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Wave-activity conservation laws and stability 
theorems for semi-geostrophic dynamics. 

Part 2. Pseudoenergy-based theory 

By PAUL J. KUSHNER AND THEODORE G. SHEPHERD 
Department of Physics, University of Toronto, Toronto, Canada M5S 1A7 

(Received 31 May 1994 and in revised form 12 December 1994) 

This paper represents the second part of a study of semi-geostrophic (SG) geophysical 
fluid dynamics. SG dynamics shares certain attractive properties with the better known 
and more widely used quasi-geostrophic (QG) model, but is also a good prototype for 
balanced models that are more accurate than QG dynamics. The development of such 
balanced models is an area of great current interest. The goal of the present work is to 
extend a central body of QG theory, concerning the evolution of disturbances to 
prescribed basic states, to SG dynamics. Part 1 was based on the pseudomomentum; 
Part 2 is based on the pseudoenergy. 

A pseudoenergy invariant is a conserved quantity, of second order in disturbance 
amplitude relative to a prescribed steady basic state, which is related to the time 
symmetry of the system. We derive such an invariant for the semi-geostrophic 
equations, and use it to obtain: (i) a linear stability theorem analogous to Amol’d’s 
‘first theorem’; and (ii) a small-amplitude local conservation law for the invariant, 
obeying the group-velocity property in the WKB limit. The results are analogous to 
their quasi-geostrophic forms, and reduce to those forms in the limit of small Rossby 
number. 

The results are derived for both the f-plane Boussinesq form of semi-geostrophic 
dynamics, and its extension to P-plane compressible flow by Magnusdottir & Schubert. 
Novel features particular to semi-geostrophic dynamics include apparently unnoticed 
lateral boundary stability criteria. Unlike the boundary stability criteria found in the 
first part of this study, however, these boundary criteria do not necessarily preclude the 
construction of provably stable basic states. 

The interior semi-geostrophic dynamics has an underlying Hamiltonian structure, 
which guarantees that symmetries in the system correspond naturally to the system’s 
invariants. This is an important motivation for the theoretical approach used in this 
study. The connection between symmetries and conservation laws is made explicit 
using Noether’s theorem applied to the Eulerian form of the Hamiltonian description 
of the interior dynamics. 

1. Introduction 
Semi-geostrophic (SG) dynamics, first expressed in its three-dimensional form by 

Hoskins (1975), is a model of fundamental interest and central importance in 
geophysical fluid dynamics. Next to quasi-geostrophic (QG) dynamics, SG dynamics 
has been the most widely used and extensively studied ‘balanced’ model. (Balanced 
models are reduced models of the primitive equations that describe only the slow-time 
dynamics. Motions whose characteristic timescales are faster than or equal to the local 
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Coriolis period are thus eliminated (see, e.g. Warn et al. 1995).) The SG and QG 
models share important characteristics. Like the full primitive equations, the inviscid 
adiabatic forms of both models globally conserve the energy and materially conserve 
the potential vorticity (PV) and the entropy. In addition, both models have the classical 
structure of balanced models, namely a single prognostic equation for the potential 
vorticity, together with an ‘ invertibility ’ or ‘balance’ relation that determines the 
advecting velocity from the PV (see, e.g. Hoskins, McIntyre & Robertson 1985). 

Despite the family resemblance between the SG and QG models, SG dynamics has 
distinguishing features that make it a good prototype for accurate higher-order 
balanced models. First, the scaling assumptions of SG dynamics are far less restrictive 
than the scaling assumptions of QG dynamics. As a result SG dynamics captures 
important phenomena, such as frontogenesis, that are not exhibited by QG dynamics 
(Hoskins 1982). Secondly, like the Charney balance relation, the invertibility relation 
in SG dynamics is nonlinear. Finally, the SG equations are expressed in their simplest 
form under a nonlinear coordinate transformation that depends on the dynamical 
fields. This feature could well extend to other higher-order balanced models as they are 
developed (see, e.g. Schubert & Magnusdottir 1994). Therefore, the insight gained by 
understanding the implications of nonlinear invertibility relations and nonlinear 
coordinate transformations should apply more widely than to SG dynamics alone. 

Because we view SG dynamics as a prototype for higher-order balance models, we 
are motivated to see to what extent theoretical results based on the simpler QG 
dynamics can be extended to SG dynamics. We have been focusing in this two-part 
study on a body of QG theory concerning the evolution of disturbances to prescribed 
basic states. In the first part of this study (Kushner & Shepherd 1995, hereinafter 
referred to as Part I), we show how some of this QG theory, consisting of wave-activity 
conservation laws and stability theorems for disturbances to zonal basic states, can 
be systematically generalized to SG dynamics. In particular, we derive an SG 
pseudomomentum invariant for disturbances to prescribed parallel basic states, and 
use it to obtain linear and nonlinear Charney-Stern stability theorems, a local wave- 
activity flux law, and a theory of wave-zonal-mean-flow interaction. 

In this second part we continue this theoretical development by deriving SG wave- 
activity conservation laws and stability theorems for disturbances to prescribed steady 
(and in general non-parallel) basic states. The approach is similar to that of Part 1.  The 
pseudoenergy - i.e. the wave-activity invariant for disturbances to steady basic states 
that is related to the time symmetry of the dynamics - is derived from a variational 
principle. For steady basic states, the invariant is the sum of the energy and a so-called 
‘Casimir ’ functional of the PV and potential-temperature fields. By examining the sign 
of the invariant for disturbances of arbitrary form, we obtain a stability theorem 
analogous to Arnol’d’s (1966) ‘first theorem’ for two-dimensional Euler flow and its 
extension to three-dimensional QG stratified flow (Swaters 1986 ; McIntyre & Shepherd 
1987, hereinafter referred to as MS87). A local form of the wave-activity conservation 
law is then developed, and the group-velocity property verified for the particular form 
of the flux. 

One important difference between the results of this paper and the results of Part 1 
and MS 87 is the restriction of the stability theorem and of the local wave-activity 
conservation law to small-amplitude disturbances. This is an unsatisfactory aspect 
of the SG pseudoenergy analysis. The QG and SG pseudomomenta, and the QG 
pseudoenergy (MS87; Shepherd 1989; Part l), are sign-definite for arbitrary finite- 
amplitude disturbances if the basic states have certain monotonicity properties. This 
sign-definiteness makes it possible to derive finite-amplitude Liapunov stability 
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theorems based on the invariants. The SG pseudoenergy invariant, by contrast, 
appears not to be sign-definite at finite amplitude. This can be ascribed to the non- 
quadratic form of the energy in isentropic geostrophic coordinates (IGC) as well as to 
boundary variability. The non-quadratic form of the energy also accounts for the 
restriction of the local conservation law to small-amplitude disturbances. 

There is also a significant difference between the role of lateral boundaries in the 
stability theory of this paper and that of Part 1. In Part 1, it is found that the simple 
presence of opposing meridional boundaries prevents the construction of basic states 
that are provably stable by the SG Charney-Stern stability theorem. On the other 
hand, the presence of opposing lateral boundaries does not necessarily violate the 
criteria of the SG Arnol’d stability theorem found here. Instead, the criteria depend in 
a more complex way on the basic flow. 

This paper must be read together with certain sections of Part 1. The f-plane 
Boussinesq system of Hoskins (1975) is introduced and transformed to IGC in Part 1, 
$2. The conservation laws for the system are derived in Part 1, $4. In $2 of this paper, 
the pseudoenergy is derived from a variational principle, after a discussion of the 
nature of the basic state. The invariant is shown to reduce, in the small-amplitude 
small-Rossby-number limit, to the small-amplitude form of the QG pseudoenergy . In 
$3, the SG generalization of Arnol’d’s first stability theorem that follows from the 
small-amplitude conservation law of $2 is discussed. In $4, a local form of the 
pseudoenergy conservation law is developed. 

Magnusdottir & Schubert’s (1990, hereinafter referred to as MSc90; 1991) recent 
extensions of the SG equations to /?-plane and hemispheric compressible flow represent 
important advances in the effort to have balanced models realistically represent the 
atmospheric general circulation over large horizontal and vertical scales. The P-plane 
system of MSc90 is discussed in Part 1, $9.2, and its conservation properties described 
in Part 1, $9.4. The pseudoenergy-based results of $62-4 are extended to the MSc90 
system in $5.  The finite-amplitude pseudoenergy for White’s (1977) modified QG 
system is recorded in Appendix B. At small amplitude, this modified-QG pseudoenergy 
invariant corresponds to the small-Rossby-number form of the p-plane compressible 
SG pseudoenergy invariant. 

As stated in Part 1, both QG and SG dynamics have an underlying Hamiltonian 
structure which guarantees sufficient conservation laws for the construction of the 
wave-activity invariants (see e.g. Shepherd 1990). In $6, the Hamiltonian structure of 
the interior dynamics for thef-plane Boussinesq (Roulstone & Norbury 1994) and p- 
plane compressible systems (Kushner 1993) is presented. The zonal impulse, Casimir 
and energy invariants are then all shown to arise naturally from the Hamiltonian 
structure using Noether’s theorem. 

The results are summarized and discussed in $7.  

2. Pseudoenergy 
A ‘wave-activity’ invariant is defined to be a conserved quantity that is second order 

in the amplitude of a disturbance to a prescribed reference or ‘basic’ state having some 
continuous symmetry. The ‘ pseudoenergy’ is the wave activity, defined with respect to 
steady basic states, that is associated with the time symmetry of the system; it is an 
exact invariant of the nonlinear dynamics. 

In this section we construct the pseudoenergy for thef-plane Boussinesq form of SG 
dynamics. The model is described in Part 1, $2, and its conservation properties are 
described in Part 1, $4. 
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2.1. Basic state 
Consider a steady basic state in physical space. Since 

a, = x,a,+ qa,+z,a,+a,, 
a, = 0 implies a, = 0 in the basic state. We use this to prove the following: 

PROPOSITION. In the steady basic state: (i) c- and Y-surfaces coincide along each 2- 
surface in the interior, and (ii) Y- and Z-surfaces coincide at a material boundary for 
sign-de$nite u. 

Proof. The proof of (i) follows from Part 1 (2.18a) and (2.19) with 3, = 0, whence 

axy(c, !P) = 0, basic state. (2.1) 

To prove (ii), we write the ‘no normal flow’ boundary conditions as 

(2.2) 
Dx 
--ti = (u, u, w)- i i  = 0 at material boundaries, 
Dt 

where A = (nz,  n,, n,) is a unit vector normal to the boundaries in physical space. Using 
Part 1 (2.19) with aT = 0 and Part 1 (2.20), we find 

axu(ly,x).ii = ea,,,(~,x,z).ii = ~ ( V , Z X V ,  u).ii = 0, (2.3) 

where V, is the three-dimensional gradient in physical coordinates. Part (ii) of the 
Proposition follows. 

Remark. It follows from the Proposition that if the cr-, Y- and 2-fields are 
continuous throughout the domain, then the u-surfaces also coincide with the Y- and 
Z-surfaces at the boundary. Thus, PV and Y are constant at each potential- 
temperature surface along the boundary in the steady basic state. 

Equation (2.1) allows us to follow the approach of MS87 and define an inverse map 
Fi*,(6, Z )  in the interior, in IGC, where here and henceforth tildes indicate basic-state 
quantities. If 6 is not monotonic in F, Fin, will be multivalued and additional 
Lagrangian information will be needed to fully define the inverse map (MS87). At every 
basic-state surface, we have established through part (ii) of the Proposition and the 
Remark that there are isentropic distributions Fs(Z) and 6.,(Z), where s is a discrete 
index specifying the surface. The function FS(Z) ,  for example, is defined to be the value 
of @ at the s-boundary point with isentropic height 2. A more complete discussion of 
these maps may be found in 55.1 of Part 1. We note that integrals in IGC over Fs(Z)  
and @*Ju, Z )  are Casimir functionals of the form given in Part 1 (4.1 1). 

2.2. Finite-amplitude pseudoenergy 
We seek a conserved quantity, a, that is second-order relative to the steady basic state. 
This requires that 42 be of the form 

= d[c] - d[6], (2.4) 
where u and G symbolize all perturbed and basic-state fields, and that d be extremal 
at the basic state, i.e. 

S d  = 0 at the basic state. (2.5) 

As in Part 1, in order to apply a variational principle of the form (2.5) we must 
include the variation at the boundaries explicitly. Consider an integral 9 of a density 
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F whose local variation is denoted 6F. Rather than specify limits of integration, we will 
denote the basic-state region as 5 and variations to it by D'. We find for the box 
domain that 

3 Zi'% 

6 9  = SFdXdYdZ+C, [S,I,6F6x~12,dX,dX,I) ' (2.6) 
16 i-1 21'211 

where here and below ( x i }  = (x, y, z}, { X i }  = {X, Y, Z } ,  and the indices { i , j ,  k} are cyclic 
permutations of { 1,2,3}. In (2.6) we have chosen to parametrize the variations of the 
limits of IGC integration at the x-, y- and z-surfaces in terms of variations in X, Y, and 
Z respectively. The advantage of this approach is that the displacements are 
unambiguously defined as long as 

0 < 1st 1 < 00 at xi boundaries, i = 1,2,3, 
ax, Xj.XL 

for both perturbed and unperturbed boundaries. We take the gradients to be positive, 
requiring, in essence, that (X, Y,Z) act as sensible zonal, meridional and vertical 
coordinates in a statically stable flow with Rossby number less than unity (see remark 
(iii) in $3 of Part 1). 

We note that (2.6) neglects as second-order quantities the variations in the limits of 
integration along the edges {(x, yl,zl):x, d x 6 x,}, etc., and as third-order quantities 
the variations at the corners. Hence, to leading order, the limits of integration on all 
the integrals are taken to be those of the basic state and there is no additional need to 
consider the variations D'. The subscripts 0" on the surface integrals indicate this 
approxima tion. 

We now consider functional variations on the energy invariant d (Part 1 (4.2H4.3)) 
and the Casimir invariants %? (Part 1 (4.8), (4.1 1)). The energy density in physical 
coordinates is 

(2.8) 

(Hoskins 1975; Part 1 (4.2)). The second equality in (2.8) follows from Part 1 (2.9), 
while the third follows from Part 1 (2.10). As in Part 1, the variational calculations 
below use the IGC form of the fields. The energy density in IGC is E*, defined by 

E = XU; + v;) - f ' 2 2  = f '(:[(x - X)' + ( y  - Y)'] - ZZ) = Y - # 

8 = Edxdydz = E*dXdYdZ, s s (2.9) 

where E* = ( ~ - $ ) ~ x y z ( X 9 Y , 4  = (P-$)g, (2.10) 

after using the final component of Part 1 (2.20). 
In Appendix A, $A.l,  it is shown that starting with (2.6) and using (2.8)-(2.10) and 

the invertibility relations Part 1 (2.20), the first variation on the energy functional is 
given by 

(2.1 1) 

Clearly the energy is not extremal for this basic state as its first variation (2.1 1) is, 

d = b+V,  (2.12) 

whose conservation is guaranteed by Part 1 (4.3) and (4.8), and then determine V such 
that Lsl satisfies (2.5). 

zi'% 

[ j-<, ~gWl2,  dX, dXk llxi=2i,. dd  = Y6adXdYdZ+k  
1-1 

in general, non-zero. In the usual way, we define the invariant 
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For any Casimir W of the form Part 1 (4.1) 

In order to satisfy (2.5), we require from (2.11) and (2.13) that 

El = - Y in the interior, basic state, 
aa z (2.14) 
C* = - YIT at all boundaries, basic state. I 

A Casimir density satisfying (2.14) takes the local form 

C*(IT, Z )  = - Fint(G, 2)  d&- Z&Z) Fs(Z). (2.15) 

We now consider a finite-amplitude disturbance to the basic state. We define 
disturbance quantities !€” and IT’ by 

!P=F+!€”, a=Z++’, (2.16) 

where we have dropped the 6-variational notation to emphasize that the disturbance 
can be large. We leave the limits of integration of both the fi and the D regions 
unspecified for the moment. 

The inverse maps Fint(c, Z), F8(Z) and 3.J.Z) are Casimir functions defined over the 
range of values of c and 2 present in the basic state. If the disturbance (2.16) 
introduces values outside that range, then these functions must be extended to include 
such values. One can make this extension arbitrarily without compromising the fact 
that C* is a Casimir density, and is therefore conserved (cf. Arnol’d 1966). With this 
possibility in mind, using (2.15) we obtain 

/ b + D ,  [ F i n t ( G ,  z> d~ d ~ d y d ~  1 (E*-E*)dXdYdZ- 

In deriving (2.17) we have used the identity 

The expression for 42 defines the finite-amplitude pseudoenergy in terms of both 
surface and interior contributions. 

@int(&(Z), 2) = +s(z>. 

2.3. Comparison with QG theory and small-amplitude reduction 
We now show that the small-amplitude form of the pseudoenergy invariant reduces to 
the small-amplitude form of the QG invariant in the limit of small Rossby number. We 
will also see in $3 that the conservation law for the linearized invariant directly yields 
a stability theorem for perturbations to steady states, analogous to the small-amplitude 
versions of Arnol’d’s (1966) first stability theorem and its extension to QG stratified 
flow (Swaters 1986; MS87). 

In Appendix A, 8A.1, it is shown that the small-amplitude form of the interior 
contribution to the pseudoenergy is 

qnt = /-$j%,, xf 2, - ~3(a’)2] dXd YdZ, (2.18) 
D 
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where g6 is the basic-state partial derivative of 9 = gint with respect to 3, summation 
over the indices 1, m is implicit, and the matrix of coefficients in the quadratic form is 

a Y Z ( j 4 - 3  a Z x ( Y 9 - 3  a, 

aYz(Zz, 3 azx(% 3 axY(2:. 3 
a,,(w) a z x ( w )  (2.19) 

It is convenient to rewrite (2.19) in the form 

(2.20) 

The matrix a,, is symmetric according to generalized thermal-wind relations that may 
be derived from Part 1 (2.20). Cullen & Purser (1984) and Shutts & Cullen (1987) discuss 
various ways in which this matrix arises in SG theory. Most importantly, the matrix 
is positive definite when the basic flow is statically and inertially stable; such conditions 
are required for SG dynamics to be meaningful, since if they were violated then 
unbalanced flow would likely ensue. We see this as follows: the matrix a,, is positive 
definite if 

a33 > 0, det (“.. > 0, det a,, > 0. (2.21) 
a32 a33 

In the present case these conditions reduce to 

dZf> 0, mx > 0, b2> 0. (2.22) 

The final condition is trivial; for b > 0, the first and second conditions correspond 
respectively to static stability and inertial stability. 

In the absence of boundary variability, %&.is conserved. Without this restriction, a 
conservation law including boundary variations may be derived directly from the 
equations of motion as follows. We define the linearized disturbance cr’ from Part 1 
(2.20) by 3 

g’ = c. axuz(x:, z,, n,), (2.23) 
2-1 

where {i,j, k} are cyclic permutations of {1,2,3}. From Part 1 (2.20) we also obtain 

YXi = - f x;. 

Using (2.19) and (2.23)-(2.24), we find 

(2.24) 

(2.25) 

Taking the time derivative of qnt and using the linearization of Part 1 (2.18 a-d) then 
yields 

!% = [ (Y - g5 d )  (.& - C axuz( !P‘[x;IT, Tj, 2,) dXd Y dZ 1 3 

dt i-1 

( 2 . 2 6 ~ )  

zi-ziz 

i-1 z1=% 

(2.26b) 

= 5 ~xy(b,-(Y-!?5cr’)z 1 dXdYdZ-5  [Ixi P[x;lTd2,d2%]/ 
d 2f 
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(2.26 c) 

In (2.26) we have also used the identity 
- axu(?, !PJ = 0 in the interior, basic state, (2.27) 

which follows from (2.1). We have changed variables to obtain the boundary terms in 
(2.266). The volume integral over the horizontal Jacobian in (2.266) vanishes since, by 
the Proposition, 3 is constant along the boundary for fixed 2. 

Recalling (2.3), we define at each surface the basic-state functions 

with the property, analogous to (2.27), that 

~ X Y  (ai, 3 = 0 at xi surface, basic state. 

(2.28) 

(2.29) 

From the linearized boundary equations Part 1 (2.18b-d), and (2.28X2.29) above, at 
the xi boundary 

Defining the boundary contribution to the pseudoenergy by 

we obtain from (2.26) and (2.28X2.31) 

(2.31) 

= 0, (2.32) 
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where we have again used the Proposition. In summary, the conservation law for the 
small-amplitude pseudoenergy is 

The pseudoenergy is quadratic, as expected from its construction. We now show that 
it reduces to the small-amplitude QG pseudoenergy in the small-Rossby-number limit, 
E+O. In this limit, from Part 1 (2.20), the matrix of coefficients a,, becomes 

a,, - - i 8). (2.34) 

while Zz x U/N) ' ,  Z' x -fZZ' z -ge'/(N'O,), (2.35) 

where N(z) is the prescribed reference buoyancy-frequency profile of QG dynamics. The 
QG PV is q GC l/a, so that dq/dn = -q/a. In QG dynamics, we have the steady-state 
relation 

where Q> = $/fis the QG stream function satisfying (ug, vg) = (- Ov, QZ), and gradients 
are taken at fixed z. For small Rossby number we find 

azv(B, 4) = o 3 B = &(a, 

(2.36) 

where we have used Part 1 (2.12). Since 

x' = - ( l / f > v ; ,  y' = (l/f>u;, 

we obtain, using (2.18) and the small-Rossby-number relations (X, Y) x (2,fi and 
Q x zz % U/N) ' ,  

g2 6- (2.37) 
lh$,, = 2 1  1 [ ( ~ ~ ) ' + ( v ; ) ' + ~ ( e ' ' ) + ~ ( q ' ) ' ] d ~ d y d z .  

6*0 D OON 

Equation (2.37) is the small-amplitude Boussinesq form of the interior contribution to 
the QG pseudoenergy. (See equation (B 7) of MS87, noting that their stream function 
is also $/' Although MS87 use a log-pressure vertical coordinate z, the results have 
the same form in the pseudoheight coordinate.) 

We next discuss the small-Rossby-number reduction of the boundary terms. The 
lateral boundary terms vanish under QG scaling (see Part 1 ) .  The z-boundary terms 
reduce as follows. Let us first assume that the X-components of both @and 2 gradients 
are non-zero. Then from (2.28), for small Rossby number, 

(2.38) 

where the gradient Vh = (i3zlz, avIz), and we have also used Part 1 (2.9) and (2.12). The 
small-Rossby-number limit of may then be shown to be 

(2.39) 
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where 8, = 8,(z) is the prescribed reference-state potential-temperature profile of QG 
dynamics. 

We find that the expression on the right-hand side of (2.39) is the small-amplitude 
Boussinesq form of the boundary contribution to the QG pseudoenergy. At small 
amplitude and in the absence of topography, from (B 7) of MS87, 

(2.40) 

At each z-boundary, 6 and 6 satisfy the steady-state relation 

(2.41) 

To express d6/d6 in terms of gradients with respect to the independent coordinates, 
we have, similarly to (2.28), 

i3,JZ(G, 8) = 0 * 6 = 6(8) at each I surface. 

(2.42) 

Thus (2.39) and (2.40) are equal. 

3. Linear stability 
From (2.33) we have the following small-amplitude version of AmoLd's first stability 

theorem for SG dynamics : if the matrix a,, is sign definite, and if - yd in the interior, 
- V @/VZ6 at xi = xfl and V @/VZ, at xi = xi2 for i = 1,2,3 all share the same sign as 
the matrix everywhere in their respective regions, then the basic state is stable, since 
perturbations cannot grow in a mean-square sense. As discussed in 42, the matrix a,, 
is positive definite whenever the basic state is statically and inertially stable and has 
positive PV. These conditions are required for the physical realizability of the SG 
equations (Shutts & Cullen 1987). 

Since a,, is positive definite, we may interpret the quadratic form in (2.18) and (2.33) 
involving a,, as the energy density of the perturbation, noting also that it reduces to 
the QG perturbation energy (the first three terms in square brackets in (2.37)). Notice 
that the linear part of E* -,!?* in the first integral in (2.17) has been eliminated by the 
linear part of the Casimir term, i.e. the second integral in (2.17). The SG perturbation 
energy is a useful quantity to know. For example, we recall that the perturbation 
energy is, under the WKB approximation, the quantity whose ratio with the intrinsic 
frequency is equal to the wave action, which is constant following a wave packet along 
its ray (Bretherton & Garrett 1968). 

Whether (- g3) should be positive or negative depends on the details of the basic 
state. For cyclonic flow around a positive PV anomaly, the term is expected to be 
negative. For easterly flow in a positive meridional PV gradient such as could be found 
on the p-plane, the term would be positive. With regard to the upper and lower 
boundary terms, it is evident from (2.38) and 

that, in the QG limit at least, the sign of these terms depends on the sign of the ratio 
of a given geostrophic-wind component to its vertical derivative, i.e. its thermal-wind 
component. For example, a horizontal geostrophic circulation whose strength 
increases with height from the lower boundary and decreases with height towards the 
upper boundary would make the z-surface contribution to 9 positive. 
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In Part 1, we find that lateral boundaries play a crucial role in determining the 
stability of a basic state. Independently of the interior basic flow, the simple presence 
of opposing meridional sidewalls violates the SG Charney-Stern stability criteria 
found in Part 1, 93. This violation of the stability criteria is associated with 
contributions of opposite sign to the pseudomomentum from the two meridional 
boundaries. Here, by contrast, it is straightforward to construct basic states which yield 
sign-definite lateral-boundary contributions to the pseudoenergy. As long as ( X i ) x ,  is 
positive at each lateral boundary, which is true by assumption (see (2.7)), then the 
lateral boundary terms in (2.33) have the same sign as the sense of the boundary 
geostrophic circulation, i.e. positive if cyclonic. Thus we find that the simple presence 
of opposing lateral boundaries does not by itself violate the stability criteria. 

An interesting special case to consider is that of isovortical disturbances to a zonal 
linear barotropic shear flow between opposing meridional walls. In this case, the 
interior basic-state _PV is constant, and cr’ = 0 in the interior, so that the contributions 
proportional to - !PZ in (2.33) vanish. The remaining contributions are the positive one 
from the interior perturbation energy, and the meridional boundary contributions 
which are positive if the shear is cyclonic and negative if the shear is anticyclonic. Thus, 
the basic state with cyclonic shear is necessarily stable by the SG Arnol’d stability 
theorem, but the anticyclonic case violates the SG Arnol’d stability criteria. This is 
consistent with a linear stability analysis performed by Kushner (in preparation), in 
which unstable normal modes (albeit with exceedingly weak growth rates) are found 
for the anticyclonic case, but no unstable normal modes are found for the cyclonic case. 
We recall that both the cyclonic and the anticyclonic basic states violate the SG 
Charney-Stern stability criteria of Part 1. 

As was noted in the Introduction, it is not clear which sign the pseudoenergy (2.17) 
would take for arbitrary finite-amplitude disturbances to a prescribed linearly stable 
basic state. In this way the finite-amplitude form of 4 is quite different from the QG 
invariant, which may be reduced to a relatively simple form (see, e.g. MS87, equation 
(B 7)) and which is clearly sign definite for a linearly stable basic state. The source of 
this difference is apparently the non-quadratic energy density E*. A sign-definite 
invariant is necessary in order to obtain nonlinear stability, and so the small-amplitude 
stability theorem cannot be extended to finite amplitude at present. 

4. Local conservation law 
We now develop a local conservation law of the form 

for the interior pseudoenergy density, i.e. the integrand in (2.18). Taking (4.1) as a 
definition of J does not specify it completely: the field is only defined to within a non- 
divergent flux. To further fix the field’s form, we require that it satisfy the group- 
velocity property that in the WKB limit of a small-amplitude monochromatic wave 
packet propagating through a slowly varying medium, 

<J> = C g < U i , t ) ,  (4.2) 

where cg is the group velocity and the angular brackets denote a phase average. 
The approach parallels that of Part 1, Q 7. The linearized invertibility relation is, from 
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where from (2.19) 

Using the linearization of Part 1 (2.18a), and (4.3H4.4) and (2.25) above yields (4.1) 
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hlm = - a , , / .  (4.4) 

with 

J =  (4.5) 

At this stage the non-quadratic form of the energy has become an obstacle to 
generalizing these manipulations to finite amplitude. An expression in the form of 
(2.25) has yet to be found at finite amplitude, and such a step appears necessary to the 
finite-amplitude generalization. In the small-Rossby-number limit, the small-amplitude 
flux J reduces to the small-amplitude Boussinesq QG pseudoenergy flux found in 
(B2b) of MS87, apart from a scaling factor of .?z x CflN)' in the horizontal components 
accounted for by the transformation from physical coordinates to IGC. 

To explore the wave properties of the system, and to verify the group-velocity 
property, we introduce the WKB ansatz 

(4.6) !P' = Re [ P(,uX, ,u Y, p Z )  ei(K'.x-nT) 1 

where perturbation lengthscale 
lU = wave envelope lengthscale 

< 1, 

the dimensional wave vector K = (K,  L, M ) ,  and SZ(K, X) is the frequency. Substituting 
(4.6) into (4.5) and keeping the leading-order contributions in ,u yields the phase 
average of J :  

l Y * I 2  (4.7) 

1 
Km-iighlm Kl K , + - ~ 7 ~ - $ i ~  F5(hLrn K,K,)' 

2f 

2' 

L Qh3m Km 
where we have used the linear relations (2.24) and (4.3). The dispersion relation is 
found by substituting the WKB solution into the linearized governing equation and 
taking terms of lowest order in ,u. This yields 

where the minus sign accompanies the denominator to keep the quadratic form 
positive. The group velocity is 
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We now sketch the demonstration of the group-velocity property, which is similar 
to that of Part 1, $7. The phase-averaged linearized pseudoenergy is 

( Uint) = - ihlm Kt Km( 1 + F5 h,, K,. K,) 1 Y*I2. (4.10) 

If we take the third term in (4.9), multiply it by (4. lo), and use Ye Sy = gY = - fii, and 
@er3x = @x = f i g ,  the product reduces to 

for eachj, which corresponds to the first term in each component of (4.7). As for the 
first term of (4.9), 

- 

@h,, Ki 1 Y*(' (4.11) 

while a similar expression holds for the second term. These correspond to the 
remaining terms in (4.7). Thus, summing (4.1 1) withj = 1 and (4.12) yields (J , , , ) ,  and 
similarly for the other components of J, verifying the group-velocity property. 

5. P-plane compressible flow 
5.1. Introduction 

In this section, we extend the results of #2-4 to the ,&plane compressible system of 
MSc90. The system is described in Part 1, $9.2, and its conservation properties are 
described in Part 1, $9.4. Like the Hoskins (1975) system, the MSc90 model is a 
Hamiltonian system governed by PV advection, with appropriate boundary conditions, 
and an invertibility principle relating the PV and boundary terms to the velocity. Its 
Hamiltonian structure is presented in $6 below. 

Given the similarity in structure of the two systems, many of the derivations of the 
results of this section closely parallel those of the previous sections. We will thus omit 
the details of the developments below, referring the reader to the earlier sections. 

5.2. Pseudoenergy 
Analogously to $2, we define inverse maps 4 = Fint(r3/J 0) and @ = @&0) at the 
basic state. We seek % of the form (2.4), involving the sum of the energy and a Casimir 
chosen to satisfy the extremal property (2.5). Boundary variability is treated similarly 
to the $plane system. 

The energy density E* in IGC is defined by 

d = Edxdydz = E*dXdYd@, (5.1) 

(5.2) 

(5.3) 
which follows from Part 1 (9.5) and the final component of Part 1 (9.16). 

The first variation of the energy is shown, in Appendix A, gA.2, to be (2.11) with 2 
replaced by 0. The Casimir invariants have the general form given by Part 1 (9.27). The 
Casimir density that makes 92 extremal is 

I s 
with 

where in (5.2) we have used Part 1 (9.7) and (9.20) and 
E* = l o ( ~ ~ ~ + ~ ~ > + ~ u l , + ~ ) - P l a , y , ( ~ , Y , z )  = ~~-pa,y,(x,Y,z), 

p aXY&Y, 4 = f l y  

(5.4) 
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The pseudoenergy is then 
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The small-amplitude reduction of the interior contribution to the pseudoenergy is 
shown in Appendix A, §A. 2 to be 

where we have introduced the notation {Il} = ( X ,  Y,O). The symmetric matrix of 
coefficients a,, has components 

( 5 . 7 4  

(5.7d) 

(5.7e) 

(5.7f) 
1 -  

g 
a33 = --[- ~ a x y ( % . n l ,  

and we define the basic-state quantities (cf. (A 12) and (A 17)) 
f= f [ l  +4pf-3(*y-pf3(gx)2)]1/2, f =  dP/d@e = 68. ( 5 . 8 4  b) 

The equalities for the off-diagonal terms a,,, etc. may be verified using thermal-wind 
type relations derived from Part 1 (9.16), e.g. 

1 y X  = fi( - gYx + 2pf-3 Fx F,,), etc. 

Defining the linearized u’ 

(5.9) 
1 

g 
U‘ = - - P x y d x ‘ , P , f l  + a x y e ( f , ~ ’ , P )  +axye(n ,P,~’>l ,  

we find 
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The volume integral over 5 of the flux terms in (5.10) is 

-'I [ax..(Y'xl,,g,P)+axue(i?, !J"yk,P)+axy&,.F, Y'p',)]dXdYdQ 
g l j  

(5.1 1) 

where we have made use of Part 1 (9.2), (9.6), (9.7), (9 .94 and (9.16). The final term 
in (5.1 1) may be rewritten as an interior contribution due to compressibility: 

= -[J2$(!P')2dZdy"]r 21 = [I fi (;(!P')2-%!P'Y>l 

where b = -ax*&% y", p>/g .  (5.13) 

Using a similar approach to $2.3, if we define the boundary contribution to the 

- pseudoenergy as 
Z{'Zit 

= 5 [ Jzi p z ( X ; ) 2  dZj df.11 
i-1 2vx, Zf'Xi1 

we find the small-amplitude conservation law for 'i2 = 4?& + 'i2c + @s : 

(5.14) 

= 0. (5.15) 

As in 82.3, we now compare (5.15) in the small-Rossby-number limit with the 
appropriate QG result, which in this case is the small-amplitude limit of the 
pseudoenergy invariant for the 'modified' QG dynamics of White (1977). White's 
(1977) modified scaling allows for additional compressibility effects beyond those of 
the standard QG scaling; these effects are also included in this SG system. The 
development of the finite-amplitude modified-QG invariant is presented in Appendix 
B. We now show that 'i2 in (5.15) reduces to the small-amplitude form of this modified- 
QG invariant, (B 9). For small Rossby number, the QG PV, q, is related to CT by 

(see (B 4)), yielding in this limit 

- f p(:(alf) (a'/f)2 dXd YdO m (q')2 dx dy dz, IDp:- 

(5.16) 

(5.17) 

where f, is a reference value of the Coriolis parameter. In the same limit (see (2.36)) 

Y@ x fog, (5.18) 
- - 

where @ is the QG stream function (B 2). 
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With (5.15) and (5.17)-(5.18) we obtain 

We recall that the disturbance Y' is a variation taken in the transformed space, and the 
variation W is taken in geometric coordinates. In the small-Rossby-number limit, 

Yl@ = fle+@%le = ~ % + f O @ ~ I 2 + ~ ~ Z ~ l @  =fo@' l* ,  (5.20) 

where we have used (B 2) and (5.8 b). With this relation it may be shown that 

where c is the adiabatic sound speed. In deriving (5.21), we have also used (5.8b), 
(B 4) and (B 6). Substituting (5.21) into (5.19) yields (B 9). 

5.3. Linear stability 
Apart from the terms involving Y in (5.15), both the conservation law and the 
resulting stability theorem are similar to thef-plane case (see (2.33)). We show that the 
quadratic form representing the disturbance energy in (5.15) is positive for physically 
meaningful basic states. The form may be written :blm r, r,, where 

r, = (Y, Y;, Ul;, Ye)', (5.22) 

b -%/@ 

(5.23) 
a23 
a33 a13 1. -a,,/@ a11 a1 2 

a21 a22 

a3i a32 

detb,, > 0. 

( and b,m = 

The conditions under which b,, is positive definite have the form (2.21) with the 
additional condition 

We find that 

and (5.25) 

All three quantities in (5.24) are positive for inertially and statically stable basic states 
with 6 > 0, as in the f-plane case. The quantity in (5.25) is also clearly positive for 
statically stable states. The discussion of $3 thus holds with the interior v replaced by 

5.4. Local conservation law 
vlf. 

We seek a local conservation law of the form 

(5.26) 
a 

-(Uint+ U , ) + V * J =  0, 
aT 

where 
U,,, + U, = +[a,, !Pii !Pirn - 2(a3,/0) 'Y' !Px, + b( Y)2 (~ ' / f>~] .  
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To determine the flux J, we follow the procedure of $4. Expressing d similarly to (4.3), 
and using (5.6)-(5.10) and 

(5.27) 
1 x' = -- ul;, yi = - (- ul; + 2pf-3 !Fx vX), p i  = ful;, 

7 '  ff 
(cf. Part 1 (9.16), and (A 12) and (A 18) below) we obtain 

1 
(5.28) 

which should be compared to (4.5). Apart from scaling factors from the coordinate 
transformation, (5.28) reduces at small Rossby number to the small-amplitude form 
of the modified-QG pseudoenergy flux. The finite-amplitude form of the QG flux is 
(B 11). 

Using the WKB ansatz (4.6) with 2 replaced by 0, to lowest order in ,LA 

- QaIm Km - - Y a Kl Km + t(3/f)y + - Yy Y(s/f)(a,m Kl Km)2 

2 '  

(5.29) 

where we have used Part 1 (9.16) and (5.7) above, and note that the phase average of 
the compressibility terms proportional to Y& in (5.28) vanishes. 

1 <a= [ 1 -  1 - -  

1 -  l - -  

f I m  2f" 

- Q a z m K m  + T y x a t m K i K m - t ( d / f ) , - T  2f yx y ( , / f ) ( a , m K i K m ) 2  

- Qa3m K m  

The dispersion relation is 

(5.30) 

and the group velocity 

The verification of the group-velocity property is analogous to that of $4, with the 
proviso that the vertical wavelength be much shorter than the geometric mean of the 
density and the potential-temperature scale heights. 

6. Conservation laws and Hamiltonian structure 
In this section we show how the zonal impulse, energy and Casimir invariants of SG 

dynamics arise naturally from Noether's theorem for a Hamiltonian system. To do so 
we cast the Hamiltonian structure of SG dynamics in Eulerian form, as Roulstone & 
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Norbury (1994) have done independently for the f-plane Boussinesq system, using a 
geometric approach (see also Kushner 1993). This is to be distinguished from the 
Lagrangian formulation of SG dynamics discussed by Salmon (1985, 1988). We 
present both the f-plane Boussinesq and P-plane compressible systems’ Hamiltonian 
structure. Our discussion will centre on the interior dynamics, although the problem of 
incorporating boundary dynamics will be discussed. 

The usual procedure to obtain the Eulerian form is as follows (e.g. Shepherd 1990). 
The globally conserved energy d is taken to be the Hamiltonian X .  A vector function 
u comprising the system’s dynamical fields is defined and the equations of motion are 
written 

SX 
SU 

ut = J-, 

where J = Jii is the skew-symmetric Poisson operator satisfying a generalized ‘product 
rule’ and Jacobi’s identity. Variational derivatives on the Hamiltonian are defined with 
respect to an appropriate inner product. 

If boundary dynamics are neglected, then u = n is the sole dynamical variable in the 
SG system, and from Part 1 (2.18~) and (2.19), and the first variation of 8 = &‘ 
(equation (2.11) above, with the boundary terms neglected), (6.1) has the specific form 

an 8% 
aT Sa 
-= J-, 

where on the f-plane 
J = (l/ndXY(n, -1. 

Under these restricted boundary conditions, the structure is analogous to that of QG 
interior flow (e.g. Shepherd 1990), with a replaced by the scaled QG q, and a minus sign 
appearing in the Poisson operator since a - l/q. The definition of the inner product 
and the proof of Jacobi’s identity are also similar. 

Systems in the form (6.1) have two types of globally conserved invariants: those 
corresponding to explicit continuous symmetries (through Noether’s theorem), and the 
so-called Casimir invariants corresponding to degeneracies in the Poisson bracket. The 
latter are functionals V satisfying 

8% 
Sa 

J -  = 0. 

The quantities identified as V in Part 1 (4.11) indeed satisfy (6.4). By Noether’s 
theorem, we obtain a conserved zonal impulse or linear momentum corresponding to 
the system’s zonal symmetry by seeking a functional 4 such that 

Equation (6.5) is evidently satisfied by 

A = -flndXdYdZ. (6.6) s 
This recovers Part 1 (4.9) with Part 1 (4.10). 

we obtain (6.2) with 
On the &plane we again choose u = r ,  and since (2.1 1) holds with Z replaced by 0, 

J = axv(a/J -1. (6.7) 
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It is straightforward to show that the Casimirs for the system are of the form Part 1 
(9.27), and that the zonal impulse has the form found in Part 1 (9.26): 

A =  -F(Y)adXdYdO, (6.8) s 
where F( Y) is defined by 

dF/dY =f( Y). 

We wish to emphasize the utility of the Hamiltonian approach in obtaining the 
invariants, in particular the zonal impulse invariants A. Although analogous to the 
QG zonal impulse, whose interior contribution is jpyqdxdy dz, the invariants, in 
particular ( 6 4 ,  are neither ‘obvious’ nor have been found, to our knowledge, in 
previous studies. It is easily shown that the energy 8 = &‘ is the invariant 
corresponding to the time symmetry in the equations. 

While the first variation on the energy d = &‘ in (2.1 1) includes boundary terms, we 
have not yet determined a structure that includes the boundary dynamics and can be 
shown to satisfy Jacobi’s identity. There are, however, strong parallels with QG 
dynamics, such as the role of 8 at the z-boundaries in both systems. Since virtually all 
energy-conserving fluid systems have proven to be Hamiltonian, we believe these 
difficulties to be essentially technical, and take the structure to exist. Those results that 
include boundary contributions in this study do not rely on the explicit form of the 
Hamiltonian structure, but on the conservation laws which follow from it. 

7. Discussion 
We have derived the pseudoenergy invariant for SG dynamics, and have used it to 

extend some pseudoenergy-based results of QG dynamics to SG dynamics : Arnol’d’s 
first stability theorem for small disturbances to steady flows, and a local wave-activity 
conservation law describing the evolution of small disturbances to these flows. The 
existence of the invariant, and its similarity at small amplitude to the QG form, is 
guaranteed because SG dynamics, like QG dynamics, is a PV-advecting invertible 
system with an underlying Hamiltonian structure. 

At finite amplitude, the SG pseudoenergy, unlike the QG invariant, does not have 
obvious sign-definite properties. This is in contrast to the interior part of the SG 
pseudomomentum, which is similar to that of QG (see Part 1 ,  § 9, and it arises from 
the complicated nonlinear invertibility relation of the SG system. At small amplitude, 
however, the QG and SG interior pseudoenergies are analogous. The ageostrophic 
effects allowed at lateral boundaries yield contributions to the pseudoenergy that are 
absent in the QG conservation law. 

Conservation of the small-amplitude form of the pseudoenergy yields a small- 
amplitude version of Arnol’d’s first stability theorem. The QG theorem describes 
conditions on the derivative of the geostrophic stream function with respect to the 
interior PV and to the boundary potential temperature that must be satisfied in order 
for the system to be stable. The SG theorem is shown to be analogous, although the 
new lateral-boundary contributions to the pseudoenergy yield additional stability 
criteria, and the boundary criteria are expressed in terms of basic-state gradients on 
potential-temperature surfaces rather than on the material surfaces themselves. Unlike 
the case with the SG Charney-Stern stability theorem (see Part l), the presence of 
lateral boundaries does not automatically violate the stability criteria. For the special 
case of a barotropic linear shear flow, violation of the Arnol’d stability criteria 
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corresponds directly to a weak barotropic normal-mode instability (Kushner, in 
preparation). Because the pseudoenergy invariant is not self-evidently sign definite at 
finite amplitude, we have not been able to construct a nonlinear Liapunov stability 
theorem. This is an unsatisfactory aspect of the analysis. 

A local flux law has been found for the small-amplitude pseudoenergy, but we have 
not been able to construct such a flux law for finite-amplitude disturbances. The local 
form of the conservation law is similar to the small-amplitude form of the QG law. The 
pseudoenergy flux has been shown to satisfy the group-velocity property in the WKB 
limit . 

The Hamiltonian structure of QG dynamics and SG dynamics is analogous for the 
interior dynamics. The zonal impulse, energy and Casimir functionals are all invariants 
corresponding to symmetries in the Hamiltonian structure. The problem of the 
boundary contributions to the Hamiltonian structure has not yet been resolved, in the 
sense that the dynamical equations at the boundaries are not explicitly represented. 
However, it must be emphasized that the interior Hamiltonian structure does generate 
the full set of conserved quantities needed to construct the boundary contributions to 
the pseudomomentum (Part 1 (5.13)) and the pseudoenergy (2.17). We hope that the 
insight gained by considering the variational problem at the boundaries will provide a 
first step towards obtaining the full Hamiltonian structure of the system. 

P. J. K. is supported by a postgraduate fellowship from the Natural Sciences and 
Engineering Research Council of Canada (NSERC). T. G. S .  is supported by NSERC 
as well as by the Atmospheric Environment Service of Canada. 

Appendix A. First and second variations on the energy functional 

In this subsection we derive equations (2.11) and (2.18). From (2.6), 
A. 1. f-plane Boussinesq system 

From Part 1 (2.12), and (2.8) and (2.10) above, 

6E* = fz {(x - X) SX + (JJ- Y )  SJJ-ZSZ} u + (Y - 4) 6a 
= - fJ& ax, + Y6u - 46a 

3 

= ySu + c aXUZ( - xj, xk), 
i-1 

3 

where = c aXUZ(6x(, xk). 
f = l  

Substituting (A 2) into (A 1) yields to first order 

Using the relations Sx, = - (x , )~,  SXJZi, which require the conditions (2.7) to hold, 
gives r r 
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Substituting (A 5) into (A 4), and using the second equality of (2.10), (2.1 1) follows. 
We now develop equation (2.18). The energy density may be expanded to second 

order as 

where 8* denotes E* evaluated at the basic state, SE* is given by (A 2), and the second- 
order contribution is 

E* = E* + SE* -I- S2E*, (A 6) 

S2E* = f 2 { + [ ( S ~ ) 2 + ( S y ) 2 ] ~ + [ S ~ ( ~ - X ) + S ~ ( y -  Y)-ZSZ]SU 

+ (;[(x - X ) 2  + ( y  - Y)2]  - ZZ) Pa}, (A 7) 

with 

The terms in S2E* may be handled in a similar manner to the manipulations in 
(A 2), i.e. by using Part 1 (2.12). We find 

E* -,!?* = @(Su + S2a)  +$J2az, ax, ax, + V . D, (A 9) 

where the tildes have now been added to denote basic-state quantities explicitly. In 
(A 9) the matrix a,, is given by (2.19), and the divergence term is defined by 

3 

- v - D  = c [d*yz(&x,, 2,. 2,) +gaxyz(&xs, ax,, 2,) 
.I-1 

+ axYz(axi, 2,) + axyz ( h , ~ x z  SX,, zj ,  2~11. (A 10) 

From (2.15), the Casimir term is to second order 

c*-c* - = - - Y,,,(Sa+SZa)--,(Sa)2. 1 a@int 
2 a m  - 

Since !Pint = $at the basic state, the interior contribution to the integral over the sum 
of (A 9) and (A 11) is indeed (2.18), with the S replaced by the prime notation. 

A.2. P-plane compressible system 
Here we show that (2.11) holds for the &plane compressible equations with 2 replaced 
by 0, and also that the small-amplitude interior contribution to the pseudoenergy is 
(5.6). From (5.2) 

3 

3 

= C axy&Sxi, xj, xk), 
i = l  

where we have used Part 1 (9.2) and (9.6), and (5.3) above, and 

sp = YSY* = POSYe, (A 12) 

where Y is defined in Part 1 (9.35). Equation (A 12) follows from Part 1 (9.16). To 
obtain the first variation, the boundary terms are treated similarly to (A 5). 

In taking the second variation on %, extra algebraic complication is added by the 
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need to expand p and y to first and second order in the disturbance stream function Y .  
We use the expansions 

which may be expressed in terms of the stream function as follows. For y ,  using 
Part 1 (9.16), 

with 

y = j + s y + s 2 y ,  p = p + s p + + 2 p ,  (A 13) 

y = Y+(f/2/?)[1-(1 (A 14) 

a = 4/jf3(~y-~f-3(~z)2), 6a = 4/3f-3((s~y-2/3f-3!Fxs~x> ] (A 15) 
P a  = - 4(pf -3)z(8Yx)z. 

dY d j  l d ' j  
da" da" 2 da"' 

Thus 

(A 16) 

(A 17) 

(A 18) 

Sy = --a, S2y = - ~ 2 a + - - ( ~ a ) 2 .  

If we define 

from (A 14), then 

For p, Sp is given by (A 12) and 

{=A1 +ii)1'2 = f[l-2/3f-'(jL Y)] ,  

sy  = -(l/ff)(6Yy-2/3f-~ !FYBYX). 

1 d f  
2 d y e  

S'p = --(8Ye)2. 

The second variation is found by taking S2E* similarly to (A 7). Instead of (A 8), we 
have 

a2cr = - ( l / g )  [ a x y e ( k  O , P )  + axy&, sy ,  Sp) + axye(6x, j ,  Sp) 

+ axye(-f, ~ ' Y , P )  + axye(-f, Y ,  a2p)]. (A 20) 
We also make use of the following relations, which are obtained using Part 1 (9.16) and 
(A 12), (A 16) and (A 18) above: 
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The Casimir terms are treated as in gA.1, and the sum of the Casimir and energy 
terms yields (5.6). 

Appendix B. Pseudoenergy invariant for White's modified QG equations 
In this section we derive the finite-amplitude pseudoenergy invariant for the 

modified QG equations of White (1977). White obtains the modified QG equations by 
relaxing the standard QG scaling assumption that N2H/g 4 I ,  where H is a typical 
vertical scale of motion. Since this assumption breaks down for planetary-scale 
compressible flow, White takes N2H/g = O(1). With the new scaling, the evolution 
equations governing the system are 

Dq/Dt = 0 in the interior, 

ug = 0 at x = x,,x,, 

ug = 0 at Y =yl,y2, 
D8IDt = 0 at z = z1,z2, 

for the same domain geometry as in the body of this paper. (One may also replace 
(B 1 b) by periodicity of all fields in x.) In (B 1) z is the geometric height coordinate 
and @ is the QG stream function given by 

@ = (P-P8)/cfOpS), (B 2) 

where p -p, is the pressure deviation from the reference pressure p8(z), f, is a reference 
value of the Coriolis parameter, and p8 = p,(z) is the reference density profile. The 

(B 3) 
material derivative is 

D/Dt = a, + azy(@, -), 

and the diagnostic invertibility relations are 

wheref=f,+py is the Coriolis parameter on the /3-plane. 
The principal change to the standard QG equations due to the modified scaling is the 

redefinition of 8, the deviation from the reference potential temperature profile O,(z). 
In the standard QG set, the term involving N2@/g in the definition of 8 in (B 4) is 
neglected. 

The globally conserved energy for the system is 

where c is the adiabatic sound speed satisfying 

(log p8)Z  = - ((N2/g) + (g/"))* 
The last term in the integrand of (B 5 )  represents a contribution to the energy due to 
compressibility (White 1977). 

The Casimirs of the system have the form 

$F.? = J D P s C ( q ; ~ ) d x d Y ~ ~ + ~ z ~ P . r , ( 8 ) d x d Y  +J 2 2  P,I;,(~WdY, (B 7) 

where C, 4 and F, are arbitrary functions of their arguments. 
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Manipulations similar to those found in MS87 and $2 yield the pseudoenergy 42 for 
finite-amplitude disturbances to steady states : 

where and 6zt are the mappings, defined at the basic state, between 6 and 4 in the 
interior and between 6 and e" at the boundary (see 52.1). Apart from the terms 
involving N2@'/g  and (@')' in the disturbance energy, (B 8) is identical to the QG 
pseudoenergy given by (B 7) of MS87. 

The small-amplitude reduction of 92 is 

Equation (B 9), valid for steady (and in general non-parallel) basic states, is the 
generalization of the invariant found in Blumen (1978) for zonal basic states. 

Defining the total interior pseudoenergy density Uint + U, as the integrand of the first 
integral in (B 8), we find 

where the finite-amplitude pseudoenergy flux is 
(a/at)(uint+ U , ) + V . J =  0, (B 10) 

- @'! [V,W + ($)l( @;-T N 2  @')2]+;(~T)~2 x v, q}. (B 11) 
at 

The flux J obeys the group velocity property in the WKB limit. 
The pseudomomentum properties of the system are described by Shepherd (1989). 

REFERENCES 

ARNOL'D, V. 1. 1966 On an a priori estimate in the theory of hydrodynamical stability. Izv. Vyssh. 
Uchebn. Zaved. Matematika 54 (9, 3-5. (English transl. Am. Math. SOC. Transl., Series 2, 79, 

BLUMEN, W. 1978 A note on horizontal boundary conditions and stability of quasi-geostrophic flow. 
J. Atmos. Sci. 35, 1314-1318. 

BRETHERTON, F. P. 81 GARRETT, C. J. R. 1968 Wavetrains in inhomogeneous moving media. Proc. 
R. SOC. Lond. A 302, 529-554. 

CULLEN, M. J. P. & PURSER, R. J. 1984 An extended Lagrangian theory of semi-geostrophic 
frontogenesis. J. Atmos. Sci. 41, 1477-1497. 

HOSKINS, B. J. 1975 The geostrophic momentum approximation and the semi-geostrophic equations. 
J. Atmos. Sci. 32, 233-242. 

267-269 (1 969).) 



Wave-activity conservation laws for semi-geostrophic dynamics. Part 2 129 

HOSKINS, B. J. 1982 The mathematical theory of frontogenesis. Ann. Rev. Fluid Mech. 14, 131-151. 
HOSKINS, B. J., MCINTYRE, M. E. & ROBERTSON, A. W. 1985 On the use and significance of 

isentropic potential-vorticity maps. Q. J. R. Met. SOC. 111, 877-946. 
KUSHNER, P. J. 1993 Nonlinear stability and wave, mean-flow interaction in semi-geostrophic 

theory. In Ninth ConJ on Atmospheric and Oceanic Waves and Stability. Preprint volume, 
pp. 363-366. American Meteorological Society. 

KUSHNER, P. J. 1995 A generalized Charney-Stern theorem for semi-geostrophic dynamics. Tellus 
(In press). 

KUSHNER, P. J. & SHEPHERD, T. G. 1995 Wave-activity conservation laws and stability theorems for 
semi-geostrophic dynamics. Part 1. Pseudomomentum-based theory. J. Fluid Mech. 290, 
67-104 (referred to herein as Part 1) .  

MCINTYRE, M. E. & SHEPHERD, T. G. 1987 An exact local conservation theorem for finite-amplitude 
disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on 
Arnol’d’s stability theorems. J. Fluid Mech. 181, 527-565 (referred to herein as MS87). 

MAGNUSDOTTIR, G. & SCHUBERT, W. H. 1990 The generalization of semi-geostrophic theory to the 
fl-plane. J. Atmos. Sci. 47, 1714-1720 (referred to herein as MSc90). 

MAGNUSWTTIR, G. & SCHUBERT, W. H. 1991 Semigeostrophic theory on the hemisphere. J. Atmos. 
Sci. 48, 1449-1456. 

ROULSTONE, I. & NORBURY, J. 1994 A Hamiltonian structure with contact geometry for the semi- 
geostrophic equations. J. Fluid Mech. 272, 21 1-233. 

SALMON, R. 1985 New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461-477. 
SALMON, R. 1988 Semigeostrophic theory as a Dirac-bracket projection. J. FluidMech. 1%, 345-358. 
SCHUBERT, W. H. & MAGNUSDOTTIR, G. 1994 Vorticity coordinates, transformed primitive 

equations and a canonical form for balance models. J. Atmos. Sci. 51, 3309-3319. 
SHEPHERD, T. G.  1989 Nonlinear saturation of baroclinic instability. Part I1 : Continuously stratified 

fluid. J. Atmos. Sci. 46, 888-907. 
SHEPHERD, T. G. 1990 Symmetries, conservation laws, and Hamiltonian structure in geophysical 

fluid dynamics. Adv. Geophys. 32, 287-338. 
SHUTTS, G. J. & CULLEN, M. J. P. 1987 Parcel stability and its relation to semi-geostrophic theory. 

J. Atmos. Sci. 44, 1318-1330. 
SWATERS, G. E. 1986 A nonlinear stability theorem for baroclinic quasigeostrophic flow. Phys. 

Flu& 29, 5-6. 
WARN, T., BOKHOVE, O., SHEPHERD, T. G. & VALLIS, G. K. 1995 Rossby-number expansions, 

slaving principles, and balance dynamics. Q. J. R.  Met. SOC. 121, 723-739. 
WHITE, A. A. 1977 Modified quasi-geostrophic equations using geometric height as vertical 

coordinate. Q. J. R. Met. SOC. 103, 383-396. 


