Ultralow-frequency modulation of whistler-mode wave growth

It is advisable to refer to the publisher’s version if you intend to cite from the work.
Published version at: http://dx.doi.org/10.1029/2011JA016730
To link to this article DOI: http://dx.doi.org/10.1029/2011JA016730

Publisher: American Geophysical Union

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
Ultralow-frequency modulation of whistler-mode wave growth

C. E. J. Watt, A. W. Degeling, R. Rankin, K. R. Murphy, I. J. Rae, and H. J. Singer

Received 8 April 2011; revised 14 July 2011; accepted 15 July 2011; published 12 October 2011.

Measurements from ground-based magnetometers and riometers at auroral latitudes have demonstrated that energetic (∼30–300 keV) electron precipitation can be modulated in the presence of magnetic field oscillations at ultralow frequencies. It has previously been proposed that an ultralow-frequency (ULF) wave would modulate field and plasma properties near the equatorial plane, thus modifying the growth rates of whistler-mode waves. In turn, the resulting whistler-mode waves would mediate the pitch angle scattering of electrons resulting in ionospheric precipitation. In this paper, we investigate this hypothesis by quantifying the changes to the linear growth rate expected due to a slow change in the local magnetic field strength for parameters typical of the equatorial region around 6.6Re radial distance. To constrain our study, we determine the largest possible ULF wave amplitudes from measurements of the magnetic field at geosynchronous orbit. Using nearly ten years of observations from two satellites, we demonstrate that the variation in magnetic field strength due to oscillations at 2 mHz does not exceed ±10% of the background field. Modifications to the plasma density and temperature anisotropy are estimated using idealized models. For low temperature anisotropy, there is little change in the whistler-mode growth rates even for the largest ULF wave amplitude. Only for large temperature anisotropies can whistler-mode growth rates be modulated sufficiently to account for the changes in electron precipitation measured by riometers at auroral latitudes.

1. Introduction

The co-location of ground-based magnetometers and riometers at auroral latitudes has firmly established that concurrent, periodic variations in the signals of each instrument can occur at ultralow frequencies (f < 30Hz) [Ziauddin, 1960; Anger et al., 1963; Brown, 1964; Parthasarathy and Hessler, 1964; Hargreaves, 1969; Yuan and Jacka, 1969; Hunsucker et al., 1972; Berkey, 1974; Brown, 1975; Heacock and Hunsucker, 1977; Olson et al., 1980; Paquette et al., 1994; Posch et al., 1999; Spanswick et al., 2005; Rae et al., 2007; Roldugin and Roldugin, 2008]. Ground-based magnetometers measure the superposition of the Earth’s magnetic field and much smaller contributions from nearby overhead ionospheric current systems, allowing researchers to deduce the presence of large-scale oscillations in the magnetosphere. Riometers measure the absorption of cosmic radio noise in the D-region (60–90 km altitude) of the ionosphere. Variations in cosmic noise absorption (CNA) beyond the usual diurnal variation can be attributed to increased ionization in the D-region, and imply the presence of increased electron precipitation in the energy range 30 keV to a few hundred keV. Co-located instruments at auroral latitudes show contemporary modulation of riometer and magnetometer signals at frequencies of a few mHz [Ziauddin, 1960; Anger et al., 1963; Rae et al., 2007; Roldugin and Roldugin, 2008]. Modulation of both signals is also observed at higher frequencies of a few tens of mHz [Yuan and Jacka, 1969] and up to 0.2Hz [Heacock and Hunsucker, 1977]. Riometer pulsations are often confined to narrow bands in latitude 1°–2° wide [Parthasarathy and Hessler, 1964] but can be much more extended in longitude [Hargreaves, 1969]. The periodic modulation of cosmic noise absorption is predominantly observed in the morning sector [Brown, 1964, 1975; Paquette et al., 1994; Spanswick et al., 2005]. Observations of multiple events reveal that there is a phase motion of both riometer and magnetometer signals away from noon [Olson et al., 1980]. Precipitation pulsations mainly occur on an already enhanced background precipitation [Spanswick et al., 2005]. Most importantly, observations indicate that while all riometer pulsations are accompanied by magnetometer pulsations at similar frequencies, magnetometer pulsations can exist without concurrent riometer fluctuations [Olson et al., 1980; Spanswick et al., 2005]. However, the relationship between the onset of magnetic pulsations and the onset of riometer pulsations is not as simple [Paquette et al., 1994].

Energetic electron precipitation can also be inferred from X-ray aurora emissions [e.g., Omholt, 1971]. Similar
relationships between X-ray and magnetometer pulsations are found, mainly on the dayside of the magnetosphere and at auroral latitudes [Ullaland et al., 1967; McPherron et al., 1968; Arthur et al., 1979; Asnes et al., 2004].

[5] The comprehensive statistical results of Spanwick et al. [2005] suggest that necessary requirements for the modulation of energetic particle precipitation are a magnetic pulsation and increased energetic electron flux in the magnetosphere. It is therefore logical to suggest that the magnetic pulsation is responsible for the modulation in energetic particle precipitation rather than the other way round. Coroniti and Kennel [1970] suggest that the magnetic ULF wave could be responsible for the modulation of the energetic particles through a wave–wave interaction in the magnetosphere. Pitch angle diffusion due to very low frequency (VLF) whistler-mode waves in the magnetosphere can be responsible for the loss of charged particles to the ionosphere and atmosphere [Kennel and Petschek, 1966]. Since one of the actions of the magnetic ULF wave is to modulate the total magnetic field strength, it follows that the growth–rates of whistler-mode waves, which depend upon the local electron gyrofrequency \(\Omega_e = q_e B / m_e \), would be affected (\(q_e \) and \(m_e \) are the electron charge and mass, respectively, and \(B \) is the ambient magnetic field strength). The equatorial electron distribution function may also be altered by the slowly varying ULF magnetic field. Coroniti and Kennel [1970] argue that these slow changes would modulate the growth rates of whistler-mode waves, which would in turn modulate the pitch angle diffusion in the magnetosphere, and therefore the rate of particle precipitation, yielding the observed modulation of riometer signals and X-ray aurora emissions.

[5] Observational support of Coroniti and Kennel' [1970] model (which we will refer to as the C-K model) demonstrates the modulation of VLF wave power at ULF periods both in situ [Glassmeier et al., 1988] and on the ground [Morrison, 1990; Smith et al., 1998; Singh et al., 2005; Manninen et al., 2010].

[5] The theory of whistler-mode wave generation has moved on considerably since the time of the C-K model. A nonlinear analysis of whistler-mode wave generation in the inhomogeneous magnetosphere shows that although the initial growth of whistler-mode waves is linear, once an amplitude threshold is reached, the nonlinear wave growth is faster than the linear theory predicts [Omura et al., 2008, 2009]. This nonlinear theory reproduces the rising frequency emissions characteristic of whistler-mode chorus, and can explain the observed absence of whistler-mode waves at frequencies of half the gyrofrequency [e.g., Tsurutani and Smith, 1974]. However, this new theory [Omura et al., 2008, 2009], reinforced by full particle and hybrid simulations [Katoch and Omura, 2007; Hikishima et al., 2009a, 2009b, 2010; Katoch and Omura, 2011], concentrates only on waves with parallel wave vectors, and by necessity, describes only very short timescales in the plasma evolution. In this study, we extend the analysis to consider waves with oblique wave vectors, but limit our study to linear theory. By estimating realistic changes in magnetospheric plasma and magnetic field strength during ULF wave oscillations, we aim to show how much, or how little, instability conditions in the magnetosphere can change due to ULF wave oscillations. The results presented in this paper will inform future work on the complex problem of the modulation of energetic particle precipitation by ULF waves.

[7] In this paper, we investigate the changes in local whistler-mode growth rates due to slow variations in the ambient magnetic field, cold plasma density, and hot plasma distribution function due to a large-scale ultralow–frequency wave. We present the dispersion relation for whistler-mode waves in Section 2 and the magnetospheric plasma model in Section 3, where we discuss which plasma variables will be affected by the slow action of the ULF wave. Section 3 presents the effects on the whistler-mode growth rates of changes in each of these plasma variables in turn. Section 4 describes the data sets and models used to estimate the possible changes in field and plasma properties possible due to a large-amplitude ULF wave oscillation. Observations from the Geostationary Operational Environmental Satellite (GOES) system [Singer et al., 1996] are used to determine the changes in magnetic field strength possible due to ULF wave activity at geosynchronous orbit (~6.6\(R_E \), radial distance). An ideal magnetohydrodynamic (MHD) model of ULF waves [Degeling et al., 2008] is used to estimate the changes in cold plasma density possible at the equatorial plane of an idealized dipolar magnetosphere as a result of the largest ULF wave amplitudes observed by GOES. Finally, we estimate the changes in the local distribution function which would result from the magnetic field compressions and rarefactions. The full warm plasma dispersion relation is used in section 6 to estimate the changes in growth rates due to the waves. We discuss these results in Section 7 and present our conclusions in the final section.

2. Dispersion Relation

[8] Whistler-mode waves can be driven unstable by a temperature anisotropy [e.g., Gary, 1993] or a high-energy beam [e.g., Sauer and Sydora, 2010]. We focus in this work on the temperature anisotropy whistler-mode instability which is believed to operate near the equator in the magnetosphere [e.g., Kennel and Petschek, 1966; Coroniti and Kennel, 1970; Anderson and Maeda, 1977; MacDonald et al., 2008; Summers et al., 2009] and we will include both field-aligned and oblique wave vectors in our analysis.

[8] We characterize the plasma as mostly cold, with a small warm electron component which causes the whistler-mode instability. We assume that the spatial inhomogeneities of the plasma have length–scales large enough that the plasma and magnetic field may be considered to be locally uniform. The real frequency \(\omega_r \) of the whistler-mode waves will be determined by solutions to the cold plasma dispersion relation

\[
D \equiv A \mu^2 + B \mu + C = 0
\]

(1)

where \(\mu \) is the refractive index, and \(A, B, C \) are the cold plasma parameters as given by Stix [1992, pp. 8–9]. If we also assume that the imaginary part of the frequency (the damping rate) \(\omega_i \ll \omega_r \), then we can use the imaginary part of a hot plasma dispersion relation \(D_H \) to calculate \(\omega_i \) [e.g., Xiao et al., 1998; Sazhin, 1991],

\[
\omega_i = -\frac{\Im D_H}{\partial (\mu \Re D_H) / \partial \omega_r}
\]

(2)
where
\[D_H = A_H \nu^4 + B_H \nu^2 + C_H, \]
and \(A_H \), \(B_H \) and \(C_H \) are the equivalent of \(A_S \), \(B_S \) and \(C_S \) in a warm plasma [Sazhin, 1991; Summers et al., 1994]:
\[A_H = K_{xx} \sin^2 \psi + 2 K_{x\psi} \sin \psi \cos \psi + K_{\psi \psi} \cos^2 \psi, \]
\[B_H = K_{xx}^2 - K_{xx} K_{zz} - A_H K_{yy} - (K_{yy} \sin \psi - K_{\psi \psi} \cos \psi)^2, \]
\[C_H = K_{yy}(K_{xx} - K_{zz}^2) + K_{\psi \psi}(K_{xx} K_{zz} + 2 K_{x\psi} K_{z\psi}) + K_{x\psi} K_{z\psi}^2. \]
Here, \(\psi \) is the angle between the wave vector and the magnetic field, and the \(K_{ij} \) are the nine elements of the dielectric tensor \(K \) which can be calculated once a suitable form for the unstable electron distribution function has been supplied. We assume that the distribution function is even in parallel velocity \(v_0 \) so that \(K_{xx} = K_{zz}, K_{xy} = -K_{yx} \) and \(K_{zz} = -K_{yy} \).

[10] Observations in the plasma sheet indicate that the Lorentzian distribution function with \(\kappa < 7 \) is an accurate description of the warm electron population [Christon et al., 1988; Kletzing et al., 2003]; therefore, we model the warm plasma component \(f_{e,0} \) at the magnetic equator using a generalized Lorentzian form [e.g., Summers and Thorne, 1991]:
\[f_{e,0}(\nu_0, v_\|=) = \frac{\nu_m}{\pi^{3/2} \theta_1^{3/2} (\kappa - 2/3)} \left(\frac{1 + v_0^2 + v_\perp^2}{\nu^2 + v_\perp^2 k^2} \right)^{-\kappa - 1/2}, \]
where \(v_0, v_\perp \) are velocities parallel and perpendicular to the magnetic field \(B, \nu \ll 1 \) is the ratio of the number density of the sparse warm component to the cold dense component, \(\kappa \) is the spectral index, \(\Gamma \) is the standard gamma function, and the thermal speeds parallel and perpendicular to the field are given by
\[\theta_1 = \left(\frac{2\kappa - 3}{\kappa} \right)^{1/2} \left(\frac{T_{\|,0} + T_{\perp,0}}{m_e} \right)^{1/2}. \]

The parallel and perpendicular temperatures of the warm plasma component are denoted \(T_{\|,0}, T_{\perp,0} \). The change in magnetic field strength due to the ULF oscillation is very slow compared to the growth time of the VLF waves, so we assume that the whistler-mode growth is part of a steady state process where wave growth is balanced by pitch angle scattering. This situation can only be accomplished in regions where there is a steady source of particles which maintains the temperature anisotropy above the threshold for the whistler-mode instability [Kennel and Petschek, 1966; Coroniti and Kennel, 1970]. Hence we choose a distribution function without any loss cone features so that we may include both the trapped and precipitating electrons. It would be reasonable to assume that the level of electron temperature anisotropy maintained by this pitch angle scattering process depends on the details of the source population of electrons, and so one of the free parameters in our model will be the temperature anisotropy \(A = (\theta_1^2, \theta_\perp^2) - 1 \).

[11] Summers et al. [1994] present non-relativistic expressions for the \(K_{ij} \) in equations (4)–(6). These expressions involve the modified plasma dispersion function \(Z^* \) [Summers and Thorne, 1991] and are evaluated numerically to give the imaginary part of \(D_H \) without any further assumptions (see Appendix A). The function \(Z^* \) is limited to integer [Summers and Thorne, 1991] and half-integer [Summers et al., 1996] values of \(\kappa \), but will suffice for the demonstration in this paper (a more generalized plasma dispersion function for Lorentzian plasma for all values of \(\kappa \) can be found in work by Hellberg and Mace [2002] and Mace and Hellberg [2009]). The aim of this paper is to study growth of whistler-mode waves over a region of the magnetosphere where it is inappropriate to further simplify the warm plasma dispersion relation assuming that the plasma frequency is much larger than the gyrofrequency [cf. Kennel and Petschek, 1966; Brinca, 1972] or to confine the analysis to parallel wave vectors [Xiao et al., 1998; Summers et al., 2009; Mace and Sydora, 2010]. We will, however, restrict our analysis to modest temperatures \(T_e \leq 25 \text{ keV} \) such that the errors introduced by the non-relativistic dielectric tensor are minimized [see Xiao et al., 1998]. The derivation of a warm dielectric tensor for oblique waves in a relativistic plasma with a high-energy tail is a formidable challenge, and will be attempted in future work.

[12] The values of the growth rates obtained by equation (2) for parallel wave vectors compare favorably with the results presented by Xiao et al. [1998], where a similar plasma model comprising a dominant cold electron population and a tenuous warm unstable electron component is used. Mace and Sydora [2010] present results from an analysis where the whole electron population is described using a warm Lorentzian distribution function. The behavior of the growth rates for parallel wave vectors obtained from the equations above compares favorably with the results presented by Mace and Sydora [2010] for integer values of \(\kappa \), although the magnitudes are slightly different. We are therefore confident that our numerical evaluation of the warm plasma dielectric tensor [Summers et al., 1994] and subsequent evaluation of the growth rates using equation (2) is robust.

3. Whistler-Mode Wave Growth Rates

[13] Observations of the ULF modulation of riometer and magnetometer signals tend to occur at auroral latitudes in the morning sector [e.g., Spanswick et al., 2005]. Mapping of these ground-stations along the magnetic field into the magnetosphere is not straightforward, but we estimate that these measurements correspond to a region which is between 6RE and 9RE radial distance in the equatorial plane.

[14] The parameters considered in this section are chosen to be indicative of possible conditions at geosynchronous orbit (6.6RE radial distance), although the local number density and temperature can vary according to local time and magnetospheric activity [e.g., Denton et al., 2005]. We choose the geosynchronous orbit distance as it is here where possibly the most information has been gained about the local plasma conditions and ULF magnetic field oscillations. However, values of \(A, \omega_{pe}/\Omega_p \) and \(B_{||,0} \) are similar for a range of radial distances \(6RE < r < 9RE \), so the results presented in this section should be applicable over a wider region in the magnetosphere.

[15] Throughout this paper, we choose a ratio of hot electrons to cold electrons which is a small fraction \(\nu = 0.01 \).
This ratio can vary significantly at geosynchronous radial distance; it can be very small when there is a significant cold electron population due to e.g., plasmaspheric plumes, or it can be very large following an injection of hot plasma from the plasma sheet. Note that in the original model of Coroniti and Kennel [1970], it is assumed that \(n \) is small. Large values of \(n \) should be investigated using full solutions to the plasma dispersion relation, but to make appropriate comparisons with previous work, we will restrict our analysis to the simpler case where the cold plasma provides the real part of the frequency and the warm plasma provides the imaginary part. We will investigate the modification to whistler-mode growth rates in a hot electron-dominated plasma in future work.

[16] Figure 1 shows the growth rates given by equation (2) for \(B = 108 \text{ nT}, n_e = 8.0 \times 10^6 \text{ m}^{-3}, T_{||,e} = 15 \text{ keV} \) and temperature anisotropies varying between \(A = 0.1 \) and \(A = 0.8 \). For these parameters, \(\omega_{pe}/\Omega_e = 8.4 \). Figure 1a shows that the maximum growth rate increases by almost two orders of magnitude as the temperature anisotropy is increased from \(0.1 \) to \(0.8 \). The maximum growth rate always occurs for parallel propagation. The real frequency at which the maximum growth rate occurs also increases as \(A \) is increased, from \(0.06\Omega_e \) to \(0.16\Omega_e \). Figure 1b demonstrates that the range of growing waves increases with increasing temperature anisotropy, in both frequency and wavenormal angle \(\psi \) relative to the ambient magnetic field. However, growth rates more than \(10\% \) of the maximum growth rate are confined to \(|\psi| < 40^\circ \) even for the case \(A = 0.8 \).

[17] Figure 2 demonstrates the variation of the growth rates when the parameter \(\omega_{pe}/\Omega_e \) is varied. We accomplish this by keeping \(B = 108 \text{ nT}, T_{||,e} = 15 \text{ keV} \) and \(A = 0.4 \) fixed, and varying the electron number density for four different cases \(n_e = 8.0 \times 10^5, 2.0 \times 10^6, 8.0 \times 10^6, \) and \(2.0 \times 10^7 \text{ m}^{-3}; \omega_{pe}/\Omega_e \) varies between \(2.6 \) and \(13.3 \) as a result. These number densities likely span a larger range than that expected at geosynchronous orbit, but serve to demonstrate how \(\psi \) varies with \(\omega_{pe}/\Omega_e \) (remember that this parameter

![Figure 1](image1.png)

Figure 1. (a) Normalized solutions \(\omega/\Omega_e \) of the warm plasma dispersion relation as a function of wavenormal angle \(\psi \) and normalized real frequency \(\omega_r/\Omega_e \) for four cases with constant magnetic field strength, parallel temperature and number density, but different temperature anisotropy. White areas indicate damped waves. (b) Slices through the contour plots in Figure 1a (left) for \(\psi = 0 \) and (right) for the frequency of maximum growth.

![Figure 2](image2.png)

Figure 2. (a) Normalized solutions \(\omega/\Omega_e \) of the warm plasma dispersion relation as a function of wavenormal angle \(\psi \) and normalized real frequency \(\omega_r/\Omega_e \) for four cases with constant magnetic field strength, parallel temperature and temperature anisotropy, but different values of \(\omega_{pe}/\Omega_e \) (controlled by varying the number density). White areas indicate damped waves. (b) Slices through the contour plots in Figure 2a (left) for \(\psi = 0 \) and (right) for the frequency of maximum growth.
will also vary due to variations in the ambient magnetic field strength). Figure 2 shows that the growth rates and range of unstable frequencies increase as \(\psi / \Omega_e \) increases, similarly to the anisotropy variation. On the other hand, the range of unstable frequencies remains constant, and the real frequency for which growth is maximized decreases as \(\psi / \Omega_e \) is increased. Growth rates more than 10% of the maximum growth rate are confined to \(\psi < 40^\circ \) even for the case with the largest number density.

[18] Xiao et al. [1998] show that for parallel wave vectors, the size of the growth rates of whistler-mode waves is directly proportional to the ratio of the hot to cold electron number density \(n_e \). This is also true for oblique modes, so we do not show those results graphically. The parameter \(n_e \) does not alter the range of unstable frequencies or wave vectors, nor does it change the real frequency for which growth is maximized.

[19] Figures 1 and 2 indicate that for most reasonable values of the electron number density and temperature anisotropy (see, e.g., MacDonald et al. [2008], who indicate that \(A < 1 \) and \(n_e \sim 1.0 \times 10^6 \) m\(^{-3} \), implying \(\psi / \Omega_e \sim 3 \), whistler-mode waves will mostly be excited with wave-normal angles <45°, and growth rates which peak for real frequencies \(\omega / \sim 0.2 \Omega_e \).

4. ULF Wave Oscillations at Geosynchronous Orbit

[20] Before we may estimate the change in the plasma parameters due to the slow magnetic field perturbation, we must first predict the possible size of this perturbation. Spanswick et al. [2005] focus on riometer oscillations in the Pc5 range of frequencies (1.67–6.67 mHz). Median compressional ULF wave power at geosynchronous orbit over 1.0–8.3 mHz decreases with frequency [Huang et al., 2010], so for this demonstration, we choose a representative ULF wave frequency of \(\sim 2 \) mHz, which is near the lower end of the Pc5 range. This frequency is therefore more likely to correspond to some of the largest amplitude compressional waves observed at geosynchronous orbit.

[21] Figure 3 shows a statistical analysis of the magnetic field strength and variations in magnetic field strength at 1.94 mHz at geosynchronous orbit as measured by both the GOES East and West satellites [Singer et al., 1996] between

Figure 3. Statistical survey of GOES East and West magnetic field perturbation data from 1 December 1995 to 6 May 2005: occurrence distributions of (a, e) magnetic field strength, (b, f) compressional magnetic field perturbations, and (c, g) normalized compressional magnetic field perturbations, with (d, h) a scatterplot of the compressional perturbation as a function of magnetic field strength and normalized perturbation for (Figures 3a–3d) 3–9 MLT and (Figures 3e–3h) 3–21 MLT.
Figure 4. (a) Magnitude of magnetic field strength perturbation at the magnetic equator predicted by an ideal MHD model of a $m = 0$ global compressional ULF wave with $f = 2$ mHz. (b) Perturbation of magnetic field strength (crosses) and cold plasma number density (asterisks) as a percentage of their unperturbed values.

1 December 1995 and 6 May 2005. The magnetometer observations are transformed from the geocentric solar magnetospheric (GSM) coordinate system to a field-aligned coordinate (FAC) system, and then divided into 24 hourly segments starting at midnight universal time (UT). We remove all hourly segments when the GOES satellites are located within $1.5R_E$ of the theoretical magnetopause. There are periods of extreme magnetospheric compression where the GOES satellites can leave the magnetosphere and sample the magnetosheath; these periods are removed so that we may focus solely on magnetospheric compressional wave amplitudes. Similarly, any hourly time series containing a data gap or data spike is excluded. The compressional magnetic field variations are then determined by applying a Hanning window to each hourly segment, before taking the Fourier transform. We define the amplitude of the compressional wave dB as the amplitude of the field-aligned magnetic field component at 1.94 mHz, and the magnetic field strength is determined using the median magnetic field strength during each hourly window. Spanswick et al. [2005] demonstrate that riometer pulsations are concentrated in the morning sector of the magnetosphere and so we bin our results by magnetic local time (MLT). Results from the morning sector (3–9 MLT) are displayed in Figures 3a–3d, to compare with results from the entire dayside and flank magnetosphere (3–21 MLT). 55770 hourly intervals are included in this larger data set. Even when the whole dayside magnetosphere is included in the analysis, Figure 3h shows that magnetic field oscillations still do not exceed ±10% of the local magnetic field strength.

The observed maximum magnetic field strength oscillation is now used to estimate the possible number density perturbation using an ideal MHD model of ULF waves in a dipolar magnetosphere [Degeling et al., 2008]. For the purposes of this paper, we drive a simple $m = 0$ compressional standing oscillation at 2 mHz from a source located at the outer boundary (magnetopause). The ULF waves form a cavity mode structure between the outer boundary and the MHD fast mode turning point located within the magnetosphere at around $L \sim 4$. The amplitude of these perturbations is scaled such that the magnetic field perturbation at $r = 6.6R_E$ is ±10%, to represent the largest possible wave amplitude observed by the GOES satellites.

The ULF model returns the magnetic field strength at equally spaced points along field lines which are initially dipolar. We interpolate the results onto a grid which is fixed in radial distance and colatitude, and determine the size of the magnetic field perturbations at the magnetic equator as a function of L-shell. The perturbations in Figure 4a represent the largest possible departure from the unperturbed dipolar magnetic field value at the magnetic equator of the model. Figure 4a indicates that the absolute magnitude of the perturbations decreases with radial distance, but Figure 4b (crosses) shows that when expressed as a percentage of the initial local magnetic field strength, the size of the perturbation increases with L-shell.

The plasma velocity from the ideal MHD wave model is used to estimate the cold plasma number density variation due to the wave. The continuity equation

$$\frac{\partial n_e}{\partial t} + \nabla \cdot (n_e v) = 0 \quad (9)$$

is linearized, providing the estimate

$$\frac{\partial n_e}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} (r n_e v_{r,1}), \quad (10)$$

where $n_{e,0}$ and $n_{e,1}$ are the unperturbed and perturbed parts of the cold plasma number density, and $v_{r,1}$ is the perturbed
radial plasma velocity. The unperturbed number density is modeled

\[n_0 = 7.5 \times 10^6 \left(\frac{r}{R_0} \right)^{-4}, \]

(11)

where \(R_0 = 3R_E \). We approximate the time derivative \(\partial / \partial t \sim -i\omega_{ULF} \) where \(\omega_{ULF} \) is the frequency of the ULF wave. The resulting expression for the magnitude of the cold number density perturbation is,

\[n_1 = \frac{1}{r\omega_{ULF}} \frac{\partial}{\partial r} (rn_0V_r), \]

(12)

and the estimates from this equation are indicated with asterisks in Figure 4. At radial distances of \(r \sim 6.6R_E \),
given a ±10% variation in magnetic field strength, the cold plasma number density is expected to vary by only ±2%. Under the conditions of ideal MHD, it is expected that the variation of n should be in phase with the variation of B.

5. ULF Variations in the Hot Plasma Component

The gyromotion, bounce motion and drift motion of electrons will be affected by the slowly changing magnetic field. Under the assumption of an axisymmetric magnetosphere and a ULF wave oscillation with no azimuthal component, we will ignore any drift motion effects. Given the assumed presence of pitch angle scattering, it is unlikely that the magnetic moment, or the total kinetic energy, of the particle would be conserved as it bounces from one hemisphere to the other. However, it is expected that an increase in local magnetic field strength, corresponding to a compression of the magnetic field due to the ULF wave, will likely increase the local hot electron number density and increase the average perpendicular energy of the hot population. If one estimates the change in perpendicular electron energy and number density assuming that the particle kinetic energy and magnetic moments are constant, then we obtain a prediction which is consistent with above expectations, even though our estimate uses assumptions which contradict the steady state model. In the absence of a much more sophisticated treatment which follows the self-consistent pitch angle scattering over the long period of a ULF wave, we will use these assumptions to estimate general trends in the plasma moments as a result of the slow variation of B.

\[n_{H,1} = \frac{n_{H,0}}{\frac{\theta \|}{\theta ^2_{\perp,0}} + \left(1 - \frac{\theta \|}{\theta ^2_{\perp,0}}\right) \frac{\theta \|}{\theta ^2_{\perp,1}}} \]

\[\theta ^2_{\perp,1} = \frac{\theta ^2_{\perp,0}}{\frac{\theta \|}{\theta ^2_{\perp,0}} + \left(1 - \frac{\theta \|}{\theta ^2_{\perp,0}}\right) \frac{\theta \|}{\theta ^2_{\perp,1}}} \]

The long-period ULF wave will therefore likely modulate the temperature anisotropy, the cold electron number density, the hot electron number density and the magnetic field strength. In the following section, we will show how the realistic variation of all four parameters act in concert to change the whistler-mode growth for plasma with different initial temperatures. The analysis above predicts no change in the spectral index κ due to the ULF wave oscillation, and so we fix $\kappa = 4$.

6. ULF Variation of Whistler-Mode Growth Rates

We first investigate four cases, choosing to keep the unperturbed magnetic field strength $B = 108$ nT and unperturbed number density $n_e = 1.0 \times 10^6 \text{ m}^{-3}$ constant among all four cases. These choices result in $\omega_{pe}/\Omega_e = 3.0$. This initial analysis covers combinations of low and high temperature anisotropy ($A = 0.15$ or $A = 0.5$) and low and high parallel electron temperature ($T_{\parallel,e} = 1.5 \text{ keV}$ or $T_{\parallel,e} = 15 \text{ keV}$).

![Figure 6](image)

Figure 6. The variation in growth rates as a function of initial temperature anisotropy are shown for (a) $T_{\parallel,e} = 1.5 \text{ keV}$ and (b) $T_{\parallel,e} = 15 \text{ keV}$. (c, d) The same variations are expressed as a percentage.
Variation of temperature anisotropy given a magnetic field oscillation of ±10%.

In each case, the growth rates for the unperturbed field are compared to the growth rates calculated for the maximum increase in B to $B + 10\%$ (accompanied by an increase in cold number density of 2%, and increases in perpendicular thermal velocity and hot number density given by equations (13) and (14)), and for the maximum decrease in B to $B - 10\%$ (accompanied by the appropriate decreases in hot and cold number density and perpendicular thermal velocity).

The resulting variation in whistler-mode growth rates for the increase in B (+) and the decrease in B (−) are shown in Figure 5a for $A = 0.15$ and $T_{||,e} = 1.5$ keV; Figure 5b for $A = 0.5$ and $T_{||,e} = 1.5$ keV; Figure 5c for $A = 0.15$ and $T_{||,e} = 15$ keV; and Figure 5d for $A = 0.5$ and $T_{||,e} = 15$ keV. In the line plots in each panel, black lines indicate the unperturbed solutions, magenta lines indicate the solutions for $B + 10\%$ and blue lines indicate the solutions for $B - 10\%$. In contrast to Figures 1 and 2, the contour plots in each panel have a linear scale, whereas the line plots employ a logarithmic scale. Interestingly, for all values of initial temperature anisotropy and electron temperature, the variation of unstable frequencies and wavenormal angles given a ±10% variation in ambient magnetic field strength is minimal. The variation in magnitude of the maximum growth rate is largest in Figures 5b and 5d, where the temperature anisotropy is larger ($A = 0.5$). There appears to be no change in the magnitude of the maximum growth rate at all in Figure 5c where $A = 0.15$ and $T_{||,e} = 15$ keV.

The variation in maximum growth rate as a function of temperature anisotropy is studied in further detail in Figures 6a and 6b. These figures show the maximum normalized growth rate for the unperturbed field (asterisks) and the perturbed field (triangles) for (Figure 6a) $T_{||,e} = 1.5$ keV and (Figure 6b) $T_{||,e} = 15$ keV. It is easier to see the variation in maximum growth as a percentage of the unperturbed growth rate, this is shown in Figures 6c and 6d. The percentage change in growth tends to be larger for lower temperature plasma than for higher temperature, although the magnitude of the growth rates is much lower. Figures 6c and 6d show a non-monotonic trend as the temperature anisotropy is increased; the change in growth rates decreases for low values of A, minimizing at $A \sim 0.2$. The percentage change in maximum growth then increases for $A > 0.2$.

7. Discussion

We have used a local warm plasma dispersion relation and the solutions from a global ideal MHD wave model to investigate how whistler-mode growth rates vary with the slow variation of plasma and field parameters due to a global ULF wave oscillation. In our model, we consider the variation of the magnetic field strength, the cold plasma number density, the hot electron number density and the perpendicular thermal velocity. Variations in these quantities can affect the growth rates of whistler-mode waves due to changes in the temperature anisotropy A, the ratio of plasma frequency to gyrofrequency ω_{pe}/Ω_p and the ratio of hot to cold number density ν. The estimated variation in ν is very small, so we focus here on the behavior of A and ω_{pe}/Ω_p due to the ULF wave. Although whistler-mode growth rates increase for increasing A and ω_{pe}/Ω_p, the ULF wave perturbations will increase one of these parameters while decreasing the other. Figure 7 shows the variation in A for a variation of ±10% in the magnetic field strength. The circles indicate the unperturbed value, and the + and − signs correspond to the temperature anisotropy when the field is enhanced and diminished, respectively. An increase in B leads to an increase in θ_j by equation (14), which leads to an increase in A. On the other hand, the increase in Ω_p due to enhanced B is much larger than the increase in ω_{pe} due to the smaller change in n_e (and hence $\sqrt{\nu}$). Our estimates of the relative increases in B and n_e culminate in a decrease in ω_{pe}/Ω_p. For all cases considered, the unperturbed value of ω_{pe}/Ω_p is 3.0; a compression of the magnetic field reduces this value to 2.7 and a rarefaction of the magnetic field increases it to 3.3. As a result, for small values of the temperature anisotropy, the increase in A appears to be balanced by the decrease in ω_{pe}/Ω_p and there is little variation in the growth rates of the waves. For larger values of initial A, the larger variation in A overcomes the opposite trend in ω_{pe}/Ω_p, and the variation in growth rates becomes more significant.

One of the key new aspects of this work is that we constrain our choice of wave amplitude at $r = 6.6R_e$ using observations of low-frequency oscillations from the GOES East and West satellites. A decade of data reveals that ULF waves at geosynchronous orbit can only change the magnetic field strength by a few percent, and that even those events are very rare. This constraint is important for all models of the modulation of electromagnetic wave growth by low-frequency waves.

The analysis presented here aims to build upon the original C-K model, which by necessity employed many simplifying assumptions in order to investigate the possible modulation of pitch angle diffusion due to enhancements and reductions in whistler-mode wave growth. The C-K model predicts that the change in maximum growth rates $\Delta \omega_j$ can be estimated by

$$\Delta \omega_j = \frac{\omega_j(t) - \omega_j(0)}{\omega_{j,0}} = \frac{b}{A} \sin(\omega_{ULF}t)$$

where $\omega_{j,0}$ is the unperturbed growth rate and b is the amplitude of the magnetic field oscillation, as a fraction of B.

9 of 13
(in this case, $b = 0.1$). For the cases examined in this paper, the change in growth rates predicted by the C-K model should be larger for lower values of the temperature anisotropy. Note that there is no dependence on electron temperature, or electron beta, included in the C-K model. We plot the largest variation predicted by the C-K model in Figure 8a (where $\Delta \omega$ is expressed as a percentage) and we reproduce the results from Figures 6c and 6d in Figure 8b as a comparison, where the circles show the results with $T_{i,e} = 1.5$ keV and the triangles show the results with $T_{i,e} = 15$ keV. The C-K model prediction of $\Delta \omega$ greatly exceeds our estimates for low values of the temperature anisotropy. The predictions are comparable for the higher values of temperature anisotropy used in this study, but only because each model predicts an opposite trend: the C-K model predicts decreasing $\Delta \omega$ with increasing anisotropy, whereas the model presented here predicts an increase in $\Delta \omega$ with increasing anisotropy. We should avoid attaching too much significance to this finding, since Coroniti and Kennel [1970] warn that the approximations used to obtain equation (15) are crude. However, our analysis raises the interesting possibility that the modulation of growth rates by ULF waves can be quite small, especially for low values of electron anisotropy close to the marginally unstable level [see, e.g., Gary and Wang, 1996; Gary et al., 2005; MacDonald et al., 2008]. If the variation in the whistler-mode growth rates is small, then the resulting variation in the pitch angle scattering rate is likely to be small [see Coroniti and Kennel, 1970, equation 8]. Our local analysis suggests that the ULF modulation of VLF waves at $r = 6.6R_E$ near the equator in the magnetosphere is only large enough to significantly alter the pitch angle scattering of electrons when the temperature anisotropy is large, in direct contrast to the predictions of the C-K model.

[34] Note that Li et al. [2011] have presented THEMIS observations of whistler-mode wave modulation in compressional waves where the variations in magnetic field strength and number density are exactly out of phase. In this case, the growth rates of the whistler-mode waves are shown to be sufficiently modulated, accounting for the intensifications of whistler-mode activity observed by THEMIS. Interestingly, Li et al. [2011] use direct observations to show that in the majority of cases (at $8 < L < 12$), the modulation of the whistler-mode wave growth rates occurs because the ratio of resonant electrons to total electrons is modulated. In some cases at lower L, the whistler-mode growth rates are modulated because the temperature anisotropy is significantly modulated. The key difference between the plasma number density and magnetic field variations studied by Li et al. [2011] and the variations modeled in this paper is that the observations of magnetic field and density perturbations chosen by Li et al. [2011] are exactly out of phase, whereas we investigate the case where the number density perturbations are in phase with the magnetic field perturbation. A comparison between this work and that of Li et al. [2011] indicates that greater modulation of whistler-mode wave growth rates may be possible when the magnetic field variations, number density variations and hot plasma variations enjoy a specific phase relationship (i.e. exactly out of phase). Constraints of this type may help to explain why not all large-scale ULF wave oscillations are accompanied by pulsations in electron precipitation [Spanswick et al., 2005]. Future models should identify the specific phase relationship between the magnetic field variations and the plasma variations beyond the idealized models used in Sections 4 and 5.

[35] The growth rates shown in Figure 5, calculated using parameters typical of geosynchronous orbit, are essentially field-aligned; the wavenormal angle relative to the local magnetic field ψ is never more than $\sim 15^\circ$. As far as a local treatment is concerned, therefore, a parallel analysis seems appropriate [Coroniti and Kennel, 1970; Sazhin, 1987; Summers et al., 2009; Katoh and Omura, 2007; Omura et al., 2008; Hikishima et al., 2009a, 2009b, 2010]. However, when the magnetospheric propagation of the whistler-mode wave is considered in more detail, it can be shown that the wavenormal angle changes significantly along the raypath [Huang and Goertz, 1983; Huang et al., 1983; Bortnik et al., 2006, 2007; Li et al., 2008, 2009]. The full path-integrated gain may therefore be different than calculations of local growth rates suggest. Furthermore, in-situ observations of whistler-mode waves in the magnetosphere indicate that not all whistler-mode waves have parallel wave vectors [Santolik et al., 2009; Breneman et al., 2009]. Ray-tracing calculations [Li et al., 2008, 2009] demonstrate that in a short time (a few seconds), whistler-mode waves can travel through large distances in the magnetosphere. As they travel, they take energy from the surrounding plasma in order to grow, but they do not attain large amplitudes until they are much further along their raypath where the local distribution function may be quite different from where they started. Future analysis of this problem will consider the non-local aspects
of whistler-mode growth and how they might be altered by a slowly oscillating ULF wavefield.

8. Summary and Conclusions

[36] We use a warm plasma dispersion relation to calculate the growth rates for whistler-mode waves for parameters indicative of the equatorial region of the magnetosphere at geosynchronous orbit. A limited parameter study of the variation of whistler-mode growth with temperature anisotropy and ω_p/Ω_e shows that both parameters lead to an increase in whistler-mode growth rates and the range of unstable perpendicular wave numbers. Changes in temperature anisotropy also lead to changes in the range of unstable frequencies. The linear growth rate solutions are used to estimate by how much whistler-mode growth rates vary in the presence of a ULF wave oscillation at geosynchronous orbit. We use a statistical survey of GOES East and West data over nearly a decade to determine the possible magnitude of changes to the magnetic field strength due to compressional ULF waves at geosynchronous orbit. The distribution of wave amplitudes convincingly shows that, at most, the magnetic field strength changes by only a few percent. An ideal MHD simulation of global ULF wave oscillations is used to estimate the accompanying change in cold plasma number density. We estimate the effect of the ULF magnetic field strength variation on the number density and average perpendicular energy of the hot electron component, and use these estimates to simulate the action of a long period ULF wave oscillation on the solutions of the warm plasma dispersion relation. Our calculations show that the range of unstable frequencies and wavenormal angles remains relatively constant during the ULF modulation, but that the maximum growth rates of the waves are modulated. This modulation is only significant for large values of the electron temperature anisotropy; at lower values of the temperature anisotropy, the balance between increases in temperature anisotropy and decreases in ω_p/Ω_e results in a very small variation in growth rates, even for an extreme oscillation of ±10% of the ambient magnetic field. Our local treatment of the variation in whistler-mode growth rates suggests that even substantial ULF waves can only provide sufficient changes in the local whistler-mode growth rates when the temperature anisotropy is large.

Appendix A

[37] Summers et al. [1994] present expressions for the elements of the dielectric tensor $K_{\alpha\beta}$ for bi-Lorentzian distribution functions (see equation (7)). We assume that both electrons and protons can be described by a majority cold population and a tenuous warm component where $\nu \ll 1$ is the fraction of warm to cold plasma number density (for simplicity we assume this fraction is the same for electrons and protons).

\[
\begin{bmatrix}
K_{xx} - 1 \\
K_{xy} \\
K_{yy} - 1
\end{bmatrix} = \sum_{\alpha} \sum_{\nu=0}^{\infty} \sum_{m=0}^{\infty} \frac{n^2}{A_{\nu}} \begin{bmatrix}
S_1 \\
S_2 \\
S_3
\end{bmatrix} \begin{bmatrix}
\left(A_{\nu} \xi_{\alpha} + \frac{\omega}{k \theta_{\alpha}} \right) S_1 \\
\xi_{\alpha} S_2 \\
S_3
\end{bmatrix}.
\]

\[\left(\frac{\sqrt{2} \pi / \lambda_{\alpha}^{1/2}}{\nu / \lambda_{\alpha}^{1/2}} + \frac{\nu / \lambda_{\alpha}^{1/2}}{\lambda_{\alpha}} \right) \frac{S_1}{S_1} + \xi_{\alpha} \frac{S_2}{S_1} + \xi_{\alpha} \frac{S_2}{S_1} = \left(A_{\nu} \xi_{\alpha} + \frac{\omega}{k \theta_{\alpha}} \right) S_1.
\]

(A2)

Above, each plasma species α has charge q_{α}, mass m_{α}, and cold number density n_{α}. $\Omega_{\alpha} = q_{\alpha} B_{0} / m_{\alpha}$ is the gyrofrequency and $\omega_{\alpha} = (m_{\alpha} q_{\alpha}^2 / (e q_{\alpha} m_{\alpha}))^{1/2}$ is the plasma frequency. $\lambda_{\alpha} = (1/2) (k_{\alpha} \theta_{\alpha} \Omega_{\alpha})^2$, and $\xi_{\alpha} = (\omega - n_0 \Omega_{\alpha}) / (k_{\alpha} \theta_{\alpha}).$

[38] The S_i can be evaluated using the following expressions,

\[S_1 = 2 \lambda_{\alpha} \sigma_{\text{odd}} \int_0^1 \left(\frac{1 - y}{1 - y} \right)^{1/2} \left(\frac{y - x}{1 - y} \right)^{1/2} \left(\frac{y + 1}{y} \right)^{1/2} \frac{dx}{dy},\]

(A3)

\[S_2 = 2 \lambda_{\alpha} \sigma_{\text{even}} \int_0^1 \left(\frac{1 - y}{1 - y} \right)^{1/2} \left(\frac{y - x}{1 - y} \right)^{1/2} \left(\frac{y + 1}{y} \right)^{1/2} \frac{dx}{dy},\]

(A4)

\[S_3 = (2 \lambda_{\alpha})^{1/2} \int_0^1 \left(\frac{1 - y}{1 - y} \right)^{1/2} \left(\frac{y - x}{1 - y} \right)^{1/2} \left(\frac{y + 1}{y} \right)^{1/2} \frac{dx}{dy},\]

(A5)

\[S_4 = (2 \lambda_{\alpha})^{1/2} \int_0^1 \left(\frac{1 - y}{1 - y} \right)^{1/2} \left(\frac{y - x}{1 - y} \right)^{1/2} \left(\frac{y + 1}{y} \right)^{1/2} \frac{dx}{dy},\]

(A6)

\[S_5 = 4 \lambda_{\alpha}^2 \sigma_{\text{even}} \int_0^1 \left(\frac{1 - y}{1 - y} \right)^{1/2} \left(\frac{y - x}{1 - y} \right)^{1/2} \left(\frac{y + 1}{y} \right)^{1/2} \frac{dx}{dy},\]

(A7)

\[S_6 = 4 \lambda_{\alpha}^2 \sigma_{\text{even}} \int_0^1 \left(\frac{1 - y}{1 - y} \right)^{1/2} \left(\frac{y - x}{1 - y} \right)^{1/2} \left(\frac{y + 1}{y} \right)^{1/2} \frac{dx}{dy},\]

(A8)

where $r = \sqrt{2 \lambda_{\alpha}}$, $\sigma_{\text{odd}} = (\kappa + 1)(\kappa - 1)^{1/2}$, $\sigma_{\text{even}} = (\kappa + 1/\kappa)^2(\kappa - 1)^{1/2}$, the $J_{\nu}(x)$ are Bessel functions of the first kind with argument x, and Z_{k+1} is the modified plasma dispersion function introduced by Summers and Thorne [1991].
In work by Summers et al. [1994], the S_i are first written as integrals over the variable $\mu = k \lambda / \lambda_{ce}$, which runs from 0 to ∞. In order to treat the limit $\lambda_{ce} \to 0$ (i.e. parallel propagation), they advise the substitution $\phi = \mu (2 \lambda_{ce})^2$, however, the limits of integration remain 0 and ∞. So that we may efficiently evaluate the integrals of the S_i numerically, we have performed a further change of variables $y = 1/(1 + \phi)$, to obtain a definite integral with limits 0 and 1. There is still the problem that the integrands are undefined at the limit $\phi = 0$, however this problem can be satisfactorily dealt with numerically [see, e.g., Press et al., 2007].

Acknowledgments. CEJW, AWD and IJR are supported by the Canadian Space Agency. KRM is funded by Alberta Ingenuity and Natural Sciences and Engineering Research Council Canadian Graduate Scholarships.

Robert Lysak thanks the reviewers for their assistance in evaluating this paper.

References

A. W. Degeling, K. R. Murphy, I. J. Rae, R. Rankin, and C. E. J. Watt, Department of Physics, University of Alberta, Edmonton, AB T6G 2G7, Canada. (degeling@ualberta.ca; kmurphy@ualberta.ca; jonathan.rae@ualberta.ca; rankin@ualberta.ca; watt@ualberta.ca)

H. J. Singer, NOAA Space Environment Center, 325 Broadway, Boulder, CO 80305, USA. (howard.singer@noaa.gov)