1981;
Ooyama 1966), this instability is perhaps of little im-
portance.

In example 4, we consider a case with temperature
varying with height and velocity independent of height.
Temperature increasing with height is evidently slightly
destabilizing near the equator, making the threshold
angular momentum curvature � � �� slightly larger.

In example 5, we find that velocity and temperature
decreasing with height is destabilizing, as we would ex-
pect because it entails angular momentum increasing
more slowly with distance from the axis of rotation.
Interestingly though, for the example considered, the
stability criterion is independent of , the planetary an-
gular momentum gradient with height.

5. Remarks on nonlinear stability

In similar problems (e.g., Cho et al. 1993; see
also Mu et al. 1996), the conditions for linear sta-
bility can be extended to the problem of finite
amplitude, “nonlinear” stability, meaning that if a basic
state X satisfies appropriate conditions, then arbi-
trary, even large, perturbations to X will remain
bounded for all time, as governed by the full nonlinear
equations. The usual approach is to define an exact
invariant A[x; X], called the pseudoenergy, that vanishes
if x � X and to find conditions on X such that A is
strictly positive for all other choices of x (Shepherd
1990).

Since linear stability is a necessary condition for non-
linear stability (provided the norm for the linear prob-
lem is the small amplitude limit of the finite amplitude
norm in terms of which nonlinear stability is defined),
in this case we only consider X having Q � 0 on y � 0

TABLE 1. Steady states of symmetric Euler system and corresponding stability criteria for 1) solid body rotation of isothermal
atmosphere; 2) linear variation of velocity with latitude; 3) symmetric about the equator power-law variation of velocity with latitude;
4) linear temperature increase with height; and 5) linear variation of velocity and temperature with height.

Zonal velocity
and temperature Potential vorticity Stability criteria

1 U � U00, T � T00 DQ � � �g

T00
� y Stable for all U00, T00

2 U � �y, ��  0�,

T � T00�1 �
��

g
y�

DQ �
�g

T ��1 �
��2

�g � y �
�

��1 �
�2

g2 cpT00�� Unstable in 0 � y � y0,

y0 �
�

�
�1 � O� �2

g/a��
3 U �

1
2

�y2 � � |y | k,

��  0, k  1�,

T � T00�1 �
�

g
U�

DQ �
1
T ����2�cpT00

g � y �
1
2

�2�y3

� k��g � �2�cpT00

g �� |y | k

y

� ����1 �
k

2� y |y | k � �k�2 |y | 2k

y �

1 � k � 2 Stable in the neighbor-
hood of the equator

k � 2 Stable if � 
�

2 �1 � O� g2

�2cpT00
��

k  2 Unstable in y � y0��, k�
for any �

4 U�y� �
1
2

�	y2,

T�0, z� � T00�1 � �z�,
��  0�

DQ �
1
T ���g � �cpT00��� � �	�

� �	�2�cpT00

g ��1 � �z��y

�
1
2 ���	2 � ���	�cpT00

g ��� � �	�� y3

+ ���cpT00�y ln�1 −
�	�

2g
y2��

Stable if:

�	 �  g � �cpT00

g � cpT00�� +
�2

g
�1 � �H��� �

5 U � U00 � �	z,

�U00  0 and �	 
−U00

H �,

T � T00�1 �
�	

U00
z�

DQ �
�y

T �g � �	�U00 � �	z� �
�	

U00
cpT00� Stable if:

�	  �
gU00

cpT00
� 1

1 � �U00
2 /cpT00�

�
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and nowhere else. Recalling that q is materially con-
served, one can show that the functional

CNL � ��
D

��C��m, �� � H�q��C��m, ��

� C��m, ���� dy dz, �5.1�

where

H�q� � �0, q � 0

1, q � 0,
�5.2�

is conserved by (2.1). We then choose C� and C� to
satisfy (2.19) and define

A �x; X� � �H � CNL��x� � �H � CNL��X�. �5.3�

By construction, A[X; X] � 0 and A has a critical point
at x � X. However, it is not a simple matter to find
norms to bound A from above and below for all times
like we did with HL in the linear case. There are two
separate difficulties. The first is connected to the asym-
metry of the basic state and hence to the difference
between C� and C�. If the flow evolves in such a way
that regions of q � 0 develop in the Southern Hemi-
sphere, then the corresponding contribution to A from
those regions will depend on C� and not on C� as it did
at the basic state. In this way, it is possible for A to be
negative, which would prevent any rigorous Lyapunov
stability result by this method. Note that this difficulty
does not arise for a basic state for which Q is nowhere
zero, but such a case is not especially relevant to equa-
torial dynamics.

The second difficulty is related to the fact that we are
free to choose C� and C� provided we satisfy (2.19)
and the matching condition at the equator at equilib-
rium, but we cannot choose the dependence of the in-
ternal energy E on 
 and � and, hence, cannot bound
certain terms in A for all possible perturbations of 
 and
� outside of the ranges of N(y, z) and D(y, z). Thus,
conditions for the positive definiteness of A depend not
only on the basic state, but on the states that the system
might pass through over time—the details of which we
do not know. Note that this difficulty is avoided if either
the Boussinesq or the anelastic approximation is used,
in which case density is not a dependent variable.

Both difficulties are addressed in more detail and the
corresponding problem for the anelastic equations ex-
plored in Fruman (2005).

6. Summary

Conditions for linear stability of a zonal flow equi-
librium solution to the x-symmetric adiabatic compress-

ible Euler equations on an equatorial � plane, including
a leading order representation of the nontraditional
Coriolis force terms (controlled by the parameter  �
2�), have been calculated. The inertial stability condi-
tion from the traditional hydrostatic result is shown to
extend, in a formal sense, to this system. The condition
for stability is still the Rayleigh criterion that the angu-
lar momentum in the basic state increase toward the
equator on surfaces of constant pressure, although the
definition of angular momentum is slightly different
with the inclusion of the nontraditional terms. The
“static” stability condition derived is rather different
from that in the traditional system due to the modifi-
cation of the surfaces of constant planetary angular mo-
mentum due to the nontraditional terms. We find that,
for static stability, the gradient of entropy must be
clockwise of the gradient of planetary angular momen-
tum in the Northern Hemisphere and anticlockwise in
the Southern Hemisphere (viewed with the Northern
Hemisphere on the right). The symmetric stability con-
dition, that potential vorticity be positive (negative) in
the Northern (Southern) Hemisphere, generalizes to
the nontraditional system if the definition of potential
vorticity is modified appropriately.

Several examples were presented. In each case, zonal
velocity and temperature fields that satisfy thermal
wind balance are chosen, and the potential vorticity is
compared to the symmetric stability condition. The ef-
fect of the nontraditional terms is of particular interest
in two of the examples. In the case of a basic state with
angular momentum profile higher than quadratic in y,
conditions for both inertial and static stability are sat-
isfied, but the potential vorticity condition fails. We
showed that this is due to the tipping of the angular
momentum gradient more slowly than the entropy
gradient as y increases away from the equator, an effect
dependent on the inclusion of the nontraditional terms
in the dynamical equations. In the case of a basic state
with linear velocity shear across the equator, the cel-
ebrated example of Dunkerton (1981), the dependence
of the width of the latitude interval of instability on the
velocity shear changes if  is included in the equations,
approaching zero as the shear gets large.

Steps for extending the result to finite amplitude dis-
turbances were outlined. However, technical details as-
sociated with asymmetric basic states and the evolution
of the density field prevent a general nonlinear result.
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