
Constraints on wave drag 
parameterization schemes for simulating 
the quasi-biennial oscillation. Part I: 
gravity wave forcing 
Article 

Published Version 

Campbell, L. J. and Shepherd, T. G. ORCID: 
https://orcid.org/0000-0002-6631-9968 (2005) Constraints on 
wave drag parameterization schemes for simulating the quasi-
biennial oscillation. Part I: gravity wave forcing. Journal of the 
Atmospheric Sciences, 62 (12). pp. 4178-4195. ISSN 1520-
0469 doi: 10.1175/JAS3616.1 Available at 
https://centaur.reading.ac.uk/32099/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1175/JAS3616.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Constraints on Wave Drag Parameterization Schemes for Simulating the
Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing
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ABSTRACT

Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in
the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of
fundamental issues are examined in detail, with the goal of providing a better understanding of the mecha-
nism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave–driven
QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all
gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear
zones and the development of the QBO. An important difference between the schemes for the two types
of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest
levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether
there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag
schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below.
This is in contrast to the parameterization for the equatorial planetary waves in which there is downward
propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that
a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is
permitted.

1. Introduction

Measurements of the zonal wind in the equatorial
stratosphere over the past 50 yr show that there is an
oscillation in wind direction characterized by alternat-
ing easterly and westerly phases that descend with time
(Ebdon 1960; Reed et al. 1961). Since the period of the
oscillation is 26–30 months, it has come to be known as
the quasi-biennial oscillation (QBO). A review of the
discovery of the QBO is given by Baldwin et al. (2001),
who also give an overview of what is currently known
about it.

It is well known that the QBO is driven by momen-
tum transfer from waves propagating upward from the
troposphere. However, there has been considerable de-

bate as to the relative contributions of the different
types of waves involved. Lindzen and Holton (1968)
initially postulated that the QBO is driven by internal
gravity waves that interact with the mean flow through
critical level absorption. In their model, there is a con-
tinuous spectrum of upward-propagating waves, each
with a different critical level, and oscillations in the
mean wind result on specifying a suitable upper bound-
ary condition to simulate a stratopause semiannual os-
cillation (SAO). Holton and Lindzen (1972, hereafter
HL72) later put forward a revised theory for the QBO
based instead on absorption of equatorial planetary
waves by thermal damping. They outlined the mecha-
nism that leads to the downward propagation of the
shear zones, and noted that vertical diffusion provides a
means for switching between easterly and westerly
phases at low levels. Plumb (1977) reexamined the
model of HL72 and elucidated the mechanism for the
shear layer descent by means of a linear stability analy-
sis. Plumb showed that, in the HL72 model, the descent
of the shear zones is only a downward propagation of
phase, not of information; in the inviscid limit, the evo-
lution of the wind at a given level is independent of that
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at higher levels. He also explained in detail the effect of
vertical diffusion and its role in the switching mecha-
nism at low levels. The HL72 model of the QBO there-
after became the accepted paradigm (Andrews et al.
1987).

However, until recently, large-scale atmospheric gen-
eral circulation models (GCMs) were unable to simu-
late the QBO. This inability was seen as a notable fail-
ing of the models, as well as something of a puzzle.
Equatorial planetary waves are simulated explicitly by
GCMs and thermal damping is represented, so the con-
ditions for a QBO are satisfied according to the HL72
theory. Dunkerton (1997) provided an explanation for
the lack of accurate QBO simulations by GCMs. He
observed that the Brewer–Dobson upwelling in the
lower stratosphere acts to suppress the oscillation in the
mean wind. With realistic upwelling, not included in the
models of HL72 or Plumb (1977), observed equatorial
planetary wave amplitudes are apparently insufficient
to drive a QBO. This observation was supported by the
two-dimensional simulations of the QBO by Gray and
Pyle (1989), which required equatorial planetary wave
amplitudes approximately 3 times greater than ob-
served amplitudes. Dunkerton (1997) argued that the
additional wave drag needed to drive the QBO must be
provided by gravity waves that, because of their small
spatial scale, are generally unresolved in GCMs.

Around the time of Dunkerton’s (1997) article, GCM
simulations of the QBO began to emerge. Those GCMs
that did simulate QBOs tended either to be of very high
vertical resolution [Takahashi (1996) and Horinouchi
and Yoden (1998) with simplified GCMs, Hamilton et
al. (1999) with the high-resolution SKYHI GCM] or to
include a parameterized gravity wave drag scheme
(Scaife et al. 2000; Giorgetta et al. 2002; McLandress
2002), typically with gravity wave amplitudes signifi-
cantly enhanced in the Tropics. This evidence suggests
that Dunkerton (1997) is correct in hypothesizing that
gravity wave drag is needed to drive a QBO in the
earth’s atmosphere, given the observed strength of the
equatorial planetary waves. Unfortunately, there is a
lack of quantitative information from observations to
infer constraints on gravity wave parameters for use in
models. In particular, the specification of the spectrum
of gravity waves at their source remains a major uncer-
tainty.

It must however be emphasized that GCMs that do
simulate QBOs seem to do so for various reasons, and
it is possible that a QBO can be obtained for the wrong
reasons by simply tuning the model parameters. In gen-
eral, the characteristics of the QBOs generated by
GCMs and the requirements to obtain these oscillations
are different for each model. This is not surprising,

given that the form of the simulated QBO depends on
a number of factors, many of which are model-
dependent. For example, a GCM with overactive con-
vective adjustment might generate overly strong equa-
torial planetary waves (Horinouchi et al. 2003) and
hence require less or even no parameterized gravity
wave drag to be able to generate a QBO. Furthermore,
McLandress (2000, poster presentation: P/1–6.10
“Equatorial Oscillations in a Middle Atmosphere
GCM” at the Second General Assembly of the WCRP
SPARC Project, 6–10 November 2000) showed that the
choice of finite-difference method used for calculating
the divergence of the gravity wave flux can have a dra-
matic effect on the drag profile and hence on the period
and other characteristics of the oscillation.

All these considerations suggest that there is a need
for an understanding of the properties of gravity wave
drag parameterization schemes in the context of a simu-
lated QBO. In this paper, we take a first step toward
this goal by examining the characteristics of QBOs
forced by parameterized gravity wave drag in a simple
one-dimensional zonal mean model of the equatorial
zonal wind. While the case of pure gravity wave drag is
not directly relevant to the terrestrial QBO, it is an
interesting problem in wave, mean-flow interaction in
its own right. Moreover, it serves as a basis for address-
ing the more realistic case of gravity wave drag plus
equatorial planetary wave drag, which is the focus of a
companion paper. The gravity wave drag parameteriza-
tion schemes used in our study are well-known schemes
that are based on the theory of wave breaking and satu-
ration (Lindzen 1981). The characteristics of the
schemes are compared with those of the HL72 param-
eterization scheme for equatorial planetary wave drag
with respect to their ability to simulate a QBO.

Our investigation is aimed at providing answers to
the following questions. For a given parameterization
scheme, what are the conditions on the initial configu-
ration and the choice of parameters for the mean wind
to evolve to an oscillating state? Could a zero initial
velocity profile ever be a stable equilibrium state or
would a small perturbation to a zero velocity state
eventually grow large enough to allow the development
of a QBO? What is the mechanism for the descent of
the shear zones? What factors affect the form and, in
particular, the period of the oscillation (assuming one is
possible)? What role does diffusion play, in particular
in the mechanism for switching between easterly and
westerly winds at the lowest levels? In the HL72
scheme, it is necessary to include vertical diffusion in a
layer above the source level of the waves; in the gravity
wave drag schemes is the inclusion of diffusion at low
levels a sufficient requirement to generate a QBO, or is
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diffusion needed at all levels? Is there downward or
upward propagation of information, that is, does the
evolution of the wind at a given level depend on the
wind above or below?

In the HL72 scheme, the wave drag at a given level
depends on the cumulative effect of the wind below. In
the gravity wave drag schemes, the mathematical ex-
pression for the drag due to a wave of a given phase
speed at a given level depends on the local flow condi-
tions. However, the total drag (corresponding to all the
waves in the spectrum) at each level does depend on
the wind below, albeit in a more subtle way than in the
HL72 scheme. For a parameterization to be able to
generate a spontaneous QBO, the net drag correspond-
ing to a given wind speed at a given level must take
both signs over each oscillation period. But that is not
possible if the drag is a single-valued function of the
local wind speed. It is the dependence of the total drag
on the flow conditions below the level in question that
allows the gravity wave drag schemes to generate
QBOs.

In seeking answers to the questions posed in the pre-
ceding paragraphs, we derive the constraints that are
needed for each scheme to be able to generate a QBO-
like oscillation, that is, an oscillation between easterly
and westerly zonal mean winds that resembles the
QBO in at least the following respects: (i) its period is
within a range of about 700–900 days, (ii) its maximum
amplitude tends to a steady value within the range of
velocities 20–50 m s�1, and (iii) it takes place over a
range of heights from the source level up to at least 50
km. The choice of 50 km as the minimum upper level
for the QBO winds was simply to ensure that the QBO
took place over a wide altitude range roughly corre-
sponding to the equatorial stratosphere; however, since
the model used in our simulations does not possess a
stratopause, this choice was quite arbitrary and any
other level could have been selected. The constraints
derived in our study include restrictions on the choice
of the relevant parameters, on the initial configuration
and, where appropriate, on the gravity wave source
spectrum.

A number of the issues raised above were addressed
by Plumb (1977) for the HL72 scheme for equatorial
planetary waves, and in the next section we give a sum-
mary of his most important results. In section 3,
Lindzen’s gravity wave drag parameterization is exam-
ined for the case in which the forcing consists of only
two waves, and in section 4 we examine Alexander and
Dunkerton’s (1999) variant of the Lindzen scheme. In
section 5, Lindzen’s scheme is generalized to include a
continuous spectrum of waves over a range of phase

speeds. Finally, a discussion and comparison of the dif-
ferent schemes is presented in section 6.

2. The HL72 parameterization of equatorial
planetary waves

The one-dimensional model used in our QBO simu-
lations comprises the single equation

�u

�t
� �

�2u

�z2 � X�z, t�, �2.1�

where u(z, t) is the zonally averaged zonal velocity, X
(z, t) is the forcing from equatorial planetary waves
and/or gravity waves, and � is the vertical diffusivity.
The equation is solved numerically in a domain extend-
ing from a height of 15 km (around the equatorial
tropopause) up to a height of 100 km. The finite-
difference scheme used for the numerical solution of
the equation is second-order accurate in space and in
time. The source level of the waves is taken to be the
lower boundary of the model. For comparison with the
gravity wave drag experiments that are described in
sections 3–5, some QBO simulations were carried out
with planetary wave drag calculated using the HL72
scheme. In this section, we present some results of
those simulations and give an overview of the charac-
teristics of the HL72 scheme, as discussed by Plumb
(1977).

Plumb’s discussion of the HL72 theory focused on
the configuration involving a westerly Kelvin wave and
an anti-Kelvin wave. The latter is an easterly wave that
does not exist in nature; it is assumed to be unaffected
by the earth’s rotation and thus has the same form as a
Kelvin wave except that its phase speed and momen-
tum flux are in the opposite direction. [The term anti-
Kelvin wave was suggested by Dunkerton (1991).] The
advantage of using such a wave instead of a mixed
Rossby–gravity wave is that the two waves then have
identical expressions for their drags:

X��z, t� �
N�e�z0�HF0

�

k±�u�z, t� � c��2�0

	 exp���
z0

z N�

k±�u�z�, t� � c��2 dz� 

z

H�,

�2.2�

where the source level of the waves is z � z0 and F�
0 are

the momentum fluxes, which are specified at the source
level. The phase speeds and horizontal wave numbers
of the waves are denoted by c� and k�, respectively
and, in all cases, the plus sign refers to the westerly
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wave and the minus sign to the easterly wave. The other
parameters are the Newtonian cooling rate �, the
Brunt–Väisälä frequency N, and the density scale
height H. The background density is assumed to be of
the form �(z) � �0 exp��(z � z0)/H], where �0 is the
density at the source level.

In a configuration where k� � k
, c� � �c
 and
F�

0 � �F

0 , the initial mean wind must be nonzero

initially in order for the total drag from the two waves
to be nonzero. However, although u � 0 is a steady
solution, it is unstable and a QBO will develop from
any initial condition, if the parameters allow a QBO to
exist (Plumb 1977). From (2.2), it is evident that the
strength of the drag and, hence, the period of the os-
cillation, is determined by the magnitude of F0 and by
the ratio N�H/(kc2). This ratio also controls the rate of
exponential growth or decay of the drag with height.
An important conclusion of Plumb’s (1977) analysis of
this scheme is that in the absence of diffusion, there is
no downward propagation of information. This means
that imposing an oscillating upper boundary condition,
as HL72 had done, has little effect on the evolution of
the mean flow. Plumb observed that in the HL72 pa-
rameterization, the downward motion of the shear
zones depends on the flow evolution at lower levels,
which is controlled by the vertical diffusion at the low-
est levels. Thus, diffusion at the lowest levels affects the
period of the oscillation, but it is not needed at higher
levels. Plumb also pointed out that in the case of Bouss-
inesq dynamics [where the exp (z/H) factor in (2.2) is
neglected], the inviscid limit is singular. While diffusion
is needed for switching between easterly and westerly
flow, the period of the oscillation is independent of �,
the diffusion parameter in (2.1), in the limit � → 0; but
if � � 0, the period is infinite and a steady state is
attained. In the case of exponentially varying density,
on the other hand, the period of the oscillation in-
creases and tends to infinity as � → 0.

The abovementioned characteristics of the HL72
scheme apply also in the more realistic configuration
where the anti-Kelvin wave is replaced by a mixed
Rossby–gravity wave. In the expressions for the mo-
mentum flux and the drag due to the mixed Rossby–
gravity wave, the integrand in (2.2) is multiplied by a
factor of {/[k2(u � c�)] � 1}, where  is the latitudinal
gradient of planetary vorticity. This results in an asym-
metry between the easterly and westerly regimes of the
QBO.

Figure 1 shows the results of a QBO simulation using
the HL72 scheme with the Kelvin/anti-Kelvin wave
configuration. Here and in the rest of the paper, we set
the density-scale height H to 7 km and assume a con-

stant Brunt–Väisälä frequency N � 0.02 s�1. The choice
of wave parameters

F0�c
����0 � F0

���0 � �7 	 10�3 m2 s�2,

c� � �25 m s�1, k� � 2���4 	 107 m�, �2.3�

with � � 10�6 s�1 and � � 0.3 m2 s�1 gives a QBO with
a period of about 26 months. The time–height contour
plot of the zonal mean wind over a period of 12 yr is
shown for this configuration. The maximum wind am-
plitude is between 15 and 20 m s�1 and occurs within 10
km of the source level. The amplitude decreases with
height because N�/(kc2) � 1/H and so the drag, as
given by (2.2), decreases exponentially with height.

3. Lindzen’s parameterization with two waves

Lindzen’s theory of gravity wave breaking and satu-
ration (Lindzen 1981; Holton 1982) was originally de-
veloped for a single wave, but it can be extended to the
case of two or more noninteracting waves. To generate
a QBO-like oscillation using this scheme, there must be
at least two waves, one westerly and the other easterly,
or a spectrum of waves over a range of both westerly
and easterly phase speeds. The waves are assumed not
to interact with each other, so that the total drag is
simply the sum of the drags over the range of phase
speeds in the spectrum. In this section, we examine the
case where there are only two waves.

Each wave is assumed to propagate upward, its am-
plitude increasing with height, until it gets to a level,
which we shall denote as zb, where it becomes statically
unstable and breaks. Using a Wentzel–Kramers–
Brillouin (WKB) analysis (with the assumption that

FIG. 1. Time–height plot of the zonal mean wind in a QBO
simulation with the Kelvin and anti-Kelvin wave configuration.
The solid contours denote westerlies, including the zero-wind line,
and the dotted contours denote easterlies. Contour intervals are
5 m s�1.
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variations with time and height in the background flow
are slow compared with such variations in the waves),
Lindzen (1981) derived the following criterion for wave
breaking:

A�z� � � 2N

k�0
�1�2 e�z�z0��2H|F0�c�|1�2

|u � c |3�2 � 1, �3.1�

where F0 (c) is the momentum flux at the source level
z0 of a wave with phase speed c. Above its breaking
level, the wave deposits momentum in the mean flow to
an extent that it remains statically stable, that is, such
that A does not exceed unity. The resulting drag force
is (Lindzen 1981)

X � �
k

2
�u � c�3

N � 1
H

�
3uz

�u � c�
�. �3.2�

This is often multiplied by a so-called intermittency fac-
tor, usually denoted as �, which is supposed to measure
the percentage of the time that the waves are actually
being forced.

The drag as given by (3.2) does not depend directly
on F0, and in this sense the scheme differs from the
HL72 scheme. Changing F0, however, affects the break-
ing levels [according to (3.1)] and, hence, the drag pro-
file. The magnitude of the drag depends linearly on the
horizontal wavenumber k. However, since the choice of
the intermittency factor � is quite arbitrary, one could
always adjust � to compensate for changes in k. Ac-
cording to (3.1), the horizontal wavenumber also affects
the breaking level of a wave and thus the choice of k
also affects the possible choices of F0 (c). There is an-

other obvious difference from the HL72 scheme. In the
HL72 scheme, drag is always deposited at all levels,
because the waves are thermally damped.

For comparison with our HL72 equatorial planetary
wave simulations, we chose the same wave input pa-
rameters as in section 2. The configuration (2.3), when
used in the Lindzen scheme with � � 1, gives a QBO-
like oscillation over the whole range of heights from the
source level up to the lid of the computational domain
and is used in the rest of this section. It must be noted
that the choice of k � 2�/(4 	 107 m) (wavenumber 1)
corresponds to an unrealistically long wavelength for a
gravity wave. However, changing k, F0, and � in such a
way that F�

0 /k remains fixed does not affect the break-
ing level of a wave and if �k is also kept fixed, then the
magnitude of the drag is also unchanged. This means
that the drag profile obtained with the configuration
(2.3) and � � 1 could also be obtained using a shorter
horizontal wavelength. The following choice of param-
eters, for example, would give the same drag profile as
(2.3):

F0
���0 � �0.7 m2 s�2, c� � �25 m s�1,

k� � 2���4 	 105 m�, � � 0.01. �3.3�

To illustrate the mechanism for the shear zone descent,
consider a configuration in which the initial mean wind
takes the form of a westerly jet, as shown in Fig. 2a, and
the wave phase speeds are c� � �25 m s�1. The solid
and dashed curves in Fig. 2b show the graphs of A
 and
A� [the expression (3.1), evaluated for the westerly

FIG. 2. Lindzen parameterization with two waves with phase speeds c� � �25 m s�1. (a) Initial mean velocity with maximum value
of umax � 20 m s�1, (b) the function A�(z) defined in (3.1), and (c) the total drag from the two waves.
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wave and the easterly wave, respectively], correspond-
ing to the initial mean wind profile in Fig. 2a. The
breaking levels z�

b correspond to A� � 1. The expres-
sion (3.2) for the drag from the westerly wave applies
above z


b and up to the level where u � c � 3Huz first
becomes zero, that is, where �A
/�z � 0. This level is
denoted by z


max in Fig. 2b. Above z

max, the drag X


from the westerly wave is zero, up to the level where
A
(z) � A
(z


max). This is a second breaking level for
the westerly wave and is denoted by z


b2 in Fig. 2b. So
X
 is nonzero in the ranges of altitudes z


b � z � z

max

and z � z

b2. For the easterly wave, on the other hand,

A� is an increasing function of z everywhere above the
initial breaking level z�

b , and so its drag X� is nonzero
(negative) everywhere above this level. Above z


b2,
where both X
 and X� are nonzero and u is zero, the
total drag is zero. The initial profile of the total drag
due to the two waves is shown in Fig. 2c. The total drag
is positive in the range z


b � z � z

max, where X
 is

positive and X� is zero, and it is negative in the range
z�

b � z � z

b2, where X� is negative and X
 is zero.

Elsewhere, it is zero.
The combined effect of the two waves is such that u

eventually becomes negative at high levels (between z�
b

and z

b2) and becomes larger (more positive) in the

lower levels below the jet maximum. Consequently, an
easterly jet eventually forms above the westerly jet, un-
til A� also develops a local maximum. Once A� devel-
ops a local maximum, an analogous situation occurs for
the easterly wave to that described in the preceding
paragraph for the westerly wave. The drag from the
easterly wave is switched off above the level z�

max where
the maximum occurs, and remains zero up to the level
z�

b2 where A�(z) � A�(z�
max). This is a second breaking

level for the easterly wave. The possibility of multiple
breaking levels for each wave is an important charac-
teristic of the Lindzen scheme (McFarlane 1987).

Without diffusion, u → c� in the shear zones above
the lowest breaking levels z�

b . This has the effect of
shielding the higher levels from the waves propagating
up from below. According to (3.1), as u → c�, A� → �.
Eventually A
(z


max) and A�(z�
max) become so large

that there are no levels above z

max and z�

max where
either A
(z) � A
(z


max) or A�(z) � A�(z�
max). This

means that there are no additional breaking levels
above z


max and z�
max, and so X
 and X� become zero

everywhere above z

max and z�

max, respectively. Without
any wave drag, the mean flow reaches a steady state.
Vertical diffusion is needed to prevent this situation
from occurring. By reducing the strength of the wind in
the regions of high shear above z�

b , diffusion prevents
A�(z�

max) from becoming too large; consequently, the
waves are able to continue depositing momentum at the

higher levels. The mean flow then evolves into a state of
alternating westerly and easterly regimes that move
downward, becoming increasingly shallow with time,
and are subsequently reduced by diffusion. With an
appropriate choice of input parameters, this oscillating
state can be made to resemble a QBO.

Figure 3a shows the time–height plot of the evolution
of the wind when the configuration shown in Fig. 2 is
used, and Figs. 3b,c show the wind and drag profiles at
the end of the 12-yr model run. To obtain a realistic
period (�28 months) with this configuration, the verti-
cal diffusivity parameter is set to � � 0.4 m2 s�1, a larger
value than that used in the HL72 simulation shown in
Fig. 1. The period of the oscillation depends on the
strength of the drag, which depends directly on �k, and
on the vertical wavelength of the oscillation, which is
determined by �. Vertical diffusion affects the evolu-
tion of the mean wind in several ways. First, as noted
above, increasing � reduces |u | and hence reduces
A�(z�

max); this has the effect of lowering the upper
breaking levels zb2

� . The distance between subsequent
breaking levels (e.g., the distance �z in Fig. 3c or 3f)
determines the vertical wavelength of the mean-wind
oscillation; thus, increasing � gives a shorter vertical
wavelength. Vertical diffusion increases the rate of
downward propagation of the higher breaking levels.
These effects result in the period of the oscillation be-
ing shorter and can be seen by comparing the graphs in
Figs. 3d–f, which were obtained with � � 0.6 m2 s�1,
with those in Figs. 3a–c for which � � 0.4 m2 s�1.

Unlike in the HL72 scheme, it is not enough to have
vertical diffusion only in a layer above the source level.
To generate a QBO, diffusion is needed in the vicinity
of each of the breaking levels; in practice, this means
that � must be nonzero at all levels. If the second-order
diffusion is replaced, for example, by Rayleigh friction,
the wind is simply damped to zero everywhere and a
steady state with zero wind is attained (not shown
here). This is the same situation that occurs when Ray-
leigh friction is included in the HL72 model and, as
noted by Plumb (1977), it is due to the fact that Ray-
leigh friction does not allow momentum transfer across
the levels where u changes direction. This observation
is consistent with the findings of Dunkerton (2000); he
was able to simulate the QBO by incorporating a mo-
mentum-conserving shear adjustment scheme into his
model, instead of explicitly adding vertical diffusion.

Figure 3a illustrates a characteristic feature of the
Lindzen gravity wave drag scheme, namely, that mul-
tiple shear zones of the same sign can coexist at differ-
ent levels in a QBO driven by only two waves. This
feature is a consequence of the existence of multiple
breaking levels for each wave. In theory, there is no
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limit to the number of breaking levels a wave can have,
or to the number of shear zones of the same sign that
can exist one above the other. Thus, the upper level of
the QBO winds could, in theory, be at infinity, at least
in the limit of infinitely large time.

As in the HL72 scheme, if the wave forcings are
equal and opposite [i.e., k� � k
, c� � �c
 and F0(c�)
� �F0(c
)], then the mean wind must be nonzero ini-
tially, otherwise the breaking levels of the waves coin-
cide and their drag forces cancel each other out. The
interesting question is whether the zero-wind initial
state is unstable to small perturbations. In practice, as
long as u is nonzero above the lowest breaking level of
the waves, it is possible to generate a QBO. For ex-
ample, if in the configuration shown in Fig. 2, the initial
wind profile is replaced by one in which the maximum
wind speed is umax � 5 m s�1 instead of 20 m s�1, then
A
(z) does not have a local maximum, that is, �A
/�z
� 0 everywhere, as shown in Fig. 4. This is because u �
c � 3Huz � 0 everywhere, and it implies that the drag

X
 from the westerly wave is nonzero (positive) every-
where above z


b . The ranges of altitudes affected by the
two waves will then overlap initially. In the regions
affected by both waves and where u � 0, the drag is
negative, since u is positive. With time, u becomes more
positive in the region between z


b and z�
b and eventually

A
 develops a local maximum. This is the situation
shown in Fig. 2 and a QBO can then result (provided
there is sufficient vertical diffusion).

In general, it is possible to generate a QBO even with
a small perturbation to a zero wind profile, depending
on whether the following two conditions are satisfied:
(i) The wave amplitudes and the initial wind must be
such that either the waves do not break at the same
level (as in Fig. 4) or, if they do break at the same level,
then the wind must be nonzero above the breaking
level, so that the total drag from the two waves above
their breaking level is also nonzero. (ii) An appropriate
value of � is chosen; if u is weak initially and � is large,
the wind may be suppressed to the extent that it may be

FIG. 3. Lindzen parameterization with two waves with phase speeds c� � �25 m s�1. (a) Time–height plot of u with � � 0.4 m2 s�1

for the initial configuration shown in Fig. 2. The solid contours denote westerlies, including the zero-wind line, and the dotted contours
denote easterlies. Contour intervals are 5 m s�1. (b) Mean velocity u, and (c) total drag X at the end of the 12-yr run. (d) The same
as for (a), but with � � 0.6 m2 s�1. (e), (f) The same as for (b), (c), but with � � 0.6 m2 s�1 and at time t � 11.5 yr when the oscillation
is in phase with that shown in (b), (c). With stronger diffusion, the vertical wavelength of the oscillation is shorter and so is the period.
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impossible to reach an oscillating state. For example, in
the configuration considered here, with umax as small as
0.01 m s�1, it is possible to generate a QBO only if � is
smaller than about 0.3 m2 s�1. It must be noted, how-
ever, that a situation with such weak shear is of theo-
retical interest only, since in reality such weak winds are
unlikely to occur in a more realistic model that includes
wave driving from resolved planetary-scale equatorial
waves as well as gravity waves. Wind variations would
typically be of the order of those shown in Figs. 2 and
4 or larger, in which case a choice of � in the range
0.3–0.6 m2 s�1 would be satisfactory.

4. Alexander and Dunkerton’s parameterization

The parameterization described by Alexander and
Dunkerton (1999, hereafter AD99) is a variant of the
Lindzen scheme in which each wave is assumed to de-
posit all its momentum at its breaking level. A continu-
ous spectrum of waves over a range of phase speeds is
assumed, in order to have a drag profile that is a con-
tinuous function of height, and in this sense, the scheme
is similar to, and may be considered as an extension of,
the continuous spectrum scheme of Lindzen and Hol-
ton (1968). In practice, however, the spectrum is dis-
cretized into a finite number of waves. An additional
component of the AD99 scheme is that it takes into
account the nonhydrostatic effect of total internal re-
flection of the waves. The waves that are reflected are
those with large intrinsic phase speeds. Waves with
small intrinsic phase speeds, on the other hand, break at
low levels and are not reflected.

To implement the scheme, one starts at the source

level and removes from the spectrum any waves that
would have already reflected or broken and then works
upward, at each level, testing each of the remaining
waves to determine whether the wave would break or
be reflected in an interval (of height �z, say) centered
at that level. Reflected waves are removed from the
spectrum at that level and all subsequent levels; break-
ing waves deposit their momentum at that level. The
drag is calculated by summing over the waves that
break in the height interval �z and multiplying by an
intermittency factor �. In AD99’s implementation of
the scheme, the total time average momentum flux in
the spectrum is specified and � is chosen to be propor-
tional to the ratio of this quantity to the sum of the
discrete momentum fluxes F0(c) over the spectrum [see
(19) in AD99]. In this way, � is proportional to the
phase speed resolution, that is, � � 1/Nc, where Nc is the
number of waves in the spectrum, and so changing the
phase speed resolution does not affect the magnitude of
the calculated drag. In the present study, the effect of
reflection is neglected and we also assume that all the
waves in the spectrum have the same horizontal wave-
number.

In our simulations of the QBO using the AD99
scheme, we observe that, as in the Lindzen scheme, the
period of the zonal wind oscillation is controlled by the
horizontal wavenumber k, the intermittency factor �
and the vertical diffusivity �. Unlike in the Lindzen
scheme, however, the ability of the scheme to generate
a QBO depends on the specification of the initial wind
profile. To illustrate this, it is helpful to examine the
special case where the momentum flux at the source

FIG. 4. Lindzen parameterization with two waves with phase speeds c� � �25 m s�1. (a) Initial mean velocity with maximum value
of umax � 5 m s�1, (b) the function A�(z) defined in (3.1), and (c) the total drag from the two waves.
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takes the form F0(c) � (sgn c) 	 a constant. For each c,
the breaking level zb(c) is determined by Lindzen’s cri-
terion,

	ezb�3H

|u�zb� � c |
� 1, �4.1�

where

	 ��2N

k�0
e�z0�HF0�c��1�3

, �4.2�

and with the source spectrum F0(c) � (sgn c) 	 a con-
stant, � is independent of c. This means that c can be
written as an explicit function of zb,

c��zb� � u�zb� � 	ezb�3H. �4.3�

Depending on the initial strength of the shear, there are
then two possibilities. These are illustrated in Fig. 5 for
an initial u profile in the form of a westerly jet with
maximum amplitude at z � 35 km. In Fig. 5a, u � 5
m s�1 at its maximum; this is the same wind profile used
in Fig. 4. In Fig. 5b, u � 20 m s�1 at its maximum and
the wind profile is the same as that in Fig. 2. In both
cases, k� � 2�/(4 	 107 m) and

F0�c���0

� ��sgn c� 	 5 	 10�3 m2 s�2 for |c| 
 60 m s�1

0 for |c| � 60 m s�1
.

�4.4�

a. Case 1: Weak shear

If the initial shear is so weak that there is no level at
which �c�/�zb changes sign (i.e., if c
 is an increasing

function and c� is a decreasing function of zb), then, at
every level z, both easterly and westerly waves contrib-
ute to the drag. The two components of the drag are
given by

X� � �
|F0�c

��z��|
�c��z�

�c�

�z
, �4.5�

where �c is the phase speed resolution. [This expres-
sion was derived by Dunkerton (1997) and AD99.]
Thus, from (4.3), the total drag at height z is

X � 2�
|F0�c

��z��|
�c��z�

�u

�z
, �4.6�

and the drag increases exponentially with height and
also depends on the amplitude of the waves at the
source. In the absence of diffusion, the equation for the
time evolution of u then takes the form

�u

�t

 f�z�

�u

�z
� 0, �4.7�

with

f�z� � �
2�|F0|
�c�0

e�z�z0��H, �4.8�

where �0 is the background density at the source level
z0. The solution to (4.7) can be found quite readily by
the method of characteristics to be

u�z, t� � uinitial��, �4.9�

where � is given by

e��H � e�z�H �
2�|F0|
H�c�0

e�z0�Ht. �4.10�

FIG. 5. AD99 parameterization with the momentum flux spectrum F0(c) � (sgn c) 	 a
constant. (a) The dotted line shows the mean velocity with maximum value of umax � 5 m s�1.
The thin solid line shows the graph of c�(zb) � u(zb) � �ezb/3H and the black dots show the
actual breaking levels of the waves. (b) The same as for (a), but with stronger shear: umax �
20 m s�1. The profile of breaking levels is now a discontinuous function of c. The sign of the
drag over each range of heights is shown at the right of the plot in (b).
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This solution describes a jet moving downward with no
change in amplitude, as shown in Fig. 6a. The speed f(z)
of downward propagation of the jet increases exponen-
tially with height; so the downward propagation is
faster at higher levels. The speed of descent of the jet
also depends on the amplitude of the waves at the
source level. Clearly, if the evolution of u were to con-
tinue indefinitely as shown in Fig. 6a, an oscillating
state would never be attained, since u would remain
nonnegative everywhere for all time. However, the
mean flow evolution shown in Fig. 6a does not, in gen-
eral, continue indefinitely. With time, as the jet moves
downward and becomes increasingly narrow, |�u/�z | in-
creases at the lower levels and can eventually become
large enough that

�u

�z
� �

	

3H
ez�3H, �4.11�

and hence �c�/�z � 0, at some level. This is the situa-
tion defined as case 2 and discussed in detail below. In
this situation, the range of levels affected by the west-
erly waves does not coincide exactly with the range
affected by the easterly waves and, at different levels,
the drag can be positive, negative, or zero. This allows
the formation of easterly shear zones even if none ex-
isted initially, and hence allows the development of a
QBO, as described in our discussion of case 2. In prac-
tice, noise from the numerical evaluation of the wave
drag could also create local maxima/minima in the pro-
files of c�(z), and thus allow the formation of easterly
shear zones and a QBO.

An important factor that could affect the develop-

ment of a QBO under these circumstances is the inclu-
sion of vertical diffusion. If the vertical diffusion term is
restored to (4.7), the jet still moves downward, but its
amplitude decreases with time. With too-strong diffu-
sion, u could be damped to zero too fast, thus prevent-
ing the system from ever reaching a state where �c�/�z
could be zero somewhere. Instead, it would tend to-
ward a steady state with zero wind.

It is interesting to note that in case 1, the drag profile
and the evolution of the mean wind are similar to those
obtained by Lindzen and Holton (1968, hereafter
LH68). In their model, there is a continuous spectrum
of upward-propagating waves (over a range of phase
speeds) and each wave is completely absorbed at its
critical level, that is, the level where u(z) � c. Booker
and Bretherton (1967) showed that linear absorption of
a wave at its critical level causes the momentum flux of
the wave to be reduced across the critical level by a
factor of exp[�2�(Ric � 1/4)], where Ric is the local
Richardson number at the critical level. Based on this
result, LH68 obtained an approximate expression for
the drag due to the wave absorption. AD99 pointed out
that LH68’s expression can be written as

X � �
|F0�u�|
�c��z�

�u

�z
, �4.12�

which is of the same form as (4.6). Since each wave is
completely absorbed at its critical level, the total drag
must be zero above any levels where �u/�z changes sign.
For example, with the jet profile shown in Fig. 6, since
the wind initially has a maximum at z � 35 km, the
region above this level is shielded from the waves

FIG. 6. (a) AD99 parameterization with the momentum flux spectrum F0(c) � (sgn c) 	 a
constant and the initial mean velocity profile given by the dashed line in Fig. 5a. The evolution
of u with time in the absence of diffusion, according to the exact solution, is shown by the solid,
dashed, and dotted lines, corresponding to t � 0, 2000, and 4000 days, respectively. (b) Same
configuration as (a), but using the LH68 parameterization instead.
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propagating up from below. Consequently, the drag re-
mains zero above this level for all time and only the
lower half of the jet propagates downward. This is seen
in Fig. 6b, which shows the results of a simulation using
the LH68 parameterization with the same input param-
eters as in Fig. 6a. Figure 6b can be contrasted with Fig.
6a and illustrates the difference between the LH68 and
the AD99 schemes. It is impossible to get a spontane-
ous QBO-like oscillation with the wind profile in Fig.
6b. The shear zones propagate downward, but the wind
cannot change direction. LH68 got around this con-
straint by applying an oscillating upper boundary con-
dition around the level of the stratopause to mimic the
semiannual oscillation.

With the drag in the LH68 scheme written in the
form (4.12), the relationship between the LH68 and
AD99 scheme becomes apparent. In the limit as the
wave amplitude goes to zero in (4.3), � → 0, and so
c� → u. In that limit, the AD99 drag defined by (4.6)
takes the form (4.12). Thus, the LH68 representation of
the drag corresponds to the small-amplitude limit of
AD99’s representation, and Fig. 6b may be interpreted
as such.

Equation (4.7) illustrates an important characteristic
of the AD99 scheme, namely, that there is downward
propagation of information, even in the absence of ver-
tical diffusion. This is a characteristic feature of the
LH68 scheme as well, and has also been observed in
other situations, such as in the transient wave–mean-
flow interaction studied by Dunkerton (1981a,b, 1982).
An additional characteristic of the weak-shear configu-
ration of the AD99 scheme, which is also true of the
LH68 scheme, is that the evolution of the wind at a
given level depends only on the local shear and is in-
dependent of the flow evolution at lower levels. This is
in contrast to the HL72 scheme for thermally damped
equatorial planetary waves, in which there is downward
propagation of phase only and the wind evolution is
driven by the wind at lower levels (Plumb 1977).

b. Case 2: Strong shear

With sufficiently strong shear, �c�/�zb changes sign at
one or more places, as shown in Fig. 5b. Thus, the range
of levels affected by the westerly waves does not coin-
cide exactly with the range affected by the easterly
waves, although they could overlap. There are four
kinds of regions: the overlapping regions in which the
total drag is given by the expression (4.6), the regions
affected by only westerly waves and by only easterly
waves, where the drag is given by (4.5) with the plus
sign and with the minus sign respectively, and the re-
gions where the drag is zero. These regions are indi-
cated in Fig. 5b by the labels (
/�), (
), (�), and (0)

respectively. In the (
/�) region, a westerly jet propa-
gates downward with speed f(z) given by (4.8), and
remains positive, as in (4.9). In the (
) and (�) regions,
(4.5) implies that the equation for u is of the form

�u

�t



f�z�

2
�u

�z
� �h�z�, �4.13�

where

h�z� �
�|F0|

�c��z�

	

3H
ez�3H. �4.14�

The plus sign on the right-hand side of (4.13) applies in
the (
) region, and the minus sign in the (�) region.
Thus, the jet moves downward, but with half the speed
as in the (
/�) regions. The nonzero term on the right-
hand side of (4.13) means that u is of the form

u�z, t� � uinitial�� � �
0

t

h�z�t, �� dt, �4.15�

where z, t, and � are now related by

e��H � e�z�H �
�|F0|

H�c�0
e�z0�Ht. �4.16�

Since the function h is always positive, (4.15) implies
that in the (
) region, u becomes more positive, and in
the (�) region, u becomes more negative. Thus, u even-
tually becomes negative in the (�) region and an oscil-
lation in u would then be possible. The key difference
between this configuration and that in case 1 is that the
net drag at any level now depends on the evolution of
the wind at lower levels as well as on the local shear. To
generate a QBO, the total drag corresponding to a
given value of u must take both positive and negative
values over each oscillation period. In case 1, the drag
is a single-valued function of the local shear and thus
an oscillation between positive and negative values is
impossible. In case 2, because of the multivalued rela-
tion between c� and z, whether the drag from the wave
with phase speed c� is deposited at z depends on
whether it has already been deposited below and,
hence, on the wind below. It is evident from Fig. 5b that
any changes in the wind would affect the levels at which
the drag would switch from one type of region to an-
other.

Another point to note is that, in case 2, the AD99
configuration with F0(c) � (sgn c) 	 a constant is simi-
lar to the two-wave Lindzen scheme in the sense that
there are four kinds of regions: those affected by waves
with positive phase speed only, by waves with negative
phase speed only, by both, or by none. We note that the
breaking criterion (3.1) for the two-wave Lindzen
scheme is equivalent to
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B��z� � u � 	ez�3H � c�. �4.17�

For each wave with phase speed c � c�, the breaking
level z�

b is the lowest level at which B�(z) � c�. Above
this level, the drag is nonzero up to the lowest level z�

max

where �A�/�z � 0. In terms of the function B�(z), z�
max

is the level where

�B�

�z
�

�B��z� � c��

3H
. �4.18�

Thus, the breaking levels in the Lindzen scheme could
be determined by examining B�(z) instead of A�(z).

Now B�(z) is the same as the expression (4.3) for
c�(z) in the AD99 scheme. In that scheme, the total
drag may be nonzero all the way down to the source
level. That is the case for the configuration used here,
since the waves with small phase speed have nonzero
amplitudes and the wind is nonzero at the low levels
directly above the source level. Above z1, the lowest
level where �B�/�z � 0, the drag from the easterly
waves must be zero. The drag from the westerly waves
also becomes zero at z2, the lowest level where �B
/�z
� 0. The total drag is zero from this level up to z3,
where the drag from the easterly waves becomes non-
zero again. Above the level z4, the drag from the west-
erly waves also becomes nonzero, but as u is close to
zero in this region, the total drag is approximately zero.
In terms of the resulting drag profiles, the levels z2, z3,
and z4 are analogous to z


max, z�
b , and z


b2 in the two-
wave Lindzen scheme (Fig. 2), although their physical
interpretation is different and they do not actually co-
incide. Also, the levels z1 and z


b could be made to
coincide if the source spectrum used in the AD99 simu-

lation were to be truncated at some minimum phase
speed, that is, if we set F0(c) � 0 for |c| � cmin � B
(zb).

In Fig. 7, the time–height contour plot of u is shown
from a simulation in which the drag is calculated using
AD99’s discrete representation [given by their expres-
sion (15)]. The result shown corresponds to the initial
state given by the dashed line in Fig. 5b. As predicted
from the discussion of the exact solution, a QBO is
obtained when this initial configuration is used. The
range of QBO heights is from the source level up to a
height of about 52 km. This is because, with the trun-
cated spectrum (4.4) used in this simulation, all the
waves break below this level (as seen in Fig. 5b) and so
there is no drag above. It is important to note, however,
that with a sufficiently broad spectrum of waves, it is
theoretically possible to obtain multiple shear zones of
the same sign at different altitudes, as in the two-wave
Lindzen simulations. The curvature of the wind profile
in Fig. 7 is due to the fact that the drag, and hence the
rate of descent of the shear zones, increases exponen-
tially with height.

As in case 1, vertical diffusion acts to reduce |u | in
regions with large shear. With excessively strong diffu-
sion, |u | could be reduced to the extent that the situa-
tion in case 1 would result. It would then be impossible
to obtain an oscillation between positive and negative
values of u.

In general, the inclusion of vertical diffusion is crucial
to the development of a QBO, and diffusion plays a
similar role to that in the Lindzen scheme. To illustrate
this, an experiment was carried out with the same con-
figuration as in Fig. 5b, but with � set to zero. Within 1
yr of the model run, a steady state was attained. The
time–height plot of the zonal wind velocity is shown in

FIG. 7. (a) Time–height plot of the zonal mean wind in a QBO simulation using the AD99
parameterization with the spectrum F0(c) � (sgn c) 	 a constant and the initial mean velocity
profile given by the dashed line in Fig. 5b. The solid contours denote westerlies, including the
zero-wind line, and the dotted contours denote easterlies. Contour intervals are 5 m s�1. (b)
The mean wind at the end of the 12-yr run. The black dots show the breaking levels of the
waves.
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Fig. 8a, and the wind and the breaking levels at the end
of a 2-yr model run and the corresponding drag profile
are shown in Figs. 8b,c respectively. The strong shear
regions that have developed at low levels prevent de-
position of momentum at higher levels and, conse-
quently, the drag is zero above a height of about 25 km.
As in the Lindzen scheme, adding diffusion at low lev-
els (and setting the diffusion to zero at higher levels)
does not solve the problem. Several experiments were
carried out to verify this (not shown here). It was seen
that regions of large shear eventually develop at the
lowest levels of the region in which the diffusion is set
to zero and these prevent momentum deposition at
higher levels in the same way as in Figs. 8b,c. It follows
that diffusion is needed at all levels.

Further insight into the evolution of the QBO in case
2 and into the role played by diffusion can be obtained
by examining the evolution of the drag at a fixed level
as a function of the wind speed or wind shear at that
level. In Fig. 9a, the total drag X at z � 35 km is plotted
over the 12-yr simulation period shown in Fig. 7a as a
function of the wind speed at that level. At t � 0, the jet
maximum u � 20 occurs at this level. As shown in Fig.
5b the wave that breaks at this level is westerly and so
the drag is positive (the black dot). As t increases, X
becomes negative, eventually increases back to zero,
and then stays at zero for a period of time. The process
is then repeated but with opposite sign, and continues
through a regular cycle thereafter. Figure 9b shows the
evolution of the total zonal mean acceleration ut as a
function of u. This is equal to the wave drag (X), plus
the forcing due to diffusion (�uzz). During the time
intervals in which the drag is zero, u is driven by the

diffusion; this can be seen by comparing Figs. 9a and 9b.
There are two branches of the curve in Fig. 9a corre-
sponding to the time intervals in which X � 0. In the
left branch, u is negative initially, but �uzz is positive
and its effect is to drive u back toward zero and then to
positive values. In the right branch, �uzz is negative and
so u becomes more negative with time. These time in-
tervals are short (on the order of a few weeks), com-
pared with the time intervals in which the drag is non-
zero, and correspond to the regimes in Fig. 7 where u
changes sign and both the positive and negative con-
tours lie close to the zero-wind line.

Figure 9c shows the wave drag X as a function of u,
as in Fig. 9a, but for the case of zero diffusion (� � 0).
The curve starts at the same place as in Fig. 9a, de-
creases through negative values and increases back to
zero. But once X reaches zero, the system comes to a
standstill because there is no wave drag or diffusion to
drive the mean flow.

Figure 9d shows the wave drag X as a function of the
shear uz at the level z � 35 km and illustrates the func-
tional relation between X and uz. At any level, the drag
can be zero, equal to �(1/2)f(z) uz � h(z), or equal to
�f(z) uz, depending on whether there are no waves
breaking at that level, a single breaking wave, or break-
ing waves of both signs. Figure 9d shows that, at the
level z � 35 km, the third situation never actually oc-
curs. There are time regimes in which there are no
breaking waves at this level and the drag remains zero
while the magnitude of the shear increases. At the end
of each such regime, there is a sharp transition to a time
regime in which the drag is nonzero and of the same
sign as the shear, the magnitude of the shear decreases

FIG. 8. (a) Time–height plot of the zonal mean wind in a QBO simulation using the AD99 parameterization with zero vertical
diffusion. The initial configuration and the source spectrum is the same as in Fig. 7. The solid contours denote westerlies, including the
zero-wind line, and the dotted contours denote easterlies. Contour intervals are 5 m s�1. (b) The mean wind at the end of the 2-yr run.
(c) The total drag as a function of height at the end of the 2-yr run.
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to zero and the magnitude of the drag decreases lin-
early with that of the shear. The branches of the curve
in Fig. 9d that correspond to these latter time regimes
have slopes of �f(z)/2 and intersect the wave drag axis
at X � �h(z). To illustrate this, lines with slopes of
�f(z)/2 and intercepts of �h(z) � �0.157 m s�1 day�1

have been added to the curve in Fig. 9d. Clearly, if (4.6)
held for all time at all levels, as in case 1, it would be
impossible to get a QBO because the relation between
the drag and the shear would be single-signed. In that
case, the curve describing the relation between the drag
and shear would consist of a single straight line with
slope �f(z).

In summary, the ability of the AD99 scheme to gen-
erate a QBO-like oscillation depends on the balance
between the strength of the vertical diffusion and the
initial strength of the shear. Our numerical simulations
indicate that this is true in general, that is, for other

F0(c) profiles, even those for which there is no explicit
relationship between c and zb.

The simulations described above were repeated using
the input spectrum

F0�c���0 � �sgn c� 	 Bwe��c�cw�2, �4.19�

which is of the form suggested by Alexander and
Dunkerton (1999) and is shown in Fig. 10a. We set Bw

� 10�2 m2 s�2 and cw � 60/�� m s�1 � 33.85 m s�1, so
that the total input flux of each sign, that is, the integral
of F0(c) over the range of c values of each sign, is the
same as with the configuration (4.4). Waves with large
phase speeds have small amplitudes and thus high
breaking levels, as shown in Fig. 10b, so there is more
drag at high altitudes than there is with the spectrum
(4.4). This is seen in Fig. 11. The range of QBO alti-
tudes extends up to the top of the computational do-
main and the maximum QBO winds occur between 60

FIG. 9. (a) Here, X is a function of u at z � 35 km, (b) X 
 �uzz is a function of u at z � 35 km, and
(c) X is a function of u at z � 35 km in the case where � � 0 (no diffusion). In (a)–(c), the black dot
corresponds to time t � 0. (d) Here, X is a function of uz at z � 35 km. The dotted lines correspond to
�(1/2)f (z)uz � h(z), where f(z) and h(z) are given by (4.8) and (4.14), respectively. In each graph, the
simulation is for a period of 12 yr and the arrows show the direction of increase of time.
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and 80 km. As in the Lindzen scheme, there are mul-
tiple shear zones of the same sign one above the other.
However, in an infinitely high domain, the wave drag
would tend to zero as z → �, since the uppermost level
of the QBO winds is determined by the width of the
source spectrum.

With an antisymmetric spectrum such as (4.4) or
(4.19), u must be nonzero initially for the total drag to
be nonzero. As in the Lindzen scheme, a small pertur-
bation to a zero initial wind may be unstable and grow
with time; in that case, a zonal wind oscillation eventu-
ally results if the choice of input parameters allows one.
With u � 0 initially, a small perturbation to an anti-
symmetric spectrum may also be unstable and can lead
to the development of a zonal wind oscillation. Wheth-
er or not the system is unstable depends on the strength
of the vertical diffusion.

5. Lindzen’s parameterization with a continuous
spectrum of waves

We now discuss the generalization of the Lindzen
scheme to the case in which the forcing comprises a
spectrum of waves over a range of phase speeds. As in
the two-wave case, each wave is allowed to affect the
mean flow above its initial breaking level, so unlike in
the AD99 scheme, multiple breaking levels for a given
wave are possible. The total drag is found by summing
the drags corresponding to each of the phase speeds.
This makes the scheme more expensive to implement
than that of AD99. Figure 12 shows the results of a
simulation using this scheme. Apart from the intermit-
tency factor, all the parameters used are the same as
those in the two-wave simulations, and the momentum
flux at the source is given by (4.4). As in section 4, � is
chosen to be proportional to the phase speed resolu-

tion; for consistency with the two-wave simulations in
which � was set to unity, we set � � 2/Nc, where Nc is
the number of waves in the spectrum. The resulting
QBO, shown in Fig. 12a, looks very similar to that ob-
tained in the two-wave case. Figure 12b shows the zonal
mean wind at the end of the 12-yr run. As before, the
black dots show the breaking levels of the waves. With
the exception of the small-phase-speed westerly waves
(0 m s�1 � c � 8 m s�1) that break and are completely
absorbed close to the source level, each wave has more
than one breaking level over the range of heights from
the source level to the lid of the computational domain.
In the notation of section 3, we can denote the breaking
levels by zb(c) and zb2(c). For each wave, the upper
level of the range of heights in which the wave deposits
its momentum is indicated by a circle, and we denote
such a level by zmax(c). The arrows show the vertical
regions in which momentum is deposited. The black

FIG. 10. (a) Momentum flux spectrum similar to that used by AD99. (b) Initial mean velocity
with maximum value of umax � 20 m s�1 (dashed line). The black dots show the initial
breaking levels of the waves.

FIG. 11. AD99 parameterization with the momentum flux spec-
trum shown in Fig. 10a. Time–height plot of zonal mean velocity
over a period of 12 yr. The solid contours denote westerlies, in-
cluding the zero-wind line, and the dotted contours denote east-
erlies. Contour intervals are 5 m s�1.
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dots that lie directly on the u curve correspond to
breaking levels that are also critical levels. For each
wave that has a critical level, the breaking/critical level
zb(c) or zb2(c) also coincides with zmax(c); this means
that the black dot coincides with the circle, and the
circle is not visible in the graph.

The conclusions of the preceding sections regarding
the dependence of the form of the QBO on the input
parameters and on the strength of the diffusion apply
for this multiple-wave version of the Lindzen scheme as
well. A zero initial state with an antisymmetric source
spectrum is unstable to small perturbations in the wind
or in the momentum flux. In general, a configuration
that can generate a QBO when used in the two-wave
Lindzen scheme works for the multiple-wave case as
well. But there are some additional features in the mul-
tiple-wave case. For example, the drag is in general
nonzero from the source level up, because of the waves
with small intrinsic phase speed that break at low levels.
The shape of the source spectrum affects the drag pro-
file and hence the form of the oscillation, for example,
a broad spectrum that includes small-amplitude waves
with large intrinsic phase speeds (such as that shown in
Fig. 10a) results in more drag at high levels, but this
does not create substantial qualitative differences at
lower levels.

The main differences between the multiple-wave
Lindzen scheme and the AD99 scheme are due to the
fact that the former allows higher breaking levels and
hence, for a given configuration, it always generates
more drag at high levels. Thus, even with a truncated
source spectrum such as (4.4), the range of QBO alti-
tudes is from the lowest breaking level (the source level

in this case) to the upper boundary of the computa-
tional domain. In contrast, the AD99 scheme with the
spectrum (4.4) gives a QBO that extends from the
source level to a height of about 52 km, as seen in
Fig. 7a.

6. Discussion

We have described some of the requirements for
simulating a QBO using a simple one-dimensional
model with parameterized gravity wave drag. The dis-
cussion provides answers to the questions that were
posed in section 1.

There are a number of differences between the grav-
ity wave drag schemes and the HL72 scheme for equa-
torial planetary waves. In the HL72 scheme, although
the strength of the drag, and hence the period of the
QBO, depends directly on the amplitude of the waves
at their source, the vertical profile of the drag does not
depend on the wave amplitude. In the gravity wave
drag schemes, on the other hand, the amplitude of the
waves determines the levels at which the waves break
and thus determines the vertical profile of the drag. The
drag profile is, in general, discontinuous in height and
the levels where the discontinuities occur are deter-
mined by the vertical profile of the mean wind. A local
variation in the wind at a given level can have a pro-
found effect on the profile of wave drag at higher levels.
In the AD99 scheme, the initial strength of the shear
(relative to the other input parameters) is an important
factor in determining whether it is possible to generate
a mean-wind oscillation at all. In the HL72 planetary
wave scheme, on the other hand, local variations in the

FIG. 12. Lindzen parameterization with a spectrum of waves with the momentum flux
spectrum F0(c) � (sgn c) 	 a constant. (a) Time–height plot of u. The solid contours denote
westerlies, including the zero-wind line, and the dotted contours denote easterlies. Contour
intervals are 5 m s�1. (b) Mean velocity at the end of the 12-yr run. Black dots show the
breaking levels zb(c) of the waves; circles show the levels zmax(c). The vertical regions in which
the waves deposit their momentum are indicated by the arrows.
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mean wind are not so important, since the drag at any
level is determined by the cumulative effect of the wind
over the whole range of heights below.

It was seen that, in the AD99 scheme, there is down-
ward propagation of information, even in the absence
of vertical diffusion. This is in contrast to the HL72
scheme for equatorial planetary waves, in which there
is downward propagation of phase only and the wind
evolution is driven by the wind at lower levels (Plumb
1977). In addition, in AD99 configurations with weak
wind shear, the evolution of the wind at a given level
depends only on the local shear and is independent of
the flow evolution at lower levels; in this regime, the
scheme thus resembles the LH68 gravity wave drag
scheme. In particular, there is downward but no upward
propagation of information, and the wind cannot
change direction (in this regime). The shear zones, in
general, become narrower as they propagate down-
ward, to the extent that a nonoscillating state can some-
times evolve into a state where a mean-wind oscillation
is possible. Also, in practice, noise from the numerical
evaluation of the drag can destabilize a nonoscillating
state and allow the development of a mean-wind oscil-
lation. On the other hand, with sufficiently strong ver-
tical diffusion reducing the strength of the lower level
shear zones, the nonoscillating state can be maintained
indefinitely.

In all of the schemes discussed here, the strength of
the vertical diffusion affects the period and structure of
the QBO. Increasing the strength of the diffusion acts
to shorten the period. To generate a QBO using the
HL72 scheme, vertical diffusion is only needed at the
lowest levels, as Plumb (1977) pointed out. With the
gravity wave drag schemes that were considered here,
however, it is necessary to include vertical diffusion in
the vicinity of and above each of the regions of wave
momentum deposition. This means that, in practice,
diffusion must be included at all levels.

Comparing the different gravity wave drag schemes,
it was seen that the AD99 scheme is similar to the
two-wave Lindzen scheme in the sense of the drag pro-
file being discontinuous in height (case 2 in section 4),
although in the special case where the mean shear is
weak (case 1 in section 4), the evolution of the wind is
similar to that in the LH68 scheme.

In the AD99 scheme, the width and shape of the
source spectrum determine the drag profile and, hence,
the form of the QBO (assuming it is possible to gener-
ate one). A broad spectrum, including waves of large
intrinsic phase speed, results in a wide range of QBO
altitudes. With the Lindzen scheme, there are no spe-
cific constraints on the width of the source spectrum,
since the drag at high levels results from waves any-

where within the spectrum that have broken at lower
levels, not just from the large-phase-speed waves; in
fact, as was shown in section 3, it is possible to generate
a QBO with just two waves using the Lindzen scheme.
For all the schemes, a zero initial wind profile with an
antisymmetric source spectrum is unstable to small per-
turbations in the wind or the source spectrum for suf-
ficiently weak vertical diffusion.

All the gravity wave parameter settings used here are
such that the waves break gravitationally, so they are
able to generate QBOs even in the absence of critical
levels. This is unrealistic for the terrestrial stratosphere,
where gravity wave breaking is mostly due to critical
level interactions. However, for our model, which does
not include any equatorial planetary wave forcing, it is
the only way to generate a mean-wind oscillation from
a zero initial wind state. The obvious next step in our
investigation is to examine the role of gravity wave drag
in the presence of equatorial planetary wave forcing, as
this is the case of relevance to the terrestrial atmo-
sphere. In that case, there are additional constraints on
the phase speeds of the waves. These are discussed in
Campbell and Shepherd (2005).
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