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ABSTRACT

The density and the flux of wave-activity conservation laws are generally required to satisfy the group-velocity
property: under the WKB approximation (i.e., for nearly monochromatic small-amplitude waves in a slowly
varying medium), the flux divided by the density equals the group velocity. It is shown that this property is
automatically satisfied if, under the WKB approximation, the only source of rapid variations in the density and
the flux lies in the wave phase. A particular form of the density, based on a self-adjoint operator, is proposed
as a systematic choice for a density verifying this condition.

1. Introduction

A central feature of many studies of geophysical flows
is the separation between a simple basic state and a
disturbance. Conservation laws, that is, local relations
of the form

]A
1 = ·F 5 0 (1)

]t

then prove extremely useful for analyzing the evolution
of the disturbance. Those which are quadratic (to the
lowest order) in the disturbance amplitude are the most
advantageous, notably because they can be calculated
accurately using a perturbative approach. An important
literature is devoted to these particular conserved quan-
tities, which are called wave activities (e.g., McIntyre
and Shepherd 1987; Haynes 1988), and several recent
studies use them as diagnostic tools (e.g., Scinocca and
Peltier 1994a,b; Brunet and Haynes 1996; Magnusdottir
and Haynes 1996).

A difficulty of (1) lies in the intrinsic ambiguity in
the definition of the density A and flux F; A and F are
indeed not uniquely determined, as the transformation

]B
| |A → A 1 = ·B, F → F 2

]t

leaves (1) unchanged, for any vector B.1 In particular,
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1 More generally, the density and the flux can be modified by the
addition of trivial conservation laws as discussed by Olver (1993,
264).

for a given density, the flux is determined only up to
an arbitrary nondivergent vector. The methods that are
used to derive the conservation laws of a system using
its Hamiltonian structure and its symmetries (see Shep-
herd 1990) do not favor a particular form of the pair
(A, F). Rather, they provide an algorithm for obtaining
the integral

A 5 A dx,E
V

which is conserved if ∫]V F ·n ds 5 0. The density A is
then calculated up to the arbitrary divergence = ·B, and
the corresponding flux F is derived from (1) using the
equations of motion. [Note that the flux can also be
derived systematically by exploiting the Hamiltonian
structure (Vanneste 1997).]

To remove part of the arbitrariness in the definition
of A and F, it is generally required that they satisfy the
group-velocity property. This means that when the dis-
turbance has a small amplitude (linear theory) and takes
the form of a nearly monochromatic wave train in a
slowly varying basic state (WKB approximation), the
following relation holds at leading order:

^F& 5 C^A&. (2)

Here, ^ · & denotes the average over the phase of the wave
and C is the group velocity of the wave. There is no
general method for the construction of a density and a
flux satisfying (2); the authors who have presented
wave-activity conservation laws for particular models
(e.g., McIntyre and Shepherd 1987; Scinocca and Shep-
herd 1992; Durran 1995) resorted to a trial-and-error
procedure, explicitly checking the group-velocity prop-
erty (2) for specific forms of A and F. In itself, this
latter point involves a large amount of cumbersome al-
gebra, even for relatively simple models, as exemplified
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by appendix B of Scinocca and Shepherd (1992). There
is clearly a need for generic results that facilitate the
search for densities and fluxes satisfying the group-ve-
locity property.

The purpose of this article is twofold. First, we point
out that condition (2) need not be checked explicitly:
using a result of Hayes (1977), it is shown that (2) is
automatically satisfied if under the WKB approximation
both the density and the flux have no rapid variations
other than those resulting from the wave phase. This is
the case if, when expressed in terms of disturbance vari-
ables suited to the WKB approximation, the density and
the flux are defined by slowly varying coefficients. Sec-
ond, we propose a unique choice of a ‘‘well-behaved’’
density, that is, a density that satisfies the property just
described, so that it can be used to build a conservation
law satisfying the group-velocity property. These two
points should prove useful for the derivation of new
wave-activity conservation laws.

2. Condition on the density and flux

Since the group-velocity property concerns small-am-
plitude disturbances, we restrict our study to linearized
systems. The wave-activity density is then exactly qua-
dratic and takes the general form

A 5 Lu ·L9u, (3)

where L and L9 are two linear operators that depend on
the basic state, and u is the vector of the dynamical
variables for the disturbance. The components Fi of F
have a similar form, with operators Ni and .N9i

When the basic state is slowly varying in some sense,
a WKB solution can be sought for the equations gov-
erning the evolution of the disturbance. Such a solution
often requires the introduction of a change of variables

u 5 My , (4)

where the matrix M depends on the basic state, so that
the coefficients of the evolution equations of y (con-
stituted of combinations of the basic-state variables)
vary slowly over the scale of variation of y . For instance,
in the anelastic model considered by Scinocca and Shep-
herd (1992), the equations for the original variables u
5 (c9, u9) (disturbance streamfunction and potential
temperature) have rapidly varying coefficients because
of the (possibly) rapid vertical variation of the basic
density r0, but the equations for the new variables y 5
(f9, u9) 5 ( c9, u9) have only slowly varying co-21/2r0

efficients. It is worth emphasizing here that a WKB
approximation generally requires several assumptions
about the spatial and temporal dependence of the co-
efficients in the equations for u, and that these assump-
tions dictate the form of M. Different types of WKB
approximations, with different assumptions and matri-
ces M, are often possible; the verification of the group-
velocity property should then be specific to each type
of approximation.

Slow coordinates can be introduced as

X 5 ex, T 5 et,

where e K 1 characterizes the scale separation between
the disturbance and the basic state,2 and the WKB so-
lution can be written in the form

y 5 exp[ie21q(X, T)] 1 c.c.ŷ(X, T) (5)

where c.c. denotes the complex conjugate. The fre-
quency and the wave vector are defined by

]q ]q
V 5 2 , k 5 ,

]T ]X

and satisfy a dispersion relation,

V 5 V(k, X, T). (6)

To verify the group-velocity property (2) explicitly, one
must introduce the ansatz (5) in the governing equations,
derive the dispersion relation and the polarization re-
lations constraining and finally calculate ^A&, ^F&, andŷ ,
C 5 ]V/]k.

Here, we establish that a wave-activity density and
the corresponding flux automatically satisfy the group-
velocity property, provided that their expressions in the
WKB approximation vary rapidly through the wave
phase q/e only. This condition can be reformulated by
stating that, in the proper variables y , the coefficients
defining A and F depend only on the slow coordinates
X and T; that is,

] ] 
(LM)y ·L9My 1 LMy · (L9M)y 5 O(e)]x ]x

, (7)
] ] (LM)y ·L9My 1 LMy · (L9M)y 5 O(e)
]t ]t 

for any y(x, t), with similar expressions for Ni and .N9i
[For any linear operator O, ](O)/]x denotes the operator
obtained by taking the x-derivative of the coefficients
defining O.] Note that condition (7) is usually very easy
to check. In what follows, we often refer to (7) as the
condition ensuring that the coefficients defining (A, F)
are slowly varying; it must be kept in mind that the
variables y suited to the WKB approximation must be
used to verify this condition.

The demonstration parallels the proof of Hayes
(1977) that (in a medium at rest) the wave energy travels
at the group velocity. Indeed, when (7) is satisfied, his
arguments apply directly to the wave-activity problem.
We nevertheless describe them for completeness.

Consider a wave with phase q, wave vector k, and
frequency V. At leading order in e, the corresponding
wave-activity density takes the form

2 We assume that the basic state is slowly varying in time, but the
most common wave activities (pseudoenergy and pseudomomentum)
are conserved only when the basic state is stationary.
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21 21A 5 a 1 ã exp(2ie q) 1 ã* exp(22ie q), (8)

where

a 5 Pŷ · (P9)*ŷ* 1 (P)*ŷ*P9ŷ ,

ã 5 Pŷ ·P9ŷ .

Here, we have introduced the matrices P and P9, which
are obtained by making the substitutions ]x ° ik and
]t ° 2iV in LM and L9M, respectively. The flux takes
a similar form,

F 5 f 1 f̃ exp(2ie21q) 1 f̃* exp(22ie21q). (9)

When applied to the wave (5), condition (7) shows that
a, ã, f, and f̃ are slowly varying. Averaging (8) and (9)
thus yields to leading order

^A& 5 a, ^F& 5 f. (10)

Consider now another wave, with a slightly disturbed
phase q 1 idq, with |dq| K |q|. The wave vector and
frequency become k 1 idk and V 1 idV, with

]V
dV 5 dk · 5 dk ·C, (11)

]k

as prescribed by the dispersion relation. The structure
of this wave can be written as

y 5 exp(ie21q) exp(2e21dq) 1 c.c.,(ŷ 1 dŷ)

and the pair (A, F) take the form
21A 5 [a 1 da 1 (ã 1 dã) exp(2ie q)

21 211 (ã* 1 dã*) exp(22ie q)] exp[22e dq],

and

21˜ ˜ ˜F 5 [ f 1 d f 1 (f̃ 1 df ) exp(2ie q) 1 (f * 1 df *)
21 21exp(22ie q)] exp[22e dq],

when the d quantities are small disturbances. Introduc-
ing these expressions in the local conservation law (1)
yields at leading order in e

dV(a 1 da) 2 dk · (f 1 df) 5 0

for the term independent of the phase q. Taking (11)
into account, one gets (at first order in dk)

Ca 2 f 5 0,

since dk is arbitrary. The group-velocity property (2) is
finally derived from (10).

It is interesting to discuss the wave-activity conser-
vation laws of some standard models in light of the
condition (7) of slow variation of the coefficients de-
fining the density and the flux. For the barotropic model
considered by McIntyre and Shepherd (1987), the basic
state is defined by the streamfunction C and the poten-
tial vorticity Q, but only the gradients of these two
quantities, =C and =Q, are present in the evolution
equation of the disturbance. Hence, it is only required
that =C and =Q vary slowly for the WKB approach

to be applicable; Q can vary rapidly, and in fact does
vary rapidly when the b-plane approximation is used.
The pseudoenergy density obtained by McIntyre and
Shepherd (1987), given by

2 2|=c| q
A 5 1 C9(Q) ,

2 2

where c and q are the disturbance streamfunction and
vorticity, and C9(Q) :5 dC/dQ 5 =C/=Q, clearly has
slowly varying coefficients only. As for the flux, they
provide three expressions. The first two depend only on
the slowly varying quantities =C and =Q. Therefore,
it does not come as a surprise that both satisfy the group-
velocity property. The third one, however, differs from
the previous ones by the nondivergent vector z 3
=(½Qc2) and thus involves Q itself; it does not satisfy
the group-velocity property.

Following Pedlosky (1987, section 6.10), it can be
argued that the presence of Q in the flux is artificial,
since it does not appear in the equation of the distur-
bance. In general, if the derivation of a conservation
law relies on (and only on) equations with slowly vary-
ing coefficients, the density and flux should also have
slowly varying coefficients only, and hence the group-
velocity property should be satisfied. But, often, the
equations for the disturbance do contain coefficients that
are rapidly varying, and a WKB approach is possible
only after the change of variables (4) is made. To derive
a density and a flux that directly satisfy the group-ve-
locity property, the procedure leading to the wave-ac-
tivity conservation law must be entirely formulated in
terms of the transformed variable y . This implies tedious
calculations (notably to reformulate the Hamiltonian
structure) that should be avoided, especially if the non-
linear equations are considered.

As mentioned before, the anelastic model is an ex-
ample of a system requiring such a change of variables.
It is instructive to examine Scinocca and Shepherd’s
(1992) construction of the pseudoenergy conservation
law. A first proposed density is given by their equation
(5.10); that is,

2|=c9| v r0 2A 5 1 C0(u) 2 Z9(u) (u9) 1 C9(u)v9u9,0[ ]2r 2 20

(12)

where v (v9) and u (u9) are the basic-state (disturbance)
vorticity and potential temperature, C is the basic-state
streamfunction, and Z0 is analogous to Long’s function.
In the WKB approximation discussed by these authors,
the basic-state velocity varies slowly, but r0 can vary
rapidly with the altitude z; the change of variables lead-
ing to evolution equations with slowly-varying coeffi-
cients is (f9, u9) 5 ( c9, u9). In the WKB approx-21/2r0

imation, f9 and u9 vary rapidly through the phase only.
When these results are substituted into (12), it is found
that
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2|=f9| 1 1
2A 5 2 f9f9 1 (f9)z 22 2H 8H

v r0 21 C0(u) 2 Z9(u) (u9)0[ ]2 2
21/2 21 r C9(u)(gf9 1 ¹ f9)u9, (13)0

where the scale height H is defined by

1 1 dr05 2
H r dz0

and

2 23 dr 1 d r0 0g 5 2 1
2 21 24r dz 2r dz0 0

[see Scinocca and Shepherd’s Eqs. (B2)–(B3)]. To sat-
isfy the group-velocity property, Scinocca and Shepherd
add the divergence of B 5 2c9=c9/2r0 to A; they derive
a new density given by their equation (5.20b) and an
associated flux for which they explicitly verify the
group-velocity property. In terms of the variables (f9,
u9), the new density, A9, say, takes the form

1 v r02 2 2A9 5 2 g(f9) 1 f9¹ f9 1 C0(u) 2 Z9(u) (u9)0[ ] [ ]2 2 2
21/2 21 r C9(u)(gf9 1 ¹ f9)u9. (14)0

Using Scinocca and Shepherd’s (1992) assumptions on
the basic state, it can be established that ½vC0(u) 2
½r0 (u) and C9(u) vary slowly. It is then clear21/2Z9 r0 0

that the density (14) satisfies our condition of rapid vari-
ation through the phase only provided that g is slowly
varying, that is, g 5 g(Z). This latter requirement is in
fact necessary for the consistency of the WKB approx-
imation itself (notably because g appears in the disper-
sion relation). Similarly, it can be verified that the flux
associated with (14) also satisfies our condition. There-
fore, we can conclude that the group-velocity property
is satisfied, as explicitly shown by Scinocca and Shep-
herd (1992). In many applications, the scale height H
can be considered as slowly varying. In this situation,
it can be seen that (13) varies rapidly through the wave
phase only [i.e., that (7) is satisfied], and one can thus
expect the density A to be as good a choice as A9 with
regard to the group-velocity property. This can be easily
confirmed by noting that when H is slowly varying, both
= ·B and ]B/]t have a vanishing phase average and thus
do not affect the group-velocity property (2). The mod-
ification introduced to A is therefore not necessary when
H is slowly varying.

3. Choice of the density

The difficulty in the search for a pair (A, F) satisfying
the group-velocity property mainly lies in the choice of
a suitable density, that is, one defined by slowly varying

coefficients only. If such a density is found, one can
avoid using rapidly varying quantities in the derivation
of the flux (possibly by using the equations for y rather
than u), and so obtain a consistent pair (A, F) whose
only rapid variations in the WKB approximation result
from the wave phase.

Here, we propose a systematic choice for the density
that guarantees (under certain conditions) that the den-
sity is defined by slowly varying coefficients according
to (7), and hence can satisfy the group-velocity property.
This particular density AS, which equals A 1 = ·B for
some B, is defined by the symmetric form

1
A 5 u ·A u, (15)S S2

where AS is the self-adjoint operator L†L9 1 (L9)†L (†

denotes the adjoint).
It can be shown that the self-adjoint form (15) is

unique; therefore AS can be used for an unambiguous
definition of the wave-activity density. However, this
definition is interesting in the present context only if AS

has slowly varying coefficients in the sense of (7). This
cannot be proven in general, for the existence of both
a conservation law (1) and a WKB solution to the equa-
tions of motion does not ensure that a pair (A, F) can
be written with slowly varying coefficients only.3 The
following can nevertheless be established: if one can
find a density A defined by slowly varying coefficients
only, then the symmetric form AS is also defined by
slowly varying coefficients. To show this, we consider
the derivative with respect to one (fast) coordinate, x,
say, of the relation AS 5 A 1 = ·B:

] 1 ] ]B
My ·A My 5 (LMy ·L9My) 1 = · .S1 2 1 2]x 2 ]x ]x

Expanding this expression, we obtain

1 ] ]y ]y
T T Ty · (M A M)y 1 ·M A My 1 y ·M A MS S S[ ]2 ]x ]x ]x

] ]
5 (LM)y ·L9My 1 LMy · (L9M)y 1 = ·D

]x ]x

]y ]y
T † T †1 ·M L L9My 1 y ·M L L9M ,

]x ]x

where MT is the transpose of M and D is a vector whose
details are unimportant. Using the definition of AS, it
can be seen that the last two terms of the left-hand side
of the above expression combine with the last two terms
of the right-hand side to give a divergence. The ex-
pression thus simplifies as

3 In particular, one can find examples of systems with constant
coefficients that admit invariants depending explicitly on the coor-
dinates.
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FIG. 1. The set of the equivalent densities, differing by the diver-
gence of arbitrary vectors B. A subset is constituted by the densities
defined by slowly varying coefficients, which differ by the divergence
of vectors with slowly varying coefficients B(X). The symmetric
density AS belongs to this subset.

1 ]
Ty · (M A M)yS2 ]x

] ]
5 (LM)y ·L9My 1 LMy · (L9M)y 1 = ·G.

]x ]x

The first two terms on the right-hand side precisely cor-
respond to the condition (7) that A is slowly varying,
so we get the relation

1 ]
Ty · (M A M)y 5 = ·G 1 O(e). (16)S2 ]x

The fact that ](MTASM)/]x is self-adjoint (since MTASM
is) can now be exploited. Introducing y 5 r 1 s, we
obtain from (16) that

]
Tr · (M A M)s dx 5 O(e).E S]xV

Since r and s are arbitrary this holds only if

]
T(M A M) 5 O(e).S]x

From this, the condition (7) that AS is slowly varying,
that is,

] ]
(M)y ·A My 1 My · (MA )y 5 O(e)S S]x ]x

is readily derived.
Note that Brunet (1994) also proposed the use of a

self-adjoint form for wave-activity densities, arguing
that this form naturally emerges in the theory of em-
pirical normal modes.

Returning to the example of the anelastic model, it
can be seen that the slowly varying pseudoenergy den-
sity (14) proposed by Scinocca and Shepherd (1992)
has the symmetric form (15). Indeed, with u 5 (v9, u9),
one can write their Eq. (5.20b) as (15) with

212P C9(u)
A 5 ,S 1 2C9(u) v C0(u) 2 r Z9(u)0 0

where the operator

1 1 dr ](·) 102P(·) 5 ¹ (·) 2 5 = · =(·)
2 [ ]r r dz ]z r0 0 0

is self-adjoint. Clearly, AS is self-adjoint, as required.
Similarly, the pseudomomentum density of Scinocca
and Shepherd takes a symmetric form [see their Eq.
(6.15)]. The fact that both densities finally lead to local
conservation laws satisfying the group-velocity property
is thus well explained by the arguments developed
above.

4. Summary

The definition of the local quantities (A, F) corre-
sponding to a given global conservation law contains a

certain degree of arbitrariness. Therefore, the group-
velocity property (2) is often imposed as a constraint,
because it clarifies the physical interpretation of the lo-
cal conservation law. Technically, the verification of the
group-velocity property, and a fortiori the search for a
pair (A, F) satisfying this property, turns out to be quite
complicated: the explicit calculation of the terms in-
volved in (2) requires a large amount of algebra, and
there is no constructive procedure leading to a correct
pair (A, F).

In this note, we make two remarks that should sim-
plify the derivation of the local form of a wave-activity
conservation law. First, we show that if the density A
and the flux F are defined by slowly varying coefficients
in the sense that, in the WKB approximation, their only
rapid variations result from the wave phase, then the
fact that they are quadratic and satisfy the conservation
equation (1) ensures that they also satisfy the group-
velocity property. The verification of (2) is thus reduced
to the verification that the coefficients defining A and
F (in terms of the variables suited to the WKB approx-
imation) are slowly varying. Second, we propose a par-
ticular symmetric form, AS, for the density, which is
based on a self-adjoint operator. This form is unique
and is shown to be defined by slowly varying coeffi-
cients under the assumption that at least one density
satisfying the latter condition exists. The situation is
summarized in Fig. 1. The set of all the equivalent den-
sities is represented; these densities differ by diver-
gences = ·B, and in general B can have rapidly varying
coefficients, even in the WKB approximation. A subset
contains the densities defined by slowly varying coef-
ficients, which differ from each other by the divergence
of a vector, B(X), with slowly varying coefficients [in
the sense of (7)]. What we have shown is that the sym-
metric density AS belongs to this subset if it is not empty.
Note that in the WKB approximation the phase average
of all the densities with slowly varying coefficients is
equal at leading order. [This is because the components
of the slowly varying vectors B(X) have a form similar
to (8); when the divergence is taken, only the oscillatory
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terms—whose phase average vanishes—remain.] This
also holds for the associated slowly varying fluxes. Our
discussion highlights the fact that a large set of pairs
(A, F) satisfy the group-velocity property, which thus
does not strongly reduce the arbitrariness in the defi-
nition of the density and flux of wave activities.

When a globally conserved quantity, A, is known, it
is not difficult to find (merely through integration by
parts) the symmetric form of the density AS, that is, the
self-adjoint operator AS. It is then sufficient to check
that this density has slowly varying coefficients in the
WKB limit to be certain that a corresponding flux can
be found such that the group-velocity property is sat-
isfied. This flux can be derived from (1) provided that
no rapidly varying quantities are used in the course of
the derivation. Following this procedure should consid-
erably limit the algebra required to find a density and
a flux satisfying the group-velocity property. In partic-
ular, note that when a dispersion relation has multiple
branches, the condition of slow variations of the coef-
ficients defining A and F guarantees that the group-
velocity property is satisfied for all branches [see the
remarks in Durran (1995) and in Brunet and Haynes
(1996)].

We conclude by remarking that the group-velocity
property is not the only property that one may impose
to reduce the arbitrariness in the definition of A and F.
In a study of stationary waves, Plumb (1985) manipu-
lated the expressions of A and F to obtain forms that
are phase invariant in the WKB limit; this facilitates the
interpretation of the density and the flux when they are
not averaged. Although similar forms have been em-
ployed in a more general context (Brunet and Haynes
1996), they rely on a heuristic derivation and it is not
clear whether they can be obtained in a general frame-
work.
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