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ABSTRACT

It is shown how a renormalization technique, which is a variant of classical Krylov–Bogolyubov–Mitropol’skii
averaging, can be used to obtain slow evolution equations for the vortical and inertia–gravity wave components
of the dynamics in a rotating flow. The evolution equations for each component are obtained to second order
in the Rossby number, and the nature of the coupling between the two is analyzed carefully. It is also shown
how classical balance models such as quasigeostrophic dynamics and its second-order extension appear naturally
as a special case of this renormalized system, thereby providing a rigorous basis for the slaving approach where
only the fast variables are expanded. It is well known that these balance models correspond to a hypothetical
slow manifold of the parent system; the method herein allows the determination of the dynamics in the neigh-
borhood of such solutions. As a concrete illustration, a simple weak-wave model is used, although the method
readily applies to more complex rotating fluid models such as the shallow-water, Boussinesq, primitive, and 3D
Euler equations.

1. Introduction

It is well known that in the atmosphere as well as in
the oceans the two most important components of the
dynamics are vortical motion and inertia–gravity waves.
At the synoptic scale and larger, the vortical motions
predominate, giving rise to a nearly ‘‘balanced’’ dy-
namics. If the dynamics were perfectly balanced (in the
sense of section 3 below), the description and evolution
of the system would be determinable from a reduced
set of variables, usually taken to be the potential vor-
ticity. The real atmosphere and oceans, however, do
contain a certain amount of seemingly freely propagat-
ing gravity waves, which can be regarded as a com-
ponent ‘‘orthogonal’’ to the balanced dynamics. Com-
paratively little is known about the interactions between

Corresponding author address: Prof. T. G. Shepherd, Dept. of
Physics, University of Toronto, 60 St. George St., Toronto, ON M5S
1A7, Canada.
E-mail: tgs@atmosp.physics.utoronto.ca

these two components, since the usual construction of
balance models postulates that these free gravity waves
do not exist.

A number of different methods have been used to
derive balance models. In the most common and ar-
guably most systematic method, the governing equa-
tions are scaled and a small parameter (usually related
to timescale separation) is introduced. The fast variables
are then expanded in powers of the small parameter, and
a hierarchy of balance models is obtained; this corre-
sponds to the ‘‘slow time expansion’’ or ‘‘slaving’’ pro-
cedure (Warn et al. 1995), which is discussed in detail
below. When one takes the Rossby number as the small
parameter on the f plane, possibly with weak topogra-
phy, the leading nontrivial model in the hierarchy is the
familiar quasigeostrophic model (Pedlosky 1987).

Many other approaches have been used to obtain slow
solutions to systems that support fast oscillations. In the
early days, balance models were derived more or less
intuitively (Charney 1948, 1955); various initialization
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FIG. 1. Power spectra at x 5 (0, 0) of potential vorticity q (gray line) and divergence D (black line) of
the weak-wave model (see sections 4 and 5 for details) taken over 0 # t # 204.7, with frequency f
expressed in terms of t21. Here, B 5 0.5 and Ro 5 0.1, so the minimum gravity wave frequency is at f
5 «21 ; 22.4. Separation of the fast and slow motion is evident: q has power predominantly in the low
frequencies, with a sharp decrease near f ; «21; meanwhile, the power of D resides mainly in the strong
peaks at the frequencies of the gravity waves, although there is also what is presumably a slaved component
at low frequencies, mirroring q but much weaker.

procedures, including the bounded derivative method,
were used operationally (Baer and Tribbia 1977; Mach-
enhauer 1977; Kreiss 1979); iterative methods have also
been used to derive higher-order balance models (e.g.,
Allen 1993; McIntyre and Norton 2000). Some of these
methods are closely related, if not demonstrably equiv-
alent, to the slaving method of Warn et al. (1995); in
fact, we are planning a future article devoted to this
issue.

These asymptotic procedures work because of the
timescale separation between the fast and slow dynam-
ics. Inspection of Fig. 1 (obtained from an uninitialized
numerical simulation using the model described in sec-
tion 4 below) reveals that the power of the slow variable
q is confined mostly to frequencies below f 5 «21, where
« is the ratio of fast to slow timescale, while most of
the power of the fast variable D resides in sharp peaks
having frequencies greater than or equal to f 5 «21.

It should be noted that for reasonably long times,
classical balance can be very effective (Wirosoetisno
1999). In the top panel of Fig. 2, we show how suc-
cessively higher-order initializations of the ageostrophic
variables can eliminate most of their fast oscillations.
Thus, when properly initialized (i.e., with properly cho-
sen initial conditions), the ‘‘fast’’ ageostrophic variables
evolve slowly for some time. Much of this slow evo-
lution is slaved to the slow variables, as further under-
lined in the bottom panel: for times of up to several tens
of eddy turnaround times, only a very small fraction (of
order 1026 in terms of power) of the ageostrophic var-

iable is unaccounted for by O(«3) classical balance;
higher-order balance may reduce this even further.

If such a procedure were to converge, one would find
an invariant ‘‘slow manifold’’ to which any solution
starting on it is confined for all time. It is now accepted
wisdom, however, that such an invariant manifold is
unlikely to exist (Vautard and Legras 1986; Lorenz and
Krishnamurthy 1987; Lorenz 1992; Wirosoetisno 1999).
Warn (1997) has argued that the asymptotic nature of
the procedure (or of the concept of balance in general)
is related to the impossibility to (find a set of variables
that would) eliminate the spectral overlap that is evident
in Fig. 1.

Given the impossibility of finding exact balance, a
natural question to ask is: When the unbalanced motion
is nonzero, what is the nature of its interaction with the
balanced flow? Several studies have been done to ad-
dress this problem. Ford (1994a,b,c) has obtained an-
alytical estimates, and numerical confirmation, on the
amplitude of gravity waves radiated away by certain
vortical flows. Polvani et al. (1994) have found nu-
merically that these estimates appear to apply in more
general cases, where the mathematical theory is, strictly
speaking, no longer valid. A number of purely numerical
investigations have also been carried out, mostly with
the conclusion that gravity waves are inevitably gen-
erated from balanced initial conditions (Farge and Sa-
dourny 1989; Yuan and Hamilton 1994; Yavneh and
McWilliams 1994). However, the numerical studies are
difficult to interpret because the initial balance is only



3384 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 2. Power spectra at x 5 (0, 0), with Ro 5 0.5, B 5 0.2, and «21 ø 10.2. The numerical
model is as described in section 5 except the resolution is 292, the aspect ratio a 5 1, and in
(5.1) k0 5 3. The frequency spectrum is taken over 0 # t # 38.8. (top) Spectra of D, without
initialization, that is, only with geostrophic balance (top curve, shifted up by 103), with O(«)
slaving initialization (middle curve, in place), and with O(«3) initialization (bottom curve,
shifted down by 1023). (bottom) Spectra of q (upper curve) and D 2 (lower curve), thatDU3

is, the third-order estimate of the unslaved, or free, component of divergence; both in place,
with third-order slaving initialization. The third-order estimate of the unslaved divergence
reveals the free inertia–gravity waves that are submerged beneath the slaved (balanced) spec-
trum in the bottom curve of the top panel. Hence, there is a separation of the fast and slow
dynamics even when their spectra strongly overlap.

approximate, and there is the very real possibility that
a more accurate initial balance would reduce the gravity
wave generation.

To better understand this problem, in this paper we
employ an asymptotic theory based on the renormali-
zation method to obtain slow evolution equations for
both the amplitude of the ‘‘free’’ gravity waves and the
balanced vortical motion. The coupling between these
two components can be explicitly identified, thus show-

ing how unbalanced motion can be generated from vor-
tical flows and how the dynamics of the latter is affected
by nonzero gravity waves.

As described in detail below, classical balance turns
out to be a special case of our renormalized system
where, interestingly, the renormalization procedure has
no effect. Using a combination of the renormalized
equations and error bounds on their solutions, it is pos-
sible to predict the stability of these classical balance
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solutions. (More generally, the renormalization ap-
proach makes it possible to estimate the stability of the
asymptotic solutions of a class of singular perturbation
problems.)

The idea of renormalization, which dates back to the
1940s, is hardly new, with its application to singular
perturbation theory being slightly more recent [cf. the
monographs of Nayfeh (1973), and of Goldenfeld
(1992), and the paper by Chen et al. (1996)]. The form
used in this paper is a development of the work of Moise
et al. (1998), Ziane (2000), Moise and Temam (2000),
and Moise and Ziane (2001). The applications treated
in the last two papers are of interest to geophysical fluid
dynamics (GFD): slightly compressible flows and the
Galerkin truncation of the Navier–Stokes equations.

What amounts to our first-order renormalized equa-
tions have been investigated previously by a number
of authors in various GFD contexts (cf. e.g., Embid
and Majda 1996; Chemin 1997; Gallagher 1998; Em-
bid and Majda 1998; Majda and Embid 1998; Babin
et al. 2000, 2001) based on the work of Schochet
(1994), which is closely related to the method em-
ployed here. Mention should also be made of the work
of Callet (1997), who analyzed four-wave resonanc-
es—these correspond to isolated interactions in our
second-order renormalized system. Apart from pre-
senting a possibly more transparent derivation of
these results, the systematic expansion presented in
this work can be readily [at least formally for partial
differential equations (PDEs)] extended to higher or-
ders while at the same time keeping a clear relation-
ship to higher-order classical balance models.

To emphasize the geophysical relevance, we shall re-
fer to the well-known rotating shallow-water model as
an illustration to the abstract derivation. However, in
the worked example of section 4, a simpler model, the
weak-wave model of Nore and Shepherd (1997), will
be used since it significantly reduces the amount of com-
putation.

The rest of this paper is structured as follows. In
section 2 we describe the renormalization method and
set the notation used in the rest of this paper. The close
connection between the renormalization solution and
that obtained by the slaving method is presented in sec-
tion 3. Section 4 contains a worked example of the
formalism of the previous two sections, and numerical
simulations of this model are presented in section 5. A
discussion concludes the paper.

2. The renormalization method

In this section, we consider a dynamical system of
the form

du
1 Lu 5 «F (u), u(0) 5 u , (2.1)0ds

where F (u) is a polynomial function of its argument
with F (0) 5 0, L is a linear operator, and « is a small

parameter. Systems of this form arise from the spectral
discretization of virtually all GFD models in their
unforced form (with minor modification, the formu-
lation below can handle time-quasi-periodic forcing).
In general F may depend on «, but this case adds no
essential difficulty apart from the amount of com-
putation needed, so we will not discuss this case fur-
ther in what follows. For the formal development in
most of this section we do not assume that the system
(2.1) is finite-dimensional. The system could be, say,
a system of partial differential equations in Fourier
representation. Some additional assumptions would
however be needed in the PDE case; see the remarks
at the end of this section.

For concreteness, we use the rotating shallow-water
equations on the f plane (SWE for short) to provide the
geophysical illustration of the formalism, which, how-
ever, is equally applicable to many other systems as
well. In this context, the dependent variable u can be
regarded as representing the velocity (or its derivatives)
and surface height, L is the operator corresponding to
the inertia–gravity waves, and (taking the rotational
Froude number to be 1) « is the Rossby number. In this
section we work on the fast time s 5 t/« and seek to
rewrite the equations, by a change of variable, in a form
where the fast part Lu disappears. The connection be-
tween this expansion and the slow time t expansion,
which yields the classical balance models, is described
in section 3 below.

The requirement to work with a discrete (but not nec-
essarily finite) set of equations appears to be essential
for the method; it will be apparent from the development
below why, while classical balance models can be de-
rived strictly in the continuous formulation, one needs
a discrete spectral formulation as soon as free gravity
waves are considered.

Before we begin, all series solutions (and the slow
manifold Srg and Sslav) in this paper are to be understood
in the asymptotic sense; we make no claims as to the
convergence of any expansion as n → `.

Defining a new variable y :5 eLsu, we can write our
system in the equivalent form

dy
5 «F(y , s), y(0) 5 u , (2.2)0ds

where F(y, s) 5 eLsF (e2Lsy). In the rest of this paper,
we will make use of both forms, (2.1) and (2.2), which-
ever is more convenient.

The first step is standard: we expand the variable y
in powers of «,

0 1 2 2y(s) 5 y (s) 1 «y (s) 1 « y (s) 1 · · ·, (2.3)

and solve the resulting system of equations order by
order. Under this expansion, F(y, s) on the right-hand
side of (2.2) becomes
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0 0 1F(y , s) 5 F(y , s) 1 «F9(y , s) · y (s)

2 0 21 « F9(y , s) · y (s)[
1

0 1 1 31 F0(y , s) · y (s) J y (s) 1 O(« ),]2

(2.4)

where the primes on F denote differentiation with re-
spect to its first argument.1 Here and elsewhere, we may
suppress writing the s dependence in functions when no
confusion can arise.

The leading-order solution is easily obtained. Since

0dy
5 0,

ds

we have y 0(s) 5 constant 5: y 0 [note that it may be
advantageous to choose y 0 ± y (0) 5 u0; see remark
following (2.10) below]. Equivalently, we have
u0(s) 5 e2Lsy 0. In our SWE illustration, this simply
says that the gravity waves are linear oscillators at
leading order while the vortical modes—for which eLs

is the identity—are frozen on the fast timescale. To
compute the next-order terms, we need some more
notation.

Following Bogolyubov and Mitropol’skii (1958), for
an arbitrary function G(w, s) that can be written in the
form

in sjG(w, s) 5 e f (w), (2.5)O j
j

we define a pair of operators. [Note that F(y, s) above
can be written in this form, even with the addition of
time-quasi-periodic forcing, F being a polynomial.] The
averaging operator, denoted by an overbar, picks out the
constant part of G(w, s), that is, the part that does not
depend explicitly on time:

:G(w) 5 f (w). (2.6)O j
n 50j

The integrating operator, denoted by an underbar, is

1
in sj:G(w, s) 5 e f (w). (2.7)O jinn ±0 jj

With these definitions, we have

]
G(w, s) 5 G(w) 1 G(w, s), (2.8)

]s

as well as 5 0 (note that the two operatorsG(w, s)
commute). We stress that the averaging and integrating
operators act on the explicit time dependence of the
function G(w, s); this will become important in what

1 The dot · denotes inner product, and J is the tensor or outer
product. Thus, in components, (F 0(u) · y J w)i 5 (]2Fi /]uj]uk)y jwk,
etc.

follows with time-dependent w. In our SWE illustration,
the averaging operator picks up the resonant gravity
wave triads and the vortical modes (the latter are always
resonant on the fast timescale considered here); in the
higher-order approximations considered below, we find
resonances involving more than three modes. The in-
tegrating operator, on the other hand, acts only on the
nonresonant terms in its operand.

Returning to our problem, at O(«) we find

1dy
05 F(y , s) 5 F(y , s)0ds

s

1 1⇒ y (s) 5 y 1 F(y , r) dr. (2.9)0 E 0

0

With the notation introduced above, the integral can be
written as a sum of resonant and nonresonant parts,

1 1y (s) 5 y 1 sF(y ) 1 F(y , s) 2 F(y , 0). (2.10)0 0 0 0

In what follows we shall set the integration constants
5 0 for n $ 1. This choice implies that y0 5 y (0)ny 0

5 u0; it also makes possible the identification in the
next section of the slaving manifold as the invariant
renormalization slow manifold. Other choices for areny 0

possible; for example, taking 5 to cancel1y F(y , 0)0 0

the constant term in (2.10) and similarly at higher orders
corresponds to computing the normal form (Bruno
1989) in averaging-type approaches (Bogolyubov and
Mitropol’skii 1958).

With 5 0, our unrenormalized approximate solu-1y 0

tion to O(«) is then given by

1 0 1:ŷ (s) 5 y (s) 1 «y (s)

5 y 1 «sF(y ) 1 «F(y , s) 2 «F(y , 0).0 0 0 0

(2.11)

The secular term «s can be removed by replacingF(y )0

the constant y0 by a slowly time-varying variable (s)y
in the following manner (Chen et al. 1996; Ziane 2000).
Let (s) be the solution ofy

dy
5 «F(y ), y (0) 5 y ; (2.12)0ds

note that is the renormalized variable—the bar herey
does not denote averaging. It follows that (s) 5 y0 1y
«s 1 O(«2) 5 y0 1 «s 1 O(«2), so fromF(y (s)) F(y )0

(2.11) we obtain our O(«) renormalized solution

1ỹ (s) 5 y (s) 1 «[F(y (s), s) 2 F(y (s), 0)]. (2.13)

Our final approximate solution to O(«) is then given by
the first-order renormalized system (2.12) and its rela-
tion (2.13) to the original variable y.

The renormalized system (2.12) can therefore be
thought of as a slow evolution equation for the ampli-
tudes of all the variables in the system, with the alge-
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braic equation (2.13) accounting for all the fast linear
oscillations that may be present.

Returning to (2.3)–(2.4), at the next order, we find
(with 5 0)2y 0

s

2 0 1y (s) 5 F9(y (r), r) · y (r) drE
0

1
25 s F9(y ) · F(y ) 1 sF9(y , s) · F(y )0 0 0 02

2 F9(y , s) · F(y ) 1 F9(y , 0) · F(y )0 0 0 0

1 sF9(y ) · F(y ) 1 F9(y , s) · F(y , s)0 0 0 0

2 F9(y , 0) · F(y , 0)0 0

2 sF9(y ) · F(y , 0) 2 F9(y , s) · F(y , 0)0 0 0 0

1 F9(y , 0) · F(y , 0) (2.14)0 0

after using (2.10) with 5 0. A word on the notation:1y 0

the integrating operator applied on F9(y0, s) · F(y , 0)0

gives · ; when the latter is evaluated atF9(y , s) F(y , 0)0 0

s 5 0 it becomes · . On the otherF9(y , 0) F(y , 0)0 0

hand, the integrating operator applied on F9(y 0,
s) · gives ; the latter becomesF(y , s) F9(y , s) · F(y , s)0 0 0

when evaluated at s 5 0.F9(y , 0) · F(y , 0)0 0

We now proceed to remove the secular terms in 2 :5ŷ
y 0 1 «y1 1 «2y 2 by renormalization. To wit, we replace
y0 5 (0) by the Taylor series of (s) around s:y y

2 2dy s d y
y 5 y (s) 2 s (s) 1 (s) 2 · · · , (2.15)0 2ds 2 ds

where (s) satisfies the second-order renormalizedy
equation

dy
25 «W (y ) 1 « W (y ), y (0) 5 y . (2.16)1 2 0ds

From the previous order, we have found that W1( ) 5y
, so (2.15) becomesF(y )

1
2 2y 5 y (s) 2 «sF(y ) 1 « s F9(y ) · F(y )0 2

2 32 « sW (y ) 1 O(« ), (2.17)2

where W2 will be determined shortly. (Note that taking
the derivative of F commutes with both the averagingy
and integrating operators.) Substituting this expression
into

2ŷ 5 y 1 «[sF(y ) 1 F(y , s) 2 F(y , 0)]0 0 0 0

1
2 21 « s F9(y ) · F(y ) 1 sF9(y , s) · F(y )0 0 0 0[2

2 F9(y , s) · F(y ) 1 F9(y , 0) · F(y )0 0 0 0

1 sF9(y ) · F(y ) 1 F9(y , s) · F(y , s)0 0 0 0

2 F9(y , 0) · F(y , 0)0 0

2 sF9(y ) · F(y , 0) 2 F9(y , s) · F(y , 0)0 0 0 0

1 F9(y , 0) · F(y , 0) ,0 0 ]
and dropping terms of O(«3) or higher, we find

1
2 2 2 2ŷ 5 y (s) 2 «sF(y ) 1 « s F9(y ) · F(y ) 2 « sW (y )22

2 21 «sF(y ) 2 « s F9(y ) · F(y ) 1 «F(y , s)

22 « sF9(y , s) · F(y ) 2 «F(y , 0)

21 « sF9(y , 0) · F(y )

1
2 21 « s F9(y ) · F(y ) 1 sF9(y , s) · F(y )[2

2 F9(y , s) · F(y ) 1 F9(y , 0) · F(y )

1 sF9(y ) · F(y ) 1 F9(y , s) · F(y , s)

2 F9(y , 0) · F(y , 0)

2 sF9(y ) · F(y , 0) 2 F9(y , s) · F(y , 0)

31 F9(y , 0) · F(y , 0) 1 O(« ).]
The O(«) secular terms cancel by construction, while
the O(«2) secular terms can be removed by choosing

W (y ) 5 F9(y ) · F(y ) 2 F9(y ) · F(y , 0)2

1 F9(y , 0) · F(y ), (2.18)

leaving us with the renormalized solution

2ỹ (s) 5 y (s) 1 «[F(y , s) 2 F(y , 0)]

21 « [F9(y , s) · F(y , s) 2 F9(y , s) · F(y )

2 F9(y , s) · F(y , 0)

2 F9(y , 0) · F(y , 0) 1 F9(y , 0) · F(y )

1 F9(y , 0) · F(y , 0)]. (2.19)

To this order, the approximate solution consists of
(2.19) along with the evolution (renormalized) equation
for (s),y

dy
25 «F(y ) 1 « [F9(y ) · F(y ) 2 F9(y ) · F(y , 0)

ds

1 F9(y , 0) · F(y )], (2.20)

with (0) 5 y0.y
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We note that the quadratic term s2 · and the os-F9 F
cillating secular term s · , which appear at O(«2), allF9 F
cancel due to our O(«) renormalization of the linear
secular term s . With some more computation (whichF
we do not show here), it can be verified that the same
holds at the next order. Subject to this renormalizability
condition, we believe that the procedure can be carried
on (at least formally for PDEs—see below) to higher
orders to obtain better approximations, although the
amount of computation increases very quickly.

In most applications, what one would be interested
in is the renormalized evolution equation, the analogue
of (2.20), since this may yield information about weak
higher-order interactions that become important over
long timescales. Less likely to be useful is the higher-
order analogue of (2.19), which would only give a small
algebraic correction that does not grow with time. In
this way, the renormalization procedure can be regarded
as a method to separate long-term evolution from short-
term rapid bounded oscillations.

For finite-dimensional systems, it can be shown rig-
orously (Temam and Wirosoetisno 2002) that our re-
normalized approximate solutions 1(s), 2(s) are uni-ỹ ỹ
formly valid over times s ; «21 up to the order specified,
as long as the solution of the evolution equation [the
analogue of (2.20) to the appropriate order] exists. More
precisely, the exact solution y (s) of (2.2) is approxi-
mated by n(s) in the following sense. For fixed con-ỹ
stants Ci and Ti, which depend on the initial conditions
but not on «, as « → 0:

n n(i) |y(s) 2 ỹ (s)| # C « for s # T /«,1 1

n n21(ii) |y(s)2ỹ (s)| # C « for s # 2T log«/«.2 2

(2.21)

In the slow time t, (i) holds for t # T1, that is, for several
(order 1) eddy turnaround times, and (ii) holds for a
factor of log« longer.

For infinite-dimensional systems, such as the partial
differential equations of GFD, further issues have to be
addressed. One is the small denominator problem2 men-
tioned in section 4. Ensuring that the solution of the
renormalized evolution equation remains regular over
the timescales in (i) and (ii) of (2.21) above also be-
comes more difficult. These problems are nontrivial in
most cases (and may not be possible beyond a certain
order n), but since the issue of regularity is well beyond
the scope of this paper we shall not discuss it here.

Finally, we note that the slow evolution equation
(2.20) and its relation to the original variables (2.19)
obtained above using renormalization can also be ob-
tained using the averaging method introduced by Kry-

2 In the finite-dimensional case, small denominators do not cause
problems as long as one works with a finite order of the expansion.
They do cause nontrivial difficulties when one goes to all orders [as
in (Kolmogorov–Arnol’d–Moser) KAM-type theorems] or when the
order is taken as a function of « (as in Nekhoroshev-type theorems).

lov, Bogolyubov, and Mitropol’skii. In fact, one can
verify directly that the two methods are equivalent for
the first few orders—they are probably equivalent to all
orders. We have adopted the renormalization approach
here since the idea also applies to the removal of sec-
ularity in the slaving solution of Warn et al. (1995)
discussed in the next section.

3. Connection with the slow manifold

There is a natural and close connection between the
renormalized solution obtained in the preceding section
and the so-called slow manifold, defined by the slaving
procedure (e.g., Warn et al. 1995).

To show this, we rewrite the system (2.1) on the slow
time t :5 «s by a slight abuse of notation [u is either
u(s) or u(t) depending on context]:

du L
1 u 5 F (u). (3.1)

dt «

If we expand u(t) in powers of « as before, we find that
at leading order

0Lu 5 0. (3.2)

This suggests separating u into a ‘‘slow’’ component y
that belongs to ker L and its L-orthogonal ‘‘fast’’ com-
plement x. We thus write u 5 (x, y). With these variables,
(3.1) can be written as

dx Lx1 x 5 X(x, y)
dt « (3.3)

dy
5 Y (x, y),

dt

where Lx is the restriction of L to its resolvent (and is
thus nonsingular), and X and Y are the x and y com-
ponents of F, respectively.

We can now expand both x(t) and y(t) in powers of
« and solve for them order by order as before. This is
the slow time expansion alluded to earlier, and is the
basis for the systematic derivation of the quasigeo-
strophic model (cf. Pedlosky 1987, section 3.12). When
we do this, we find that xn can always be determined
from previous iterations:

0 1 0x 5 0, L x 5 X(0, y ), etc.x (3.4)

So (our approximation to) the fast variable x has no
independent evolution equation of its own; in other
words, it is slaved. Hence the term reductive pertur-
bation theory [note that this is not the sense in which
it is used by Chen et al. (1996)]. In the more mathe-
matical literature (e.g., Schochet 1994; Embid and Maj-
da 1996), this case is often referred to as solving a
problem with well-prepared initial data.

Put differently, this expansion cannot give us any
generic solutions, but only those living in a (slow) so-
lution manifold Sslav [see (3.8) below]. This restriction
is understood for the remainder of this section.
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As pointed out in Warn et al. (1995), however, this
program soon runs into a difficulty: at O(«) we find

1dy
0 1 0 15 Y (0, y ) · y 1 Y (0, y ) · x . (3.5)y xdt

Apart from the second term on the right-hand side, this
equation describes the evolution of a Lyapunov vector
of the system

0dy
05 Y (0, y ), (3.6)

dt

implying that if this latter system possesses a positive
Lyapunov exponent then y1 will grow exponentially in
time. This is an undesirable situation, since in most
applications one would like an approximate system that
is well behaved, even when outside the timescale of
validity of the original approximation.

This blow up can be handled in much the same way
as the secular solutions we encountered earlier—by re-
normalization. Since y is the only prognostic variable
(x is slaved to y), we only need to renormalize y. Here
the procedure is quite simple: to O(«), define :5 y0y
1 «y1; we then find, using (3.4), (3.5) and (3.6), and
undoing the Taylor expansion, that the time evolution
of (t) is given byy

dy
21 25 Y («L X(0, y ), y ) 1 O(« ), (3.7)xdt

the O(«) truncation of which no longer blows up. It can
easily be verified that the same procedure works at high-
er orders.

This approach is of course equivalent to not expand-
ing the slow variable y, as proposed in the slaving ap-
proach of Warn et al. (1995). We can thus do away with
the renormalized variable and simply write y in itsy
place.

Since we know that x is slaved to y on Sslav, we write
it as a function of y, namely,

x 5 U(y; «)
25 U (y) 1 «U (y) 1 « U (y) 1 · · · . (3.8)0 1 2

Our solution manifold is then Sslav :5 {(x, y) | x 5
U(y; «)}. Using (3.3), we find that the slaving relation
U(y; «) is determined implicitly by the so-called su-
perbalance equation (Lorenz 1980)

LxU9(y; «)Y (U(y; «), y) 1 U(y; «)
«

5 X(U(y; «), y). (3.9)

At the three lowest orders, the superbalance equation
yields

U (y) 5 0 (3.10a)0

21U (y) 5 L X(0, y) (3.10b)1 x

21 21U (y) 5 L [X (0, y)L X(0, y)2 x x x

212 L X (0, y)Y (0, y)]. (3.10c)x y

As noted earlier, this procedure is not able to capture
the general solutions such as those obtained in the pre-
vious section using the renormalization method; rather,
it only gives us solutions lying on a special manifold
Sslav. It is moreover clear that the slaving construction
rules out rapid oscillations that are generically present
in the general solution, so Sslav is in a sense slow. The
rest of this section is devoted to making this statement
more precise, which we do by finding a set of slow
renormalized solutions and then showing that it corre-
sponds precisely to Sslav defined above.

To do this we shift gears and return to our O(«2)
renormalized system (2.19)–(2.20). We look for the con-
dition such that our original variable u(s) is free of fast
oscillations. Denoting the right-hand side of (2.19) by
R( , s) so that the approximate solution for u(s) is giveny
by ũ 2(s) 5 e2Ls 2(s) 5 e2LsR( , s), we demand that ũ 2(s)ỹ y
is completely slow or, in other words, that

]
2Ls[e R(y , s)] 5 0. (3.11)

]s

Introducing the notations ũ 5 (x̃, ỹ) and F 5 (X, Y),
we find from (2.19) that at O(1),

0 2L sxx̃ (s) 5 e x(s) (3.12a)
0ỹ (s) 5 y(s), (3.12b)

where 5 ( , ). [Note that the y components of u andy x y
y are the same, since eLs(0, y) 5 (0, y).] Now (3.12a)
implies that, for ũ 0(s) to be slow, one must have ;x
O(«). Writing 5 «C1, up to O(«), with C1 to be de-x
termined, (2.19) gives

21 2L s 2L sx xx̃ (s) 5 «e C 1 «e X(x, y, s)1

2L sx2 «e X(x, y, 0)

2L s 2L sx x5 «e C 1 «e X(0, y, s)1

2L s 2x2 «e X(0, y, 0) 1 O(« ). (3.13)

To proceed further, we need to revisit the definition of
. At 5 0, (2.8) givesX(x , y , s) x

X(0, y, s) 2 X(0, y, 0)

s

L rx5 e X(0, y ) drE
0

21 L s 21x5 L e X(0, y ) 2 L X(0, y ),x x

noting that the integrand only contains nonresonant
parts ( is held fixed in the integration). It followsy
that

L sxX(0, y, s) 5 e X(0, y, 0)

L s 21x5 e L X(0, y ). (3.14)x

Substituting the first line of the last expression into
(3.13), we find
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1 2L sxx̃ (s) 5 «e C 1 «X(0, y, 0)1

2L sx2 «e X(0, y, 0), (3.15)

which can be made completely slow to this order pro-
vided we take

21C 5 X(0, y, 0) 5 L X(0, y ). (3.16)1 x

[It may be noted that this is just the O(«) slaving relation
(3.10b), with in place of y.] Hence, x̃1 5 to this order.y x

We now consider x̃ 2(s), which, using the earlier can-
cellations in x̃ 1(s) and writing 5 « 1 «2C2x X(0, y , 0)
1 · · ·, is given by [cf. (2.19)]

2 2 2L sxx̃ (s) 5 «X(0, y, 0) 1 « e [C 1 X (0, y, s) · X(0, y, 0) 2 X (0, y, 0) · X(0, y, 0)2 x x

1 X (0, y, s) · X(0, y, s) 2 X (0, y, s) · X(0, y ) 2 X (0, y, s) · X(0, y, 0)x x x

1 X (0, y, s) · Y(0, y, s) 2 X (0, y, s) · Y(0, y ) 2 X (0, y, s) · Y(0, y, 0)y y y

2 X (0, y, 0) · X(0, y, 0) 1 X (0, y, 0) · X(0, y ) 1 X (0, y, 0) · X(0, y, 0)x x x

32 X (0, y, 0) · Y(0, y, 0) 1 X (0, y, 0) · Y(0, y ) 1 X (0, y, 0) · Y(0, y, 0)] 1 O(« ). (3.17)y y y

A few more identities analogous to (3.14) are needed
for the next step:

Y(0, y, s) 5 0, X(0, y ) 5 0,

X (0, y, s) · X(0, y, s)x

L sx5 e X (0, y, 0) · X(0, y, 0),x

X (0, y, s) · Y(0, y )y

L sx5 e X (0, y, 0) · Y(0, y ). (3.18)y

Effecting the resulting cancellations, and upon choosing

C 5 X (0, y, 0) · X(0, y, 0)2 x

2 X (0, y, 0) · Y(0, y ), (3.19)y

we find that x̃ 2(s) has become completely slow to this
order. Expressing (X, Y) in terms of (X, Y) [cf. (3.14)],
this recovers the O(«2) slaving relation (3.10c), with

in place of y. As x̃ 2(s) is completely slow, x̃ 2 5y x
to this order. In addition, since no constraint has been
imposed on ỹ, one obviously has ỹ 5 exactly.y

After much computation (of which we shall spare the
reader), it can be verified that imposing slowness on the
O(«3) renormalized solution also yields the slaving re-
lation at that order. We conclude then that, to O(«3), the
special renormalization solutions that are free of fast
oscillations lie on the slow manifold obtained using the
slaving procedure. In other words, the set of slow re-
normalized solutions, which we will denote by Srg, co-
incides with the slaving manifold Sslav. We will hence-
forth write S for both Srg and Sslav.

Several further remarks are in order.
First, the slow manifold S turns out to be the fixed

point of the transformation that gives the original u
variable from the renormalized variable ; that is, ity
solves

2Lsy 5 e R(y , s) for y on S (3.20)

[recall that R( , s) is the right-hand side of (2.19)]. Thisy
can be seen perhaps more directly by integrating (3.11),
remembering that at s 5 0, u 5 . This manifold hasy
a dimension that is equal to dim ker L, and it reduces
to a point {0} under our hypothesis F (0) 5 0 when y
consists only of fast variables.

Second and more importantly, our renormalization
solution allows us to (i) explicitly verify the invari-
ance of S to the order of approximation considered,
and (ii) investigate the behavior of the solution in the
neighborhood of S. We shall do this in the renormal-
ized variables 5 ( , ). Writing C( , «) :5 «C1 1y x y y
«2C2 1 · · ·, let d :5 2 C( ; «) denote the departurex y
of the solution from S. Returning to (2.20), we com-
pute

dd
5 «X(x, y )

ds
21 « [X (x, y ) · X(x, y ) 2 X (x, y ) · X(x, y, 0)x x

1 X (x, y, 0) · X(x, y )x

1 X (x, y ) · Y(x, y )y

2 X (x, y ) · Y(x, y, 0)y

1 X (x, y, 0) · Y(x, y )]y

32 «C9(y ; «) · Y(x, y ) 1 O(« ), (3.21)

noting that C9( ; «) ; O(«). We consider the dynamicsy
for small values of d. Expanding all on the rhs aroundx
0, and upon using (3.18) and ) 5 0, weX (0, y) · X(0, yx

indeed find that S is invariant to the stated order:
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dd
25 «X (0, y ) · d 1 « {X (0, y ) · X(0, y ) J d 1 X (0, y ) · X (0, y ) · d 2 X (0, y ) · X (0, y, 0) · dx xx x x x xds

2 X (0, y ) · X(0, y, 0) J d 1 X (0, y, 0) · X (0, y ) · d 1 X (0, y ) · Y (0, y ) · dxx x x y x

3 21 X (0, y ) · Y(0, y ) J d} 1 O(« , d ). (3.22)yx

This invariance property (which also holds to the next
order) cannot be obtained from the slaving procedure
itself, so our present approach can be seen as providing
a justification for the former (cf. also the appendix of
Wirosoetisno and Shepherd 2000).

Finally, the reader may ask, what about the y equa-
tions that were never used in computing S ? At O(«),
the property 5 0 gives 0 5 0, and imposingY(0, y , s)
slowness at the next order gives 5 « . It turnsx X(0, y , 0)
out that the y equation does not yield any new infor-
mation, and it lags behind the x equation used above
by one order.

At leading order, the connection between the fast
and slow time expansions discussed in this section is
quite clear and no doubt has long been known to many
people. At higher orders, however, there is an am-
biguity in the fast time expansion arising from the
choice of integration constants [cf. the discussion fol-
lowing (2.10)]—only the choice used here provides
the connection.

4. Renormalized equations for the weak-wave
model

In this section we provide an explicit worked ex-
ample of the above formalism using a simplified mod-
el of the shallow-water equations valid for weak im-
balance, the so-called weak-wave model of Nore and
Shepherd (1997). We note that the physical conclu-
sions obtained here may be at variance with those
obtained with other models (e.g., the shallow-water
equations). The development in this section is to be
regarded as formal. We shall avoid technical issues
such as whether the sums over wavenumbers in (4.11)
and (4.16) and their higher-order analogues actually
converge (to prove convergence would require esti-
mates of small denominators; see further comments
below), and more difficult issues such as whether the
solution of the renormalized evolution equations stays
bounded and smooth, etc.

Taking the quasigeostrophic potential vorticity q̃, di-
vergence D, and disturbance height h as the dependent
variables, the governing equations of the model are as
follows:

q̃ 5 2](c, q̃ )t

2 21 B 2 ¹ 1
D 5 h 1 bq̃t 21 2« 1 1 B «

1
h 5 2 D, (4.1)t «

with q̃ 5: ¹2c 2 bh. Here B :5 f L / is the ro-ÏgH
tational Froude number, b :5 B/ , and « :52Ï1 1 B
Ro · b is the timescale separation parameter (Ro is the
Rossby number). For more details on the derivation
of the model, the reader is referred to Nore and Shep-
herd (1997).

For the development below, we need to write the
system in terms of fast and slow variables. Of the
original variables (q̃, D, h), h is not completely fast
at leading order (as can be seen from the equations
of motion), so we shall replace it with its ageostrophic
part,

212 2B 2 ¹
:h 5 h 1 b q̃. (4.2)

21 21 1 B

Using (q̃, D, h) as our new set of dependent variables,
the governing equations (4.1) read

q̃ 5 2](c, q̃ )t

2 21 B 2 ¹
D 5 ht 21 2« 1 1 B

212 21 B 2 ¹
h 5 2 D 2 b ](c, q̃ ), (4.3)t 21 2« 1 1 B

where now c is to be computed from q̃ and h.
In this paper, we shall work in a two-dimensional

periodic domain x ∈ V :5 [0, 2p) 3 [0, 2pa). To apply
the above results to the model, it is most convenient to
work in terms of Fourier modes. We write

1
ik · xq̃(x, t) 5 q (t)e andO k

k2pÏa

1
2ik · xq (t) 5 q̃(x, t)e dx, (4.4)k E

2pÏa

with similar expressions for D(x) and h(x). We assume
that all quantities have vanishing averages, so the k 5
0 components are identically zero [thus h in (4.2) is
unambiguously defined]. Here and henceforth, it is un-
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derstood that unless otherwise specified summations are
taken over k 5 (k1, k2) ∈ Z2\{0}, and integrations are
taken over V. The dot product is defined as k · x :5 k1x1

1 k2x2/a.
The discrete version of the equations of motion (4.3)

reads

« b
q̇ 5 (k 3 n)q g q 1 hOk k2n n n n2*1 2nn2pÏa

2Ḋ 5 l hk k k

«b b
22ḣ 5 2D 1 l (k 3 n)q g q 1 h .Ok k k k2n n n n2*1 2nn2pÏa

(4.5)

Here, an overdot denotes time s derivative, k 3 n :5
(k1n2 2 k2n1)/a, n2* :5 1 /a2, and2 2n n1 2

2 2*B 1 k 1
: :l 5 g 5 . (4.6)k k2 2 2*! B 1 1 B 1 k

To make the algebra more transparent, we diagonalize
the fast part of (4.5) by introducing the variables

1
21:j 5 (l D 1 ih )k k k k2

1
21:z 5 (h 1 il D ). (4.7)k k k k2

In the variables (qk, jk, zk), (4.5) becomes

« b
q̇ 5 (k 3 n)q g q 1 (z 2 ij )Ok k2n n n n n2*[ ]nn2pÏa

ib
22j̇ 5 2il j 1 « lk k k k

4pÏa

b
3 (k 3 n)q g q 1 (z 2 ij )O k2n n n n n2*[ ]nn

b
22ż 5 il z 1 « lk k k k

4pÏa

b
3 (k 3 n)q g q 1 (z 2 ij ) . (4.8)O k2n n n n n2*[ ]nn

In the renormalization notation of the previous sec-
tions u 5 (qk, jk, zk) and (4.8) represent (2.1). We have
y 5 (qk, , ) :5 (qk, e jk, e zk), and the analogueil s 2il sk kj9 z9k k

of (2.2) is

dq « bk il s 2il sn n5 (k 3 n)q g q 1 (e z9 2 ie j9)O k2n n n n n2*[ ]ds nn2pÏa

dj9 ib bk 22 il s il s 2il sk n n5 « l e (k 3 n)q g q 1 (e z9 2 ie j9)Ok k2n n n n n2*[ ]ds nn4pÏa

dz9 b bk 22 2il s il s 2il sk n n5 « l e (k 3 n)q g q 1 (e z9 2 ie j9) . (4.9)Ok k2n n n n n2*[ ]ds nn4pÏa

Ignoring the k 5 0 modes (which are zero by hy-
pothesis), (4.6) implies that (i) lk 5 ln if and only if
k2* 5 n2* and, (ii) lk . 0 for any k ± 0. Now the
O(«) resonant terms can be read off (4.9), giving the
evolution equations for the renormalized variables

5 ( k, k, k) [cf. (2.12)]:y q j z
dq 1k 5 « (k 3 n)q g q (4.10a)O k2n n nds n2pÏa

2 22dj b l k 3 nk k5 « q j (4.10b)O k2n n2** *2 2ds nn 5k4pÏa
2 22dz b l k 3 nk k5 « q z . (4.10c)O k2n n2** *2 2ds nn 5k4pÏa

From the first equation we see that the evolution
of the renormalized potential vorticity is given at this
order simply by the quasigeostrophic equation, with
no feedback from the gravity waves. The second and
third equations tell us that only gravity waves be-
longing to the same energy shell (i.e., those having
the same frequency modulus) interact, modulated by
the appropriate vortical modes. This fact can be seen
by noticing the skew-Hermitian nature of the operator
Akn 5 const · (k 3 n) k2n / n2*, as pointed out by2q l k

Embid and Majda (1996, and references therein).
To the same order, the approximate solution for u 5

(qk, jk, zk) is given by the nonresonant terms in (4.9)
[cf. (2.13) and recall that u 5 e2Lsy ]:
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2il s il sn nb 1 e 2 1 e 2 1
1q̃ (s) 5 q (s) 1 « (k 3 n)q · j 2 i z (4.11a)Ok k k2n n n2*1 2n l ln2pÏa n n

22 2il s il s 2il s 2il s 2il sk n k n kbl 1 2 e b e 2 e e 2 ek1 2il s 9kj̃ (s) 5 e j (s) 1 « (k 3 n)q g q 1 z 2 i j (4.11b)Ok k k2n n n n n2*1 2[ ]l n l 1 l l 2 ln4pÏa k k n k n

22 il s il s il s 2il s il sk n k n kibl 1 2 e b e 2 e e 2 ek1 il s 9kz̃ (s) 5 e z (s) 1 « (k 3 n)q g q 2 z 1 i j . (4.11c)Ok k k2n n n n n2*1 2[ ]l n l 2 l l 1 ln4pÏa k n k k n

Here, terms with vanishing denominators are excluded
in the sums over n (denoted by the primes on the sum)
as they are accounted for in (4.10). In this paper, we
shall assume that these expressions define well-behaved
functions when Fourier transformed back into physical
space, that is, that terms of the form lk 6 ln will not
cause the Fourier series to diverge. Similar comments
apply to the O(«2) evolution equations (4.15) and (4.16);
this is related to the small denominator problem alluded
to previously.

According to (4.11a), the original potential vorticity
is given by a quasigeostrophic part k(s) plus a smallq
rapidly oscillating component. This fact has been point-
ed out by Embid and Majda (1996) and by Babin et al.
(2000) in the contexts of the shallow-water and the
three-dimensional Euler equations.

We also see that the (original) gravity waves consist
of a linear oscillating part, plus a small correction that
includes a slowly varying mean part determined only
by the (renormalized) potential vorticity. This slow part,
which to O(«) is

«b
slow 23j 5 l (k 3 n)q g qOk k k2n n n

n4pÏa

«ib
slow 23z 5 l (k 3 n)q g q , (4.12)Ok k k2n n n

n4pÏa

corresponds precisely to the slaving relation U( ; «)y
discussed above and is therefore the leading-order bal-
anced component of the fast variables. This tells us that
at this order, the slaved and the free parts of the gravity
waves are separable.

For arbitrary values of a, the resonant set (or, equiv-
alently, the energy shell) may contain many (although
always a finite number of) wavenumbers. In the generic
case where a is irrational, however, k2* 5 n2* only when
k1 5 6n1 and k2 5 6n2. Thus, each resonant set only
contains these four wavenumbers, and the renormalized
equations (4.10b,c) become

2 22dj b l k kk k 1 25 «
3/2 2*ds 2pa k

3 (q j 2 q j )(2k ,0) (2k ,k ) (0,2k ) (k ,2k )1 1 2 2 1 2

2 22dz b l k kk k 1 25 «
3/2 2*ds 2pa k

3 (q z 2 q z ). (4.13)(2k ,0) (2k ,k ) (0,2k ) (k ,2k )1 1 2 2 1 2

It can be verified from this that the energy of the quartet
is conserved:

d
z j 5 0, (4.14)O k 2kds k

where the sum is taken over the quartet. The quartet
interactions, and their analogue in the 3D Euler equa-
tions with periodic boundary conditions (nonresonant
case) where O(«) interactions are limited to octets, have
been discovered by Babin et al. (2000). They also point-
ed out that when one-dimensional averages q(k,0), q(0,k)

vanish initially (in which case they are zero for all times;
note that k 5 qk at t 5 0), the gravity waves in thisq
O(«) model are integrable for all times; this can be seen
directly from the renormalized equations (4.10). This is
a direct consequence of the geometry of the doubly
periodic domain with a nonresonant aspect ratio, and is
not true in general.

After some algebra, and writing a :5 b/2p , weÏa
find that the O(«2) contribution of d k/ds is given byq
[cf. (2.18)]

2 2a b k 3 n (k 2 n) 3 mqkW 5 O2 2* 2** *2 2 l n mm 5n m

3 q [z j 2 j z ]k2n2m n m n m

2a b
1 (k 3 n)(g 2 g )O n k2nlm,n m

n 3 m
3 q q [iz 2 j ]k2n n2m m m2*m

2a b (k 2 n) 3 m
2 (k 3 n)O 2*l nm,n n

3 g q q [iz 2 j ]m k2n2m m n n

2 2a b k 3 n n 3 m
2 O 3 2* 2** *2 2 2l n mm 5n m

3 q q [iz 2 j ]. (4.15)k2n n2m m m

By putting ; ; O(«), it can be seen that thisj z
expression vanishes on the slow manifold S. Consid-
ered together with (4.10a), this implies that there is no
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FIG. 3. The evolution of Re qk (black line) and its renormalization approximation Re q̃k

(gray line) for k 5 (2, 3); Ro 5 0.1, B 5 0.5. Pointwise accuracy holds for several eddy
turnaround times but eventually fails. See text in section 5 for more details.

gravity wave feedback on the balanced motion on S to
this order.

Away from S, however, we have not been able to
find a decoupling analogous to that at O(«) above. For
isolated four-wave resonances in the shallow-water
equations, a careful analysis of the interaction coeffi-
cients by Callet (1997) found no mechanism that would

allow finite gravity waves to influence the vortical
modes in what would be equivalent to our O(«2) ap-
proximation, therefore suggesting some sort of decou-
pling. To show that this result carries over to the full
model would require an analysis of second-order equa-
tions such as (4.15).

For d k /ds, we findj

2ia b k 3 m (k 2 m) 3 n k 3 m m 3 n k 3 m m 3 n q qk2m m2njk 9W 5 g q q 1 g q q 1 jO2 m m k2m2n m k2m m2n n2 2* 2* 2* 2 25 6* *2 2 2l l n l n l n l 2 ln 5k k k2m n m m n

2a b k 3 n b (k 2 n) 3 m91 q j [j 2 iz ]O k2n2m n m m2 2* 2*5* *2 2 2l n l mn 5k k m

n 3 m g q b z ib jm m m m1 q q 1 1k2n n2m2 2* 2* 6[ ]2l l m l 1 l m l 2 ln n n m n m

2a m 3 n91 (k 3 n) g g q q qO n m k2n n2m m2 52l ln,m k k

g q b z ib jn n n n1 ((k 2 n) 3 m)g q q 2 2 1m k2n2m m 2* 2* 6[ ]l n l 1 l n l 2 lk k n k n

2 2a b n 3 m ij zm m91 q q 2 . (4.16)O k2n n2m2 2 2** * [ ]2 2 4l l m l 2 l l 1 lm 5n k n k n k n

As before, resonant sums are excluded. Again, we
note that when ; ; O(«), all the terms are ofj z
O(«), with the exception of the terms (i) in theq q q
second sum, which come from the x · term inX X
(3.21) and thus cancel when in (4.10b) is expandedjkW1

around 5 0, and (ii) in the third sum, which comej

from the y · term in (3.21) and thus cancel withX Y
C9 · in the same equation. Therefore, «2 ; O(«3)j kY W2

on S. Once again, there is no gravity wave feedback
on the balanced motion on S to the order in question.

The corresponding expression for is very similarzkW2

to that for ; in fact, it can be obtained using the factjkW2
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FIG. 4. Re(qk 2 q̃k) for (bottom to top) Ro 5 0.05, 0.1, 0.2, and 0.4. In all cases k 5 (2,
3) and B 5 0.5. The accuracy time is seen to scale logarithmically with «.

that the definitions (4.7) imply that k 5 i . There isz j*2k

thus no need to discuss it separately.

5. Numerical examples

A (pseudo)spectral truncation of the weak-wave mod-
el (4.5) is integrated in time, along with its renormalized
counterpart (4.10). As our purpose here is to illustrate
the method, a low truncation with 172 wavenumbers is
used. A nonresonant domain aspect ratio a . 0.618034
is used. In all the simulations, we take as initial con-
ditions

m 2mk/k0| q | } k e ,k (5.1)

where m 5 8 and k0 5 4 and the phases of the (complex)
qk are chosen at random. Similar initial conditions are
used for the ageostrophic variables. The initial geo-
strophic energy

2E 5 g |q | (5.2)Og k k
k

is set to be 1 (this fixes the normalization constant for
q above), and the initial energy in the ageostrophic
modes is fixed to be 1/3.

To O(«), the renormalization procedure aims to ap-
proximate the solution of the original equations of mo-
tion (4.5) by the solution of the renormalized evolution
equation (4.10) using the relations (4.11). There are (at
least) two issues of interest here. The first is pointwise
accuracy—important in short-range weather forecast-
ing—where one directly compares the solution y (s) with
its approximation 1(s) 5 R( (s), s). The second, moreỹ y
difficult, issue concerns comparison of qualitative be-
havior over longer timescales, which is of importance
in, say, climate modeling.

As the system we are dealing with is nonintegrable
and even chaotic, it is clear that one cannot expect point-
wise accuracy for arbitrary initial conditions beyond the

timescale of the largest Lyapunov exponent present in
the system (either the original or the renormalized one),
which is typically of the order of the eddy turnaround
time, namely t ; O(1). As (2.21) tells us, one can in-
crease the accuracy significantly for a fixed time by
going to higher order in «, but since the error grows
exponentially, the validity time only increases logarith-
mically with 1/«.

Keeping this caveat in mind we turn to Fig. 3, where
we plot (the real part of) the solution of the full problem
qk(t) and its approximation (t) for k 5 (2, 3). Here1q̃ k

we have taken B 5 0.5 and Ro 5 0.1, giving « . 0.045.
It can be seen that for several eddy turnaround times,
the approximation is a good one, but it inevitably di-
verges from the true solution over longer times.

In Fig. 4 we plot the difference between the two
curves in Fig. 3 for different values of Ro (and thus of
«). Here the logarithmic dependence of the accuracy
time with « as given in (2.21) becomes apparent: halving
« only appears to increase the accuracy time by a fixed
amount, approximately Dt ; 1.

One qualitative property of the renormalized system
is given by (4.14), which says that the ageostrophic
energy

1
2 2 2E 5 (|D | 1 l |h | ) (5.3)ag,k k k k2*k

is conserved within each energy shell. In the top panel
of Fig. 5, we plot Eag,k of the mode k 5 (2, 3) for different
values of Ro, and in the bottom panel we plot Sk Eag,k,
where the sum is taken within the energy shell. Note
the much longer integration time than in Fig. 4. At least
while our approximation is formally valid, Sk Eag,k dif-
fers from Sk k 2k by a (rapidly oscillating) quantity ofz j
order «—given by the O(«) terms of (4.11b,c), which
we do not compute here. Part of this difference appears
as the rapid oscillations seen in the bottom curve in the
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FIG. 5. Plot of the ageostrophic energy Eag 5 E 2 Eg as a function of time t: (top) values
of 4Eag for the mode k 5 (2, 3); the curves correspond to (top to bottom) Ro 5 0.05, 0.1,
0.2, and 0.4, each shifted vertically by 0.001 to improve visual clarity (the factor of 4 is
to facilitate comparison with the bottom panel). (bottom) Values of Eag for the shell with
k2* 5 | (2, 3) | 2*; the curves correspond to (top to bottom) Ro 5 0.05, 0.1, 0.2, and 0.4,
smoothed in t and shifted vertically as above. All curves have been smoothed by averaging
over the period of the fast oscillations, except for the bottom curve, which is the un-
smoothed curve for Ro 5 0.4.

bottom panel of Fig. 5. Applying a time smoothing takes
care of these rapid oscillations, giving the smoother (up-
per) curves seen in the bottom panel of Fig. 5. [Note
that we still have the slowly varying part of (4.11b,c),
but we know that this is of O(«).]

It can be seen that does indeed evolve very slow-shellE ag

ly, varying by less than 1% or 2% over many tens of
eddy turnaround times—far beyond the timescale of va-
lidity of the approximation. In this sense we can say
that the approximate system predicts some qualitative
behavior of the parent (full) system.

It is possible that other qualitative properties may
hold over long times. A good way to find them is by

careful scrutiny of the renormalized evolution equations
such as (4.15), (4.16), and their higher-order analogues.

6. Discussion

Compared with traditional balance models, the ad-
vantage of the present approach is clear: it allows us to
include the effect of free gravity waves (‘‘unbalanced
motion’’) in the dynamics while still preserving the slow
nature of the approximating model. As with any ap-
proximation method applied to nontrivial dynamics, we
find pointwise accuracy to fail after a short time (which
is largely independent of the approximation method), as
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illustrated in Figs. 3 and 4. This is also true for classical
balanced dynamics: unless the balance condition is sat-
isfied exactly by the full dynamics, a trajectory of the
balance model will generically diverge from the true
trajectory even if it stays near the hypothetical ‘‘balance
manifold,’’ because of chaotic slow dynamics.

We have also seen that the balanced solution obtained
using the slaving approach (Warn et al. 1995) can be
seen as a natural special (slow) solution within our gen-
eral framework. This allows us to gain insight into the
dynamics in the neighborhood of the slaving manifold
(as well as far away from it), giving us, among other
things, the stability of the slow solution over timescales
t ; O(1). [Such validity estimates can also be obtained
independently—cf. the appendix of Wirosoetisno and
Shepherd (2000) for general finite-dimensional systems,
and Jones (2002) for the shallow-water equations.] Re-
normalization also provides a natural way to remove the
blow up of the solution of a naı̈ve slaving expansion,
justifying the use of unexpanded slow variables in Warn
et al. (1995).

For long-term qualitative studies, balance models are
regarded to be useful because the full system tends to
stay almost balanced for long times, and thus the so-
lution of the balance model will presumably share many
qualitative properties of the full solution. Although this
assumption is borne out by (indeed, was originally born
of) observations as well as numerical experiments, no
rigorous justification has been offered as to why this
should be the case.

In the context of the weak-wave model, our numerical
results suggest a more general behavior: the ageostroph-
ic energy remains largely confined within energy shells
for long times. As with the balance assumption above,
this appears to imply that the energy shells form a family
of very stable manifolds (‘‘fuzzy layers’’ is perhaps a
more appropriate term), which is traversed by the full
dynamics only over very long timescales. In this picture,
the slow manifold is the innermost of this family of
manifolds (cf. Bokhove and Shepherd 1996). Thus, in
yet another way, classical balanced dynamics can be
seen as a special case of the renormalized dynamics.

From the point of view of dynamical systems, this
picture reminds one of the family of adiabatic invariant
surfaces present in many canonical Hamiltonian systems
with a separation of timescales. Unlike in general dy-
namical systems, the timescale of validity in this case
can often be exponentially long in « (Wirosoetisno and
Shepherd 2000, and references therein). It would be
interesting to investigate if and how the noncanonical
Hamiltonian (Poisson) structure of the weak-wave mod-
el has anything to do with the behavior we see above.

Finally, we would like to emphasize that the ideas of
averaging and renormalization as presented in section
2 of this paper are certainly not new, as they date back
at least to the 1930s and 1940s. There have also been
papers in which the method is applied to problems in
GFD, albeit only to first order (e.g., Embid and Majda

1996; Chemin 1997; Gallagher 1998; Babin et al. 2002).
What we aim to do here is bring the method closer to
the atmospheric audience by avoiding the functional an-
alytic aspects and describing the procedure as clearly
as possible. The connection with slaving (section 3), on
the other hand, appears not to have been pointed out
before; in doing so we hope to put the general renor-
malized/averaged approximate solution in context as a
natural extension of the classical balance ideas.
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antisymmétrique. J. Math. Pures Appl., 76, 739–755.

Chen, L.-Y., N. Goldenfeld, and Y. Oono, 1996: Renormalization
group and singular perturbations: Multiple scales, boundary lay-
ers, and reductive perturbation theory. Phys. Rev., E54, 376–
394.

Embid, P. F., and A. J. Majda, 1996: Averaging over fast gravity
waves for geophysical flows with arbitrary potential vorticity.
Comm. P.D.E., 21, 619–658.

——, and ——, 1998: Low Froude number limiting dynamics for
stably stratified flow with small or finite Rossby number. Geo-
phys. Astrophys. Fluid Dyn., 87, 1–50.



3398 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

Farge, M., and R. Sadourny, 1989: Wave-vortex dynamics in rotating
shallow water. J. Fluid Mech., 206, 433–462.

Ford, R., 1994a: Gravity wave radiation from vortex trains in rotating
shallow water. J. Fluid Mech., 281, 81–118.

——, 1994b: The instability of an axisymmetric vortex with mono-
tonic potential vorticity in rotating shallow water. J. Fluid Mech.,
280, 303–334.

——, 1994c: The response of a rotating ellipse of uniform potential
vorticity to gravity wave radiation. Phys. Fluids, 6, 3694–3704.

Gallagher, I., 1998: Asymptotic of the solutions of hyperbolic equa-
tions with a skew-symmetric perturbation. J. Diff. Eq., 150, 363–
384.

Goldenfeld, N., 1992: Lectures on Phase Transitions and the Re-
normalization Group. Addison-Wesley, 394 pp.

Jones, D. A., 2002: Mathematical analysis of geophysical balance
models. J. Diff. Eq., 179, 1–26.

Kreiss, H.-O., 1979: Problems with different time scales for ordinary
differential equations. SIAM J. Numer. Anal., 16, 980–998.

Lorenz, E. N., 1980: Attractor sets and quasi-geostrophic equilibrium.
J. Atmos. Sci., 37, 1685–1699.

——, 1992: The slow manifold—What is it? J. Atmos. Sci., 49, 2449–
2451.

——, and V. Krishnamurthy, 1987: On the nonexistence of a slow
manifold. J. Atmos. Sci., 44, 2940–2950.

Machenhauer, B., 1977: On the dynamics of gravity oscillations in
a shallow water model, with applications to normal mode ini-
tialization. Beitr. Phys. Atmos., 50, 253–271.

Majda, A. J., and P. F. Embid, 1998: Averaging over fast gravity
waves for geophysical flows with unbalanced initial data. Theor.
Comput. Fluid Dyn., 11, 155–169.

McIntyre, M. E., and W. A. Norton, 2000: Potential vorticity inversion
on a hemisphere. J. Atmos. Sci., 57, 1214–1235.

Moise, I., and R. M. Temam, 2000: Renormalization group method.
Application to Navier–Stokes equations. Discrete Contin. Dyn.
Syst., 6, 191–210.

——, and M. Ziane, 2001: Renormalization group method. Appli-
cations to partial differential equations. J. Dyn. Diff. Eq., 13,
275–321.

——, E. Simonnet, R. Temam, and M. Ziane, 1998: Numerical sim-
ulation of differential systems displaying rapidly oscillating so-
lutions. J. Eng. Math., 34, 201–214.

Nayfeh, A. H., 1973: Perturbation Methods. Wiley, 425 pp.
Nore, C., and T. G. Shepherd, 1997: A Hamiltonian weak-wave model

for shallow-water flow. Proc. Roy. Soc. London, A453, 563–
580.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2d ed. Springer-
Verlag, 710 pp.

Polvani, L. M., J. C. McWilliams, M. A. Spall, and R. Ford, 1994:
The coherent structures of shallow-water turbulence: Deforma-
tion-radius effects, cyclone/anticyclone asymmetry and gravity-
wave generation. Chaos, 4, 177–186.

Schochet, S., 1994: Fast singular limits of hyperbolic PDEs. J. Diff.
Eq., 114, 476–512.

Temam, R., and D. Wirosoetisno, 2002: Averaging of differential
equations generating oscillations and an application to control.
J. Appl. Math. Optim., in press.

Vautard, R., and B. Legras, 1986: Invariant manifolds, quasi-geo-
strophy and initialization. J. Atmos. Sci., 43, 565–584.

Warn, T., 1997: Nonlinear balance and quasi-geostrophic sets. At-
mos.–Ocean, 35, 135–145.

——, O. Bokhove, T. G. Shepherd, and G. K. Vallis, 1995: Rossby
number expansions, slaving principles, and balance dynamics.
Quart. J. Roy. Meteor. Soc., 121, 723–739.

Wirosoetisno, D., 1999: Balance dynamics and stability of vortical
flows. Ph.D. thesis, University of Toronto, 150 pp.

——, and T. G. Shepherd, 2000: Averaging, slaving and balance
dynamics in simple atmospheric models. Physica D, 141, 37–
53.

Yavneh, I., and J. C. McWilliams, 1994: Breakdown of the slow
manifold in the shallow-water equations. Geophys. Astrophys.
Fluid Dyn., 75, 131–161.

Yuan, L., and K. Hamilton, 1994: Equilibrium dynamics in a forced-
dissipative f-plane shallow-water system. J. Fluid Mech., 280,
369–394.

Ziane, M., 2000: On a certain renormalization group method. J. Math.
Phys., 41, 3290–3299.


