
A closer look at chaotic advection in the 
stratosphere: part II: statistical diagnostics
Article 

Published Version 

Ngan, K. and Shepherd, T. G. ORCID: https://orcid.org/0000-
0002-6631-9968 (1999) A closer look at chaotic advection in 
the stratosphere: part II: statistical diagnostics. Journal of the 
Atmospheric Sciences, 56 (24). pp. 4153-4166. ISSN 1520-
0469 doi: 10.1175/1520-
0469(1999)056<4153:ACLACA>2.0.CO;2 Available at 
https://centaur.reading.ac.uk/32856/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1175/1520-0469(1999)056<4153:ACLACA>2.0.CO;2 
To link to this article DOI: http://dx.doi.org/10.1175/1520-
0469(1999)056<4153:ACLACA>2.0.CO;2 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



15 DECEMBER 1999 4153N G A N A N D S H E P H E R D

q 1999 American Meteorological Society

A Closer Look at Chaotic Advection in the Stratosphere. Part II: Statistical Diagnostics

KEITH NGAN* AND THEODORE G. SHEPHERD

Department of Physics, University of Toronto, Toronto, Ontario, Canada

(Manuscript received 17 September 1997, in final form 22 February 1999)

ABSTRACT

Statistical diagnostics of mixing and transport are computed for a numerical model of forced shallow-water
flow on the sphere and a middle-atmosphere general circulation model. In particular, particle dispersion statistics,
transport fluxes, Liapunov exponents (probability density functions and ensemble averages), and tracer concen-
tration statistics are considered. It is shown that the behavior of the diagnostics is in accord with that of kinematic
chaotic advection models so long as stochasticity is sufficiently weak. Comparisons with random-strain theory
are made.

1. Introduction

In the first part of this study, Ngan and Shepherd
(1999, hereafter Part I), it was shown that chaotic ad-
vection occurs in both a shallow-water model of the
winter stratosphere and a middle-atmosphere general
circulation model. Specifically, the ‘‘cat’s eye’’ structure
in the surf zone organizes mixing and transport in a
manner akin to the heteroclinic structure of a temporally
aperiodic chaotic system; consequently velocity deriv-
atives decorrelate along particle trajectories rather than
at fixed spatial locations. This behavior is robust, and
is consistent with previous studies of stratospheric mix-
ing and transport, as well as with analytical and nu-
merical results for Rossby wave critical layers.

The analysis of Part I was largely qualitative, the
primary objective of that paper being to clarify the no-
tion of chaotic advection in the stratosphere and deter-
mine conditions under which it may occur. It is the
objective of the present paper to characterize chaotic
advection in the shallow-water and middle-atmosphere
models by computing a number of representative sta-
tistical diagnostics.

Since there does not exist a single diagnostic by which
chaotic advection can be fully characterized, such an
approach cannot establish unequivocally the ‘‘defini-
tive’’ features of chaotic advection in the stratosphere,
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but it is, nonetheless, useful from both a practical and
theoretical perspective. Practically, it enables one to
make concrete many of the qualitative results of Part I
(e.g., the shallow-water parameter dependences and the
relative insensitivity of the Lagrangian correlation time
to the forcing amplitude). Furthermore, as we consider
diagnostics that have not been used much, if at all, in
the stratospheric context—most notably the probability
distribution of Liapunov exponents—the accompanying
results also provide some insight into stratospheric mix-
ing and transport. Theoretically, it is important to un-
derstand how chaotic advection in the stratosphere re-
lates to chaotic advection in dynamical systems and to
random-strain theory. While there are obvious analogies
with the shallow-water and middle-atmosphere models,
as noted in Part I, so too are there many differences.
With respect to random-strain theory, for instance, the
condition that all the velocity derivatives be random
functions with fixed correlation time would not appear
to be satisfied in the more complex models.

The statistical diagnostics analyzed in this paper may
be usefully divided into transport and mixing diagnos-
tics. As with Part I, the primary focus is on the shallow-
water parameter dependence: the transport diagnostics,
which characterize large-scale tracer movement, consist
of particle dispersion statistics (section 2) and transport
fluxes (section 3); the mixing diagnostics, which char-
acterize the evolution of small-scale tracer structure
(roughly speaking, stretching and homogenization),
consist of Liapunov exponents (probability distribution
functions and ensemble averages in particular; section
4), and tracer concentration statistics (section 5). Some
calculations with isentropic winds from the Canadian
Middle Atmosphere Model (CMAM) are described in
section 6. Throughout the paper, the role of the large-
scale velocity field—the ‘‘organizing structure’’—is em-
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FIG. 1. Dispersion statistics at 50 days as a function of z0: (a) ;2s x

(b) .2s y

phasized, particularly in relation to the theoretical re-
sults. Details on the requisite particle trajectory calcu-
lations, as well as on the formulation of the models,
may be found in Part I.

2. Dispersion statistics

The zonal and meridional mean-square dispersion are
given by

5 ^(l 2 ^l&)2&, 5 ^(f 2 ^f&)2&, (1)2 2s sx y

where l and f are the longitude and latitude in radians;
the angle brackets denote the ensemble average

N

^·& 5 (·) cosf ,O i
i51

N being the number of particles.1 Roughly speaking,
characterizes the spatial extent of transport; serves2 2s sy x

as a test for anomalous diffusion.
Unless stated otherwise the initial particle distribution

consists of approximately 70 000 particles uniformly
spaced from 15.58 to 52.58N at 0.58 intervals, and from
0.28 to 359.88E at 0.328 intervals.

a. Shallow-water parameter dependence

In deterministic chaotic systems, the variation of
and with the amplitude of the perturbation reflects2 2s sx y

changes in the underlying phase-space structure. We
now consider whether there is similar behavior for the
shallow-water system. Based on the results of Part I it
is expected that there should be a close correspondence
between the heteroclinic structure of a chaotic system
and the organizing structure of the shallow-water sys-
tem.

We begin with stationary forcing. Figure 1 shows
and as functions of the forcing amplitude z0 [see2 2s sx y

Part I, Eq. (4a)]. The behavior is easily understood:2s y

the meridional dispersion increases with the perturba-
tion amplitude. This increase in simply reflects the2s y

expansion in the width of the surf zone, which is very
clearly seen in the corresponding tracer fields (cf. Part
I, Fig. 4). It is analogous to the behavior of kinematic
chaotic advection models: increases with the per-2s y

turbation amplitude « due to the expansion in the width
of the chaotic region (cf. Ngan and Shepherd 1997a,
Fig. 13). There is, however, a fundamental difference
between the systems: in kinematic chaotic advection
models, one has invariant tori that are fixed in place on
a Poincaré section; in the shallow-water system unbro-
ken potential vorticity (PV) contours are time dependent
and deform as the critical layer evolves. Nevertheless,

1 Note that in computing the periodic boundary conditions are2s x

ignored. This is a standard technique in dispersion studies (see, e.g.,
Mezić and Wiggins 1994).

this does demonstrate that there is some justification in
thinking of the surf zone as a ‘‘chaotic region’’ and the
rest of the flow as a ‘‘regular region.’’

The behavior is a little more complicated: the2s x

dependence on z0 is not determined solely by the ex-
pansion in the width of the surf zone; the orientation of
the initial particle distribution relative to the surf zone
is also important. For small z0, some of the particles lie
in a region of quasi-zonal, nonbreaking streamlines, the
rest in a region of overturning, breaking streamlines
(i.e., the surf zone); for large z0, however, all the par-
ticles are contained in the surf zone, the initial distri-
bution being fixed. This is important because the zonal
dispersion is maximized when the particles lie in regions
with different Lagrangian-mean zonal velocities (see
section 2b): in the weak-forcing case particles drift at
different average rates in different regions and is2s x

large; in the strong-forcing case, the particles lie in the
same region and therefore drift at the same average rate.
There is once more similar behavior for deterministic
chaotic advection models (cf. Ngan 1997).

Plots of and versus time (Fig. 2) show that the2 2s sx y

temporal development of the dispersion statistics is also
governed by the underlying phase-space structure. For

, it is evident that the decrease in (t 5 50 days)2 2s sx x

with z0 (as seen in Fig. 1) is a manifestation of the
corresponding decrease in the dispersion exponent g,
which is defined by ; tg. In recent years there has2s x

been much interest in computing g for a number of
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FIG. 2. Dispersion statistics as a function of time for z0 5 0, 1000,
1500, and 2000 m: (a) ; (b) . Note that in (a) logarithmic axes2 2s sx y

are used, and the results for z0 5 1000 and 2000 m extend to 100
days.

FIG. 3. (t 5 50 d) vs dy . z0 5 250 m.2s y

different systems (see Mezić and Wiggins 1994 and ref-
erences therein). For , by contrast, one sees the initial2s y

growth and long-time saturation of the meridional dis-
persion, the time of saturation being greater for larger
z0.

It is interesting to examine how this picture changes
with the external parameters. In Part I it was argued
that the formation of cat’s eyes in the surf zone is robust
to changes in the basic-state shear and the deformation
radius, as well as to the addition of transient forcing.

For transient forcing alone the results are qualitatively
similar: scales very nearly as t2; increases with2 2s sx y

time and then saturates. The differences are greater for
because is evidently insensitive to the small-scale2 2s sy x

structure of the velocity field (see section 2b). There are
similar results when the deformation radius and the ba-
sic-state shear are changed: the dispersion statistics are
robust because the large-scale velocity field is robust.

For small forcing amplitudes stochastic forcing has
a similar effect. This may be seen in Fig. 3, which shows

at 50 days as a function of the stochastic forcing2s y

amplitude in the velocity components, dy .2 Note that

2 More precisely dy is defined by the equation y → y(1 1 dyh),
where y is a velocity component and h is a white-noise variable, in
both space and time, of amplitude unity. See Part I, Eq. (5).

increases steadily with dy ; plots of against time2 2s sy y

(not shown) confirm that in this range of parameters,
once more increases and levels off with time, albeit2s y

slowly.
This behavior is analogous to that of the stochastic

two-wave model of Ngan and Shepherd (1997a). In that
model stochasticity in the phase speed of the transient
perturbation causes particle trajectories to be smeared
out, but as the large-scale structure of the velocity field
is unaffected, the behavior of , a coarse-grained di-2s y

agnostic, is fairly predictable: generally increases2s y

with stochasticity. There is a similar situation here for
weak stochastic forcing: after all, the cat’s eye structure
in the surf zone does persist. The situation for strong
forcing is different, however, since in that case the cat’s
eye structure is essentially destroyed; the dispersion be-
havior changes along with the large-scale velocity field;

increases rapidly. We return to this point in section2s y

4, where Liapunov exponents are computed.

b. Anomalous diffusion

In the preceding section it was shown that for the
zonal dispersion g ø 2. This result is perhaps surprising
because one might expect g 5 1 (i.e., normal diffusion)
in a chaotic region; we therefore consider the scaling
of in detail.2s x

There is a simple physical explanation for the oc-
currence of t2 or t1 dispersion. The t1 dispersion occurs
when the Lagrangian-mean zonal velocities of the par-
ticles approach a constant for t → ` (assuming that the
zonal velocities are sampled randomly, the variance of
the ensemble positions then grows like that of a one-
dimensional random walk); t2 dispersion, sometimes re-
ferred to as ballistic motion, occurs when particles in
regions with different Lagrangian-mean zonal velocities
separate from one another linearly in time. In other
words, t1 dispersion is expected for times large in com-
parison with the Lagrangian autocorrelation time; if the
latter is infinite, t2 dispersion results. The nonergodicity
condition of Mezić and Wiggins (1994) formalizes this
physical argument.
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FIG. 4. vs time for dy 5 0.002 and dy 5 0.01. z0 5 1000 m.2s x

The type of dispersion observed thus reflects the
structure of the velocity field. From the argument given
above, t2 and t1 dispersion are limiting cases as t → `
for (quasiperiodic) ‘‘regular’’ and ‘‘irregular’’ velocity
fields, respectively.3 At finite times, dispersion expo-
nents between 1 and 2 may be possible. This is referred
to as anomalous diffusion4 and is frequently associated,
in non-Hamiltonian systems, with stochasticity in the
velocity field (Crisanti and Vulpiani 1993), or, in Ham-
iltonian systems, with Lévy flights, wherein particle dis-
placements alternate between ‘‘trapping’’ and ‘‘flight’’
episodes (Shlesinger et al. 1993).

These considerations are of course theoretical only.
In practice, it is often difficult to observe g , 2, let
alone verify claims of anomalous diffusion, because the
time series are relatively short. Assuming a character-
istic velocity of 30 m s21 and a characteristic length
scale of ap/3 (a is the radius of the earth), the char-
acteristic advective timescale of the large-scale flow is
of the order of 3 days, implying that a 50-day run cor-
responds to roughly 16 advective periods. This means
that 50-day integrations are too short for there to be
diffusive-like motion in the zonal direction. After 50
days the particles are dispersed over the surf zone along
a number of convoluted but nonetheless well-defined
filaments (Part I, Fig. 2c); consequently the particles do
not sample the zonal velocities randomly and the La-
grangian-mean zonal velocities cannot approach a con-
stant. Even for a 100-day integration (Fig. 2a), the in-
tegrations are still too short for the zonal motion to be
diffusive-like, although g ; 1.4 for z0 5 2000 m and
t . 900 h. On the other hand, for z0 5 1000 m, g 5
2 still (however, g , 2 can be obtained if the initial
distribution is sufficiently narrow; not shown).

While this behavior is suggestive of anomalous dif-
fusion, it may be that g → 1 for larger t. In deterministic
Hamiltonian systems anomalous diffusion is a finite-
time effect. The occurrence of anomalous diffusion
would be interesting because it might be indicative of
a qualitative change in the spatial structure of the ve-
locity field. However, is a rather coarse diagnostic:2s x

; t2 as t → ` even if only a small fraction of the2s x

particles is located outside the breaking region, as dis-
cussed above.

For cases with explicit stochastic forcing, one might
expect anomalous diffusion to occur: the cat’s eye struc-
ture is destroved by strong stochasticity and there is
much spatial irregularity in the velocity field (see Part
I, section 3e). At least for a 50-day integration, however,
this does not appear to be the case for the standard

3 We emphasize that it is not necessary for the entire velocity field
to be regular for there to be t2 dispersion; only part of the tracer field
need be contained in a regular region.

4 The term anomalous diffusion is used even for cases where there
is no explicit diffusion of the tracer. While ‘‘anomalous dispersion’’
may be a more accurate description, this usage is standard.

choice of parameters; g 5 2 yet again (Fig. 4). It is
plausible that g 5 2 is a robust result for strong sto-
chastic forcing. For the stochastic two-wave model g 5
2 for large t because while the zonal shear is unaffected
by stochasticity, particles tend to drift away from one
another in the meridional direction, making t2 dispersion
inevitable. Here the structure of the zonal jet is basically
unaffected by stochasticity, and the same kind of mech-
anism should be operative.

We note that there is little evidence for the existence
of Lévy flights in the shallow-water system. With or
without stochasticity, there is not a clear-cut distinction
between trapping and flight episodes; instead, particle
displacements vary continuously with time.

3. Transport fluxes

Dispersion statistics are a useful diagnostic for trans-
port but they are not the only one. For Hamiltonian
dynamical systems, analytical theory (‘‘lobe dynam-
ics’’) for transport across the perturbed separatrix has
been developed (e.g., Wiggins 1992). This provides a
means of relating the phase-space structure to the mea-
sured transport. In the stratospheric context, much at-
tention has been devoted to measures of transport across
the edge of the polar vortex; an entirely satisfactory one
has yet to be devised (Sobel et al. 1997). Nevertheless
it is useful to compute brute-force transport fluxes across
some arbitrarily chosen boundaries: our interest is not
in transport per se but rather in its relation to the large-
scale velocity field, that is, as a manifestation of chaotic
advection.

The initial particle distribution is chosen according
to the appearance of the tracer field at 50 days, specif-
ically the location of the cat’s eyes. As in Ngan and
Shepherd (1997a) the number of particles crossing the
northern and southern boundary of the initial distribu-
tion is counted; fluxes are obtained by normalizing this
number with respect to the number of particles in the
initial distribution. The qualitative results depend on
neither the precise location of the boundaries nor the
number of particles.
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FIG. 5. Transport fluxes for z0 5 1000 m and an initial particle
distribution between 208 and 358N. Positive fluxes are northward at
the northern boundary and southward at the southern boundary.

Figure 5 shows the transport fluxes for z0 5 1000 m
and an initial particle distribution between 208 and 358N.
In contrast with the fluxes from the deterministic two-
wave model (obtained from lobe dynamics or brute-
force computation; see Ngan and Shepherd 1997a), there
is no sign of power-law scaling: instead the flux across
either boundary evolves on a slow timescale, of the
order of 20 days, with inertial oscillations superimposed
on top. Similar results have been obtained with other
initial distributions and with longer, 100-day, runs.

This behavior is a consequence of the time dependent
nature of the critical layer. To see this it is necessary to
recall why there is power-law decay of transport fluxes
in dynamical systems. Temporal power laws are asso-
ciated with self-similar phenomena, that is, processes
without a characteristic scale. In systems with periodic
boundary conditions, the chaotic motion around the se-
paratrix, which does not have a characteristic timescale,
presumably leads to power-law decay (cf. Ngan and
Shepherd 1997a); for unbounded systems, by contrast,
exponential decay is possible (cf. Rom-Kedar et al.
1990). The shallow-water system falls in between these
two extremes (power spectra of velocity time series
show broad peaks; Part I, section 4a) and this likely
explains its more complicated time dependence. Similar
kinds of time dependence have been obtained in pre-
vious studies (cf. Sobel et al. 1997; Polvani et al. 1995):
the transport fluxes are time dependent and show
‘‘bursts’’ of increased transport.

The scaling of the transport fluxes in systems with
complicated time dependence has yet to be studied sys-
tematically. This diagnostic illustrates how chaotic ad-
vection in kinematic and in dynamical models may dif-
fer. In quasiperiodic studies (e.g., Duan and Wiggins
1996), the time evolution of an averaged quasiperiodic
Melnikov function is generally weak.5 This is very dif-

5 It should be pointed out, however, that the Melnikov function
describes the total phase space transport rather than the transport of
a particular tracer (cf. Ngan and Shepherd 1997a). The Melnikov
function provides an estimate of the separatrix splitting and thus the
phase-space transport across the separatrix.

ferent from the shallow-water system, where the spatial
structure of the cat’s eye structure is not fixed in time
(see Part I, Fig. 2).

4. Liapunov exponents

We now turn to the mixing diagnostics. Mixing in
chaotic systems is often characterized using finite-time
Liapunov exponents (hereafter abbreviated to Liapunov
exponents for brevity), which roughly speaking measure
the exponential divergence of two nearby trajectories,
that is, the stretching characteristics of the flow in ques-
tion.

In a chaotic region there is a distribution of Liapunov
exponents at any finite time. This distribution may be
represented using a probability density function (PDF),
P(l).6 Although the direct implications of P(l) for the
mixing of a tracer field are tenuous, it is, nevertheless,
useful in understanding the nature of chaotic advection
in the shallow-water system and the middle-atmosphere
model. There has recently been much study of the Lia-
punov exponents of chaotic systems, both deterministic
and stochastic (e.g., Városi et al. 1991), as well as of
random-strain theory (e.g., Chertkov et al. 1995). By
examining the form and evolution of the PDFs, as well
as their first moment (i.e., the mean Liapunov exponent),
both differences and similarities between chaotic ad-
vection in a realistic vorticity-conserving fluid and in a
kinematic model can be established. In particular the
relationship of stratospheric mixing and transport to cha-
otic advection and random-strain theory, which was par-
tially addressed in Part I, is further clarified.

The Liapunov exponents are computed using the so-
called pull-back method (see Lichtenberg and Lieber-
man 1992), wherein an initial perturbation dx(0) is cho-
sen at random and allowed to evolve under the linearized
dynamics. This shadow trajectory is displaced by a max-
imum distance (in radians) of (dl, df ) 5 (2E25, 1E25)
and is renormalized every 37.5 minutes.7 The results are
not sensitive to the values of these parameters. Com-
parable results have been obtained using a matrix-based
method (von Bremen et al. 1997; Geist et al. 1990),
wherein the Liapunov exponents are obtained as eigen-
values of what is essentially an averaged displacement
matrix, as well as with the full nonlinear flow.

The PDFs are constructed by binning the Liapunov
exponents between l 5 21 and l 5 1 day21 into 400
equally spaced bins and normalizing. Unless stated oth-
erwise the initial distribution is the same as that in sec-
tion 2.

6 Hereinafter l refers to the Liapunov exponent, not the longitude.
7 The offline winds are sampled every 3 h and the time step of the

particle advection scheme is 3.75 min.



4158 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 6. P(l ) at t 5 50 days for f 0 5 208, 308, and 408N. z0 5
1000 m.

a. Comparison with contour-lengthening exponents

Before proceeding with a detailed analysis of the Lia-
punov exponents, it is useful to see how they compare
to the contour-lengthening exponent, a diagnostic com-
monly used to characterize stratospheric mixing (e.g.,
Waugh and Plumb 1994; Polvani et al. 1995).

The contour-lengthening exponent is a useful quantity
to examine because it provides information about the
development of small-scale tracer structure. However,
it does have two notable limitations. The first is that it
is a coarse-grained quantity: the contour-lengthening
rate is often supposed to be a Liapunov exponent (e.g.,
Schoeberl and Newman 1995), but this is not strictly
correct. The Liapunov exponent, as conventionally de-
fined, is a fine-grained diagnostic, whereas the contour-
lengthening rate is obviously related to the distribution
of Liapunov exponents along the contour. Second, the
contour-lengthening rate is obtained as a function only
of the initial contour location, f 0. While this enables
the edges of the surf zone to be demarcated, information
about the spatial distribution of mixing is lost: the Lia-
punov exponents along the contours are not, in general,
identical.

These points are illustrated by comparing the contour-
lengthening exponents of the shallow-water system to
the corresponding PDFs. For brevity we only sketch the
procedure used to obtain the contour-lengthening ex-
ponents: the initial location of a (potential vorticity)
contour is specified by f 0; the evolution of the contour
is followed using the contour-advection scheme of
Schoeberl and Newman (1995) with a cut-off threshold
of 100 km; the contour length is obtained by summing
over the particle separations. From a least squares fit
the contour-lengthening rates for 50-day integration
with z0 5 1000 m are 0.11 6 0.02, 0.13 6 0.02, and
0.15 6 0.03 day21 for f 0 5 208, 308, and 408N, re-
spectively (the errors are estimated from minimum and
maximum slopes). Typical values for the lower strato-
sphere are of the order of 0.2 day21 (e.g., Schoeberl and
Newman 1995).

Figure 6 shows P(l) at t 5 50 days for f 0 5 208,

308, and 408N. While it is difficult to compare the values
of the Liapunov exponents to the contour-lengthening
rates—the former being determined from a 50-day in-
tegration and the latter from a least squares fit at large
times, the range of times considered being somewhat
arbitrary—the contour-lengthening rates do appear to
be greater. This is probably because the stretching of a
finite fluid element is in general greater than the stretch-
ing of an infinitesimal fluid element (e.g., Tabor and
Klapper 1994): if there is nonuniform stretching then
the lengthening of a contour may be determined by a
small number of rapidly stretching elements.

This may be seen in the following way. The ensemble-
averaged Liapunov exponent at time t is given by

^l& 5 P(l, t) dl, (2)E
while the contour-lengthening rate at time t is

1
l ; ln exp(lt)P(l, t) dl . (3)c E5 6t

Because of the exponential factor, larger values of l
make a larger contribution to the integral. This can be
made concrete by taking the infinite-time limit of ran-
dom-strain theory (see section 4b). In this limit P(l, t)
approaches a Gaussian, that is, P(l) ; exp(2(l 2 ^l&)2/
sl), sl being the standard deviation of the distribution.
If sl is small, it is then easy to show that the dominant
contribution to the integral is given by a value of l
displaced from ^l& by a positive distance.

Another point is that P(l) contains more information
than the contour-lengthening rate, which is just a num-
ber. Here P(l) provides information about the homo-
geneity of the mixing: broad distributions imply inho-
mogeneous mixing. While this is statistical information
only, it is nonetheless more useful than a distribution
of contour-lengthening rates with respect to f 0. The
latter may be somewhat misleading because it is a dis-
tribution in the space of initial contour locations, which
can be very different from the final tracer field.

These points are elementary and have been recog-
nized, implicitly, by several previous authors (e.g.,
Haynes and Anglade 1997). The purpose of the pre-
ceding calculations is mostly pedagogical: they provide
explicit evidence that the contour-lengthening rate is an
inherently coarse-grained diagnostic and they help mo-
tivate the analysis in the subsequent sections.

b. Probability distribution

Figure 7 shows P(l) at 50 days for z0 5 1000, 2000,
and 3000 m. In all cases one sees a rather broad PDF
that is skewed toward positive l. As z0 is increased, the
mean of the distribution shifts slightly to larger l (see
section 4c), and the large-l tails become more pro-
nounced.
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FIG. 7. P(l ) at 50 days for z0 5 1000, 2000, and 3000 m. FIG. 8. P(l ) for z0 5 2000 m at 50 and 100 days. A normal distri-
bution is shown for comparison.

A complementary picture is obtained from the time
evolution for a single value of z0 (Fig. 8). The large-l
tail is much diminished at 100 days and the approach
toward Gaussianity is clear.

This behavior may be understood by appealing to
some theoretical results. It has been shown that for a
two-dimensional, incompressible flow with strain com-
ponents varying randomly in time P(l) takes the fol-
lowing form (Chertkov et al. 1995):

2(l 2 l ) ln(L /r )minP (l) ; exp 2a , (4)rs [ ]2D ll

where a is an inverse time, L is a correlation length
scale of the flow, rmin is a minimum tracer length scale,
and l and Dl are the mean and variance of the distri-
bution for t → `. At large times Prs(l) approaches a
Gaussian since L/rmin is large [l t ; ln(L/rmin)] and Dl

is effectively small; at intermediate times Prs(l) is
skewed toward increasing l.

As predicted by (4), the PDFs in Figs. 7 and 8 exhibit
positive skewness at finite times and collapse toward
Gaussianity as time increases. Quantitative comparison
is difficult—(4) is basically a scaling expression and has
little predictive value—but this approximate agreement
is interesting because random-strain theory is a rather
severe idealization. It would appear that violation of a
number of its underlying assumptions does not, at least
on the timescales considered here, yield significant de-
viations. On longer timescales effects such as the non-
vanishing divergence field and, more importantly, the
presence of transport barriers at the edges of the surf
zone could be important—the collapse to Gaussianity
might be incomplete, for example—but they are, evi-
dently, unimportant on timescales relevant to strato-
spheric mixing and transport. What is important is that
random-strain theory does seem to apply reasonably
well, in accord with the ideas of Juckes and McIntyre
(1987) and Haynes and Anglade (1997). For example,
spatial correlations in the velocity field, which are ex-
cluded in random-strain theory, could be an issue on
short timescales, but the Lagrangian correlation time

(see Part I, section 4) is probably short enough for this
to be a minor effect (see section 4c below as well),
though deviations from Gaussianity cannot be ignored
altogether. Likewise the absence of a single precisely
defined correlation time—the uy derivative decorrelates
more slowly than the other components (Part I, Fig.
13)—has minimal effect at large times.

Another way of seeing this is that the emergence of
a (near) Gaussian PDF is a generic phenomenon that
does not require random strain per se. Basically, a
Gaussian PDF is the outcome of a central-limit theorem
and, for practical purposes, it is immaterial how exactly
the requisite randomness is introduced; one sees similar
behavior for stochastically forced chaotic systems, for
example (Városi et al. 1991; Ngan and Shepherd
1997b).8 While the shallow-water system is certainly
very different from these idealized models, it nonethe-
less exhibits Lagrangian random strain (and chaotic ad-
vection), and its statistical behavior reflects this corre-
spondence.

We now consider the robustness of these results. For
stationary and transient forcing the PDFs compare very
well: the small differences that appear in the corre-
sponding tracer fields do not reflect qualitative changes
in the mixing characteristics. The results are much the
same when the deformation radius is varied; the cat’s
eye structure persists and similar PDFs obtain.

There is, however, a quantitative change in the PDFs
when the basic-state shear is altered (Fig. 9). While the
qualitative behavior is robust, there is more mixing for
doubled shear (the peak of the distribution shifts to larg-
er l) and less mixing for halved shear (the peak shifts
to smaller l); these shifts are of roughly the same mag-
nitude and are consistent with the corresponding tracer
fields (see Part I, Fig. 5). The PDF for the halved case
is significantly narrower than the others; this is remi-
niscent of Fig. 7, where the width of the PDF expands

8 Without stochasticity, however, the PDFs show negative skewness
due to the presence of KAM tori (cf. Horita et al. 1990).
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FIG. 9. P(l ) at 50 days for basic states with doubled and halved
shear. u0 refers to the initial velocity of the zonal jet [see Part I, Eq.
(1)]; z0 5 1000 m.

FIG. 10. Time evolution of P(l ) for strong stochastic forcing (z0

5 250 m, dy 5 0.05). The corresponding normal distribution at 50
days is also shown.

FIG. 11. Effect of spatial resolution on P(l ) at 50 days. (a) Sta-
tionary forcing, z0 5 1000 m; (b) strong stochastic forcing, z0 5 250
m and dy 5 0.05.

with z0. With stronger shear (or forcing) a greater range
of stretchings is possible, meaning that, everything else
being the same, convergence toward a limiting value of
l is slowed, and longer tails result.

It is interesting to examine the PDFs for a case in
which a well-defined cat’s eye structure does not exist.
In Fig. 10, for which dy 5 0.05, the cat’s eye structure
is wiped out and the PDFs are close to Gaussian after
only 25 days. Although it is not proper to speak of a
large-scale velocity field here (see Part I, Fig. 12), a
mechanism similar to that embodied by (4) would ap-
pear to be operative: the collapse toward Gaussianity is
almost complete because the correlation time of the ve-
locity derivatives, Lagrangian or Eulerian, is short (ef-
fectively, the integrations are long). This behavior is in
marked contrast to that of the PDFs studied earlier (e.g.,
Fig. 8), which show a more complicated time evolution.
Physically, this time evolution of the PDFs simply re-
flects the fact that the velocity field is inhomogeneous:
the evolution is speeded up when stochasticity is added
because inhomogeneities are reduced. This trivial ob-
servation explains why differences between the present
trajectory-based method used to compute the Liapunov
exponents and a matrix-based method (not shown) are
smaller for the stochastic runs: when the flow is sto-
chastic the instantaneous eigenvalues provide a better
approximation to the net stretching experienced along
a trajectory.

The foregoing suggests that strong stochasticity does
not alter the PDFs qualitatively: its main effect is to
accelerate the approach toward Gaussianity. However,
there is an important quantitative effect, namely, that
the computed value of the Liapunov exponents is al-
tered. The Liapunov exponents increase with dy and,
perhaps even more significantly, this increase is depen-
dent on spatial resolution: the probability distribution is
sensitive to small-scale fluctuations. We illustrate this
in Fig. 11. In the absence of stochasticity the PDFs are
robust: high-resolution velocity fields yield nearly iden-
tical PDFs, as required (Fig. 11a). When stochasticity

is added, however, the results are sensitive to spatial
resolution (Fig. 11b), though there is good agreement
between realizations. In this case, which is clearly un-
typical of the wintertime lower stratosphere, the cat’s
eye structure is destroyed and it is no longer true that
small-scale tracer features are generated by a large-scale
velocity field. These results imply that, from a practical
point of view, off line tracer calculations cannot be re-
liably carried out when there is strong small-scale var-
iability; from a theoretical perspective they demonstrate
how chaotic advection can be suppressed.
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FIG. 12. ^l& (t 5 50 d) vs z0.
FIG. 13. ^l& (t 5 50 d) vs dy on log–log axes. z0 5 250 m.

c. Scaling of the ensemble average

The scaling of the ensemble-averaged Liapunov ex-
ponent ^l& with respect to z0 and dy is now considered.
This allows us to quantify some of the trends touched
upon above, for instance, the shift of P(l) with z0 (cf.
Fig. 7). Moreover, it enables the applicability of random-
strain arguments to be further examined.

In Fig. 12 we plot ^l& as a function of z0. There is a
general increasing trend, though the increase is rela-
tively small considering the range of z0. Specifically,
^l& initially increases with l, levels off for 1750 , z0

, 2500 m, and increases slightly once more for larger
z0.

This behavior of ^l& is determined by several com-
peting influences. In random-strain theory, ^l& is deter-
mined by the mean strain and vorticity (S and V, re-
spectively), as well as their associated correlation time
t rs . Chertkov et al. (1995) show that for t → `,

Strs^l&(t ) 5 S tanh , (5)rs 1 1 Vtrs

by interpolating between the limits of small and large
t rs . As with (4), this equation cannot be applied directly
(the parameters are computable, but difficult to obtain
precisely). Rather it provides some useful guidance.
Since the Lagrangian correlation time is basically in-
dependent of z0 (Part I, Fig. 14), it follows that in this
case ^l& is determined mostly by S and V.

The strain (and vorticity) may increase with z0 due
to generation of stronger velocity gradients. Another
factor, which may be more important here, is that the
width of the surf zone expands. Since the strongest mean
shear occurs to the north of the zero-wind line (Part I,
Fig. 1), the increase in ^l& from z0 5 250 to 1000 m is
plausibly connected to the large expansion in the size
of the surf zone (Part I, Figs. 2 and 4) and the concom-
itant sampling of stronger velocity gradients. The rel-
atively small variations in ^l& between 1750 and 2500
m, by contrast, reflect the fact that the width of the surf
zone is approximately constant. For large z0, the in-
crease in the magnitude of the velocity derivatives could

be important since the vortex splits and large-scale
structure in the flow is partially destroyed. The corre-
sponding PDFs indicate that the primary difference in
the PDFs from 2000 to 3000 m is that the large-l tail
lengthens (cf. Fig. 7).

We emphasize that this behavior is not an artifact of
the initial particle distribution. If a narrower initial dis-
tribution is used for z0 5 250 m, a case in which most
of the initial conditions yield nonchaotic trajectories,
^l& is even smaller, enhancing the trend in Fig. 12.

For idealized chaotic advection models, (5) is fol-
lowed almost exactly (see Ngan 1997; Ngan and Shep-
herd 1997b). In these models it is possible to vary t rs

directly when external stochasticity is introduced; more-
over, feedback effects associated with stronger forcing
can be largely ignored. Without stochasticity, ^l& scales
smoothly with the perturbation amplitude «, increasing
roughly as a power law for large «.

Another illustration of the additional complexity in
the shallow-water system is given by Fig. 13. Here we
see that ^l& drifts steadily with dy . In fact ^l& ; :1/2dy

stochastic forcing in the velocity functions as if it were
an additive noise term in the equations of motion (the
velocity derivatives drift in time like t1/2 for small1/2dy

dy ).

5. Concentration statistics

Although Liapunov exponents deal only with the
stretching properties of a flow, they are usually taken
as a proxy for mixing, as is done above. Strictly speak-
ing, however, the tracer field itself should be used to
characterize mixing (cf. Ngan and Shepherd 1997a). We
have focused upon the stretching properties of the shal-
low-water system because our interest is in quantitative
analysis of chaotic advection rather than in mixing per
se; nevertheless, it is interesting to see how the PDFs
of Liapunov exponents are reflected in the PDFs of trac-
er concentration.

Following Pierrehumbert (1994), a continuous tracer
field is constructed by associating a tracer concentration
with each particle and discretizing the domain with a
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FIG. 14. P(c) at 50 days for three different values of z0. The con-
centration units are arbitrary.

FIG. 15. Standard deviation of the concentration PDFs, sc, vs time
for three different values of z0.

regular latitude–longitude grid. In the calculations de-
scribed below the domain [0, 2p] 3 [108N, 608N] is
discretized using a 512 3 128 grid. An unavoidable
limitation of the calculation is that there will be ‘‘gaps’’
in the PDF if the particles are not evenly distributed
over the domain. This problem can be minimized if the
number of grid points is reduced; however, the improve-
ment is not significant unless a drastic reduction is im-
posed, in which case the PDF is not properly resolved.

In principle a well-defined PDF can be obtained by
using a larger number of particles, but as quadrupling
the number of particles makes little difference, this is
not a practical approach. An efficient way of circum-
venting the problem of missing concentrations is to treat
the particles as finite blobs of tracer. The concentration
is assumed to decay away from the particle—the center
of the blob—according to

2c 5 c exp(2ar ), r , r ,0 blob

c 5 0, r . r , (6)blob

where r is the radial separation, rblob is the radius of the
blob, and c0 and a are constants. In the numerical im-
plementation it is convenient to take r and rblob as in-
tegers (i.e., as grid spacings). Thus a 5 1/52 and rblob

5 10 are used in the results described below.9 Particles
that are initially north of 37.58N are assigned a value
of 300; particles initially to the south are assigned a
value of 200. As a check of robustness small random
fluctuations (;5%) have been introduced into the con-
centration values: this has no discernible effect on the
shape of the PDFs.

Figure 14 shows the PDF of the concentration, P(c),
at 50 days for z0 5 0, 1000, and 2000 m. In Fig. 14,
P(c) is not time independent because the use of a discrete
grid amounts to the imposition of a finite tracer diffu-

9 Actually, it is the cutoff in the zonal direction that is given above;
the cutoff in the meridional direction is scaled to take the grid spacings
into account. (Recall that the velocity field is output onto a 144 3
72 grid.)

sivity. The PDFs are somewhat hard to interpret because
small concentrations may be overrepresented; the trick
of representing each particle as a finite blob cannot alter
the fact that the particles are not uniformly spaced.
Nonetheless, it does appear that the PDFs are of the
same general form as P(l). This is broadly consistent
with the analysis of Chertkov et al. (1995), who show
that a concentration PDF with a Gaussian core and ex-
ponential tails is expected if a delta-correlated-in-time
tracer source is introduced. The addition of the delta-
correlated source simplifies the analysis and mitigates
the influence of the initial tracer distribution. It is likely
because of the initial conditions that the exponential tails
are longer and better defined than for P(l) (cf. Fig. 7).
The existence of long tails, be they exponential or not,
is indicative of the presence of rare events; this implies
that, compared with the stretching field, the tracer field
is relatively inhomogeneous. Calculations with a con-
tinuous tracer field and a spatially smooth random map
model yield analogous results (K. Ngan and R. T. Pierre-
humbert 1999, unpublished manuscript), though the
shape of the PDF is strongly influenced by the nature
of the forcing, as well as by spatial resolution and tracer
diffusivity. These results are consistent with those of
Ching and Tsang (1997) for random advection by a
spatially rough flow.

Another interesting feature of Fig. 14 is that the PDFs
narrow as z0 is increased. This can be seen very clearly
in Fig. 15, which plots the standard deviation of the
PDFs against time: at 50 days, sc is much smaller for
z0 5 2000 m than for z0 5 0 and 1000 m. Moreover,
the time evolution of sc closely parallels that of the
analogous diagnostic, , used in the analysis ofDK2Kl

Ngan and Shepherd (1997a): development of small-
scale structure at initial times (sc increases), is followed
by coarse-grain homogenization at long times (sc de-
creases). While coarse-grain homogenization is readily
apparent for z0 5 2000 m, it is less prevalent than for
the kinematic model because the integrations are run
for fewer advective times.

Although there is little point in computing concen-
tration PDFs for a wide range of parameters—especially



15 DECEMBER 1999 4163N G A N A N D S H E P H E R D

FIG. 16. P(c) at 50 days for dy 5 0, 0.002, and 0.01. z0 5
1000 m.

FIG. 17. P(|=c|) at 50 days for z0 5 1000 m, and for z0 5 250 m
with dy 5 0.05. The units are arbitrary.

since the results so obtained are nonunique: the precise
results depend on how the arbitrary decay parameters
a and t blob are defined, as well as on the initial tracer
distribution—it is instructive to consider a number of
cases with stochastic forcing in the velocity field. Figure
16 shows P(c) at 50 days for dy 5 0, 0.002, and 0.1.
Not surprisingly, the PDFs for the stochastic cases are
closer to Gaussianity than the unperturbed one. In ad-
dition there is clearly more coarse-grain homogenization
for the stochastic cases (sc decreases), in agreement with
Fig. 10.10

PDFs of concentration gradients can also be con-
structed. Recently there has been much interest in gra-
dient PDFs because they provide a striking example of
intermittency. While Kraichnan (1974) showed that the
gradient PDF takes a lognormal form for zero diffusiv-
ity, such a PDF has not been found in experiments or
simulations (Holzer and Siggia 1994); data from nu-
merical simulations is well fit by a stretched-exponential
form, and stretched exponentials have been obtained
analytically for large-scale random strain (Chertkov et
al. 1998). In Fig. 17, we see that the gradient PDF does
take a stretched-exponential form for z0 5 1000 m; there
is also a ‘‘bump’’ in the PDF, presumably because the
integration is short and inhomogeneities in the tracer
field remain. The scaling extends over a larger range of
values when stochasticity is introduced and deviations
from exponential scaling are smaller.

6. Calculations using isentropic winds from the
Canadian Middle Atmosphere Model

The role of the large-scale velocity field has been
emphasized in the preceding sections. We now inves-
tigate whether there is the same kind of behavior in the
Canadian Middle Atmosphere Model: as with the shal-

10 This conclusion might appear to be at odds with results for the
stochastic two-wave model of Ngan and Shepherd (1997a). Recall,
however, that stochasticity in the shallow-water system has a different
effect from stochasticity in a kinematic model (section 4c).

low-water system there is likewise large-scale structure
in the velocity field of CMAM (see Part I, section 5).

Isentropic winds from 1 July to 30 July of a long
simulation are used. A smaller number of particles are
used than in the offline calculation; approximately
60 000 points are uniformly spaced in latitude and lon-
gitude from 58 to 558S at 0.58 intervals and from 0.028
to 359.988E at 0.58 intervals.

a. Dispersion statistics

Figure 18 shows and versus time for u 5 450,2 2s sx y

600, and 1000 K. The behavior is much as before:2s x

; t2, reflecting the existence of quasi-regular particle2s x

trajectories (cf. section 2). The behavior, on the other2s y

hand, is somewhat different: there are large-amplitude
oscillations superimposed on a time-dependent baseline.
This behavior reflects the strong gravity wave signal in
the CMAM winds; the fast oscillations experienced by
individual particles make it difficult for a systematic
trend to be identified. However, if is computed for2s y

initial distributions oriented along zonal circles (not
shown), then once more increases and levels off with2s y

time, in agreement with the results of Bowman (1993).
In the shallow-water system the time dependence of
and was determined by the large-scale structure2 2s sx y

of the velocity field; this is evidently still true of but2s x

it is much harder to say with . The main value of this2s y

calculation is that it demonstrates (i) that there is no
sign of diffusive tracer motion (anomalous or normal)
in the zonal direction, and (ii) the limitation of the dis-
persion statistics as transport diagnostics.

b. Liapunov exponents

In section 4b it was argued that the qualitative form
of the PDFs is unchanged so long as there exists a cat’s
eye structure in the surf zone. This is supported by
calculations with CMAM. From u 5 450 to 1000 K,
broad PDFs with positive skewness are found (Fig. 19).
This suggests that positive skewness of the PDFs is a
robust feature: the near-Gaussian PDFs obtained for
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FIG. 18. Dispersion statistics from CMAM isentropic winds. (a)
; (b) .2 2s sx y

FIG. 20. P(l ) at 30 days for an initial distribution inside the vortex.
Approximately 25 000 particles between 558 and 808S are integrated
using isentropic winds from CMAM.

FIG. 21. ^l& (t 5 30 d) vs u.FIG. 19. P(l ) at 30 days using isentropic winds from CMAM.

strong stochastic forcing (Fig. 10) are probably not rep-
resentative of realistic flows in the lower stratosphere.
A particularly striking feature of the CMAM PDFs is
the increase in their broadness with height. Indeed, the
PDFs for 600 and 1000 K are significantly broader than
the shallow-water PDFs (cf. Fig. 7), even though the
Lagrangian correlation time in CMAM is shorter (see
Part I, Figs. 14 and 17). As with increased shear in the
shallow-water system (Fig. 9), the broadening of the
PDFs at higher altitude is likely related to the sampling

of a larger range of strains, the Lagrangian correlation
time being approximately independent of height.

The PDFs for initial distributions inside the vortex
are qualitatively similar (Fig. 20). In all cases the dis-
tributions are, as expected, shifted toward smaller l,
though the shift is greatest for 450 K. The PDFs are
also, once more, rather broad. These results are consis-
tent with those of Pierce et al. (1994), who showed using
analyzed winds and parameterized gravity waves that
mixing in the polar vortex is nonnegligible.

It is also interesting to examine how the scaling of
^l& changes with the isentropic surface. Generally ^l&
increases with u (Fig. 21). In light of the shallow-water
results, this is most likely due to the increase in the
basic-state shear (velocities increase with height). The
nonmonotonic behavior around u 5 450 K could be a
consequence of variations in the structure of the surf
zone (see section 4b), or in the strength of the zonal jet.

7. Discussion

In this work we have computed a number of statistical
diagnostics for the shallow-water and middle-atmo-
sphere models. Specifically, transport has been char-
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acterized using dispersion statistics and transport fluxes,
mixing with Liapunov exponents and concentration sta-
tistics. Briefly, the dispersion statistics illustrate the cor-
respondence between the chaotic region of a dynamical
system and the surf zone of the numerical models (a
notion implicit in any discussion of chaotic advection
in the stratosphere), the transport fluxes, the temporal
and spatial variability of the stratospheric models, and
the Liapunov exponents (and concentration statistics),
which are the primary focus of our analysis, the dif-
ferences between these models and idealized ones.

The quantitative characterization provided by these
statistical diagnostics represents the main practical con-
tribution of this work. Turning first to the Liapunov
exponents, we have shown that on timescales relevant
to stratospheric mixing and transport their probability
distributions are broad (the standard deviation is com-
parable to the mean), especially for the middle-atmo-
sphere model. This is significant because it demonstrates
that, neglecting chemical and radiative effects, as well
as explicit tracer diffusivity, mixing in the surf zone,
on physically meaningful timescales, may be a rather
inhomogeneous process. This inhomogeneity is mani-
fested even more strikingly in the PDFs of concentration
and concentration gradient, which have long non-Gauss-
ian tails. The increased non-Gaussianity of the concen-
tration PDF may reflect the arbitrary choice of initial
conditions; it would be interesting to see how the shape
of this PDF, relative to the Liapunov PDF, would be
affected if a more realistic initial distribution were used
and additional physics (i.e., source terms) included. An-
other aspect to the Liapunov PDFs is that they may
prove useful in assessing the sensitivity of offline cal-
culations to the spatial resolution of the velocity field
(cf. Fig. 11); they moreover help identify situations
(e.g., strong stochastic forcing) in which chaotic ad-
vection does not occur. The dispersion statistics indicate
that there is minimal evidence for zonal diffusion
(anomalous or normal) in the stratosphere.

The original motivation for this work, however, was
not stratospheric mixing and transport per se but the
relationship of chaotic advection in the stratosphere to
chaotic dynamical systems and random-strain theory.
The shallow-water system, not to mention the middle-
atmosphere model, is quite different from ‘‘classical’’
chaotic systems: vorticity is materially conserved (on
sufficiently short timescales); fast small-scale oscilla-
tions are present; the large-scale spatial structure of the
velocity field is time dependent [it evolves by an O(1)
amount during the course of the integration]. The rather
restrictive assumptions of random-strain theory are also
violated: the velocity derivatives do not all decorrelate
at the same rate, for instance. Nevertheless, just as ran-
dom-strain theory provides a reasonable description of
chaotic dynamical systems (though some assumptions
are, strictly speaking, violated as well), so too does it
apply to chaotic advection in the stratosphere. One sees
the emergence of a near-Gaussian probability distribu-

tion of Liapunov exponents; the PDFs have positive
skewness, the skewness decreasing with time, in accord
with the behavior of stochastically forced Hamiltonian
systems and random-strain theory. The upshot of these
results is that the stratospheric models do exhibit the
expected statistical behavior, though finite-time depar-
tures from asymptotic random-strain results are impor-
tant. It would be useful if this statistical information
could be incorporated into a model of stratospheric mix-
ing, transport, and chemistry.
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