TURING, KASPAROV AND THE FUTURE

G.M.C. Haworth

Reading, UK

The ‘Turing 100’ conference (Manchester University, 2012) was held precisely 100 years after Alan Turing’s birth on the 23rd June 1912. It was the main event of the Turing Year organised by the Turing Centenary Advisory Committee, TCAC. Certainly the line-up was stellar, including (ACM, 2012) nine Turing Award winners (Fred Brooks, Vint Cerf, Edmund Clarke, Sir Tony Hoare, Don Knuth, Michael Rabin, Adi Shamir, Leslie Valiant, Andrew Chi-Chih Yao), not to mention amongst others David Ferrucci, Samuel Klein and Roger Penrose. The lectures are available on the web, have been frequently revisited and are strongly recommended.

Kasparov and the University of Manchester’s Alan Turing plaque (courtesy, Manchester Evening News)

Garry Kasparov was given the honour of unveiling the blue plaque commemorating Alan Turing, perhaps a pragmatic recognition that his name would be most familiar to the public.

Kasparov’s (2012) popular talk was ostensibly to centre on the computer-based emulation of Turing’s second definition of a chess engine, on a short game which he played against it, and on the Turing Test. In fact, his broader canvas considered the influence that computer chess had had on him, on the grass-roots game and on professional chess players. He also revealed, especially in the question session, his own perspective about chess and computers, past and future.

Kasparov noted that Goethe’s ‘Chess is the touchstone of the intellect’ certainly applied to Alan Turing who enjoyed playing the game, albeit with the advantage of heavy odds, against his much more capable colleagues at Bletchley Park. Turing’s results over the board no doubt led him to consider his own thought processes and their mechanisation. Kasparov thanked Alan Turing for his contributions to computer chess which not only formulated familiar chess engine concepts (forward search, quiescence, mobility, King safety and static position evaluation) but which also made chess central to early thinking about Artificial Intelligence, learning and the Turing Test (Copeland, 2004; Isenberg, 2013). He conjectured that, had Turing lived longer, progress in computer chess would have been even more rapid: one could mention other domains of computation such as theorem-proving.

1 The University of Reading, Berkshire, UK, RG6 6AH. Email: guy.haworth@bnc.oxon.org.
2 The talk was mistakenly trailed and thus in places misreported as being focused on the first ‘chess engine’, Turochamp, as defined by Turing and Champernowne. Copeland (2004) clearly distinguishes between two paper engines.
3 Players included James Aitken, Hugh Alexander, Harry Golombek, Jack Good, Donald Michie and Stuart Milner-Barry.
4 An excellent theorem-proving competition was run within Turing 100 by Geoff Sutcliffe of the University of Miami.
It is clear that Turing changed the world for all of us but created specific opportunities and challenges for Kasparov personally, leading to computers reaching world championship standard just as he became the world champion. Recognising that computers had been both a blessing and a curse, Kasparov fondly recalled ‘the good old days of computer chess’ when in 1985 he could play 32 machines simultaneously and win 32-0. He mentioned that the computer, perhaps for the first time at world championship level, had helped find a novelty in 1995 - the rook-sac (17. Qg4) of the 10th game of his PCA match with Anand (Chessgames, 2013b), see Appendix 1.3. The computer contribution to the forthcoming Anand-Carlsen match will be interesting.

Ruefully, he recalled losing to IBM’s DEEP BLUE in their second match and not getting a deciding match. He suggested that the real question now is ‘On what basis would the best human players give the best computers a game when one slip might be enough to lose?’ In net terms however, Kasparov was positive about the contributions of computers to chess and society: he did not see computers as ‘the enemy’ and looked forward to man-and-machine rather than man-v-machine. He referred to his Advanced Chess match with Topalov (Friedel, 1998) as an attempt to combine human intuition and brute-force to create the perfect game of chess.

Anticipating the following panel on the Turing Test, Kasparov referred to the early role of chess in the formulation and use of the test, and to (Friedel, 2001):

- the insertion of Thompson’s BELLE into Pfleger’s 1980 simultaneous event, see Appendix 1.2,
- Kasparov’s identification of the BELLE game from five games of that simultaneous event, and
- the questioning of Allwermann’s play at the Böblinger Open in 1999.

Kasparov sees the covert involvement of computers in what should be ‘human chess’ as a major problem for today, the negative side of man-and-machine. On the other hand, it is clear that databases of games, chess engines, the real-time analysis of top-level games, web services and AGON’s recent tablet-based tournament interfacing application are all serving to raise playing standards and make chess more accessible, attractive and popular.

And so to the discussion of and game against the Chessbase 2004 ‘TURING’ reification6 of Turing’s second specification of a chess engine, unnamed but named ‘AT2’ here. AT2 searched two ply and performed static evaluation of leaf positions after following lines to quiescence. It ‘played’ one opening as a specification of a chess engine, unnamed but named ‘AT2’ here. AT2 searched two ply and performed static evaluation of leaf positions after following lines to quiescence. It ‘played’ one opening as a computer engine. Kasparov’s identification of the engine’s known weaknesses was fast. Kasparov personally, leading to computers reaching world championship standard just as he became the world champion.

This is the ‘Turing 100’ game with comments by Kasparov, and by Frederic Friedel who supported on the day:


Two questions arise. To what extent was Kasparov playing opponent-neutral, objectively-best chess and to what extent was he playing on TURING’s known weaknesses? How quickly can one, playing White or Black, beat a fallible TURING searching forward a nominal n-plies? Responses to the author are invited. The game sets the bar at 32 plies for ‘Black/2’. Chessbase (2012) reported that TURING had lasted 27 and 30 moves the previous evening when searching 5-ply but gave no profile of figures for other search-horizons.

Kasparov is to be congratulated for seeing computer chess in the broader context of Turing’s basic question ‘What can computers do?’ He sees WATSON as a greater achievement than DEEP BLUE, and like Picasso challenges us to ask the right questions for computers to answer. There are many more games and model-worlds to conquer.

References


5 Hamburg (Kasparov, 2010; Chessgames, 2013a): some games posed problems and/or lasted longer than 70 moves.

6 Created, extended, by Mathias Feist - assisted by Ken Thompson when TURING did not reproduce Turing’s own choices.


Appendix 1: the cited games

A1.1 Turing as engine ‘AT2’ v Glennie (1951)

The TURING rendition by Chessbase of ‘AT2’, Turing’s second definition of a chess engine, varies from Turing’s choices ten times – on moves 1, 4, 5, 15, 17, 19, 20, 22, 23 and 26.


A1.2 Pfleger v Belfort (1980)

Pfleger was only asked after the games if he noticed anything about this game, which he did not. Similarly, Kasparov was asked later byFrieldel to identify the one participating computer from five of Pfleger’s games. Thus, neither of these ‘tests’ was strictly a chessic Turing test. Kasparov correctly and instantly identified Black here as the computer, not because of excellence on its part but because the human players made simple errors which a computer of the time would not make. Note that Pfleger still had a computer, not because of excellence on its part but because the human players made simple errors which a computer of the time would not make.


This is Kasparov’s early example of a line prepared with computer help (Chessgames, 2013b):


7 Position 17w is r3kb1r/2p3pp/p3p3/1p2P3/3n4/1Bq5/f4PPP/R1BQ1RK1 w kq - 0 17.