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ABSTRACT

A nonlinear stability theorem is established for Eady’s model of baroclinic flow. In particular, the Eady basic
state is shown to be nonlinearly stable (for arbitrary shear) provided

é£>2\/§f
Ay N’

where Az is the height of the domain, Ay the channel width, f the Coriolis parameter, and N the buoyancy
frequency. When this criterion is satisfied, explicit bounds can be derived on the disturbance potential enstrophy,
the disturbance energy, and the disturbance available potential energy on the rigid lids, which are expressed in
terms of the initial disturbance fields. The disturbances are completely general (with nonzero potential vorticity )
and are not assumed to be of small amplitude. The results may be regarded as an extension of Arnol’d’s second
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nonlinear stability theorem to continuously stratified quasigeostrophic baroclinic flow.

1. Introduction

There has been considerable recent interest in the
derivation and application of nonlinear stability theo-
rems to quasigeostrophic baroclinic flow. These theo-
rems apply to inviscid, unforced flow and rely on cer-
tain exact nonlinear conservation laws, which are as-
sociated with the underlying Hamiltonian structure of
the dynamics (e.g., Shepherd 1990). For example, by
using a suitable combination of momentum and Casi-
mir invariants, a finite-amplitude generalization of the
Charney~Stern theorem can be obtained for both lay-
ered and continuously stratified flow (Shepherd 1988,
1989). Using a combination of energy and Casimir in-
variants provides a finite amplitude generalization of
the Fjertoft—Pedlosky theorem (Holm et al. 1985;
Swaters 1986; MclIntyre and Shepherd 1987; Zeng
1989): this may be regarded as an extension of Ar-
nol’d’s (1965, 1966) first nonlinear stability theorem
to quasigeostrophic flow.

* The results of this paper were announced as part of an extended
abstract by Mu and Shepherd (1992).

Corresponding author address: Dr. T. G. Shepherd, Department
of Physics, University of Toronto, 60 St. George Street, Toronto,
Ontario M5S 1A7, Canada.
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The mathematical method behind the above-men-
tioned results consists of the construction of a con-
served functional, whose first variation at the basic state
is zero and whose second variation is sign definite for
arbitrary perturbations. The basic state is then an ex-
tremum of the conserved functional and is therefore
stable. This variational argument was originally intro-
duced by Fjertoft (1950) and appears to be inherently
a small amplitude technique. However, it was realized
by Arnol’d (1966), in considering the two-dimensional
Euler equations, that in many cases of interest all the
higher-order contributions to the functional may be
bounded a priori, in which case the stability is in fact
nonlinear. It turns out that this insight applies to the
quasigeostrophic equations, among others (see above
references).

Arnol’d’s first stability theorem corresponds to cases
where the second variation of the energy-Casimir in-
variant is positive definite, while the second theorem
corresponds to cases where it is negative definite. Es-
tablishment of analogues of the first theorem is gener-
ally straightforward, but the second theorem turns out
to be much more delicate. The difficulty has to do with
showing that the positive part of the energy-Casimir
invariant is smaller in magnitude than the negative part;
this involves the use of a Poincaré inequality, which
depends heavily on the presumed boundary conditions.
For example, a straightforward extension of Arol’d’s
second theorem to continuously stratified flow requires



3428

that the disturbance have zero circulation on the side-
walls and zero temperature perturbation at the rigid lids
[Mclntyre and Shepherd (1987), appendix B]: a sig-
nificant restriction indeed!

The quasigeostrophic analogue of Arnol’d’s first the-
orem, for zonally symmetric flow, requires that U/Q,
< 0 in some frame of reference; here U is the zonal
velocity and Q, the meridional gradient of potential
vorticity. However, as pointed out by Andrews (1984),
most geophysically relevant flows are ‘‘pseudoeast-
ward,”’ in the sense that U/Q, > 0, which takes them
into the realm of Arnol’d’s second theorem. Of course,
one is allowed to choose the frame of reference, and in
this way Ammol’d’s first theorem may be usefully ap-
plied to the Phillips model of baroclinic instability
(Shepherd 1993). But with rigid lids, this device is not
useful: when interpreting surface temperature gradients
as concentrated potential vorticity gradients, in the
sense described by the Charney—Stern theorem, it is
clear that the Eady basic state cannot be brought into a
‘‘pseudowestward’’ configuration by a change of ref-
erence frame. In this case, therefore, one has no choice
but to deal with Arnol’d’s second theorem directly.

In the case of two-dimensional flow, Mu (1992) and
Mu and Shepherd (1994) have recently succeeded in
obtaining nonlinear stability criteria analogous to Ar-
nol’d’s second theorem. Related results have been ob-
tained for multilayer quasigeostrophic flow by Mu et al.
(1994). The purpose of this paper is to establish a cor-
responding result for Eady’s model of quasigeostrophic
baroclinic flow. The work builds on methods developed
by Mu and Zeng (1991) and Mu and Wang (1992).
When the stability criterion is satisfied, rigorous upper
bounds may be derived on the potential enstrophy, the
energy, and the boundary available potential energy of
finite-amplitude disturbances to the Eady basic state.
Unlike the usual normal-mode analysis of the Eady
problem, the disturbances considered herein are arbitrary
and in particular may have nonzero potential vorticity.
The upper bounds hold uniformly in time, are expressed
in terms of the initial disturbance fields, and tend to zero
uniformly as the initial disturbance amplitude decreases
to zero. It follows that the bounds establish nonlinear
stability of the Eady basic state.

2. Statement of the problem

Consider three-dimensional continuously stratified
quasigeostrophic flow on an f plane, governed by the
model

_%_I: +0(®,P)=0 inQ, (2.1a)
{83(1:2+8((I)’¢Z)}‘ =0 inD [i=0,1].

(2.1b)
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Here ®(x, y, z, t) is the streamfunction, and

P =V + é@u +f (2.2)
is the potential vorticity; subscripts denote partial
differentiation; f is the (constant) Coriolis parame-
ter; § = N?/f?is a (constant) static stability param-
eter, where N is the buoyancy frequency; x and y are
eastward and northward coordinates, z the height co-
ordinate, and ¢ the time; d(a, b) = a.b, — a,b, is the
two-dimensional Jacobian operator; and V? = 92 +
0} is the two-dimensional Laplacian operator. The
spatial domain is a zonal periodic channel

D={-X<sx<sX,-Y=sysY},
Q=D X (2,2), (2.3)

with 0 < 7o < z7; < . The lateral boundary conditions
on the channel sidewalls are

od d X 5
| =0 z{ L "

} = 0. (2.4a,b)

y=—YY y=~YY

The system defined by (2.1), (2.2), and (2.4) consti-
tutes the usual Boussinesq f-plane quasigeostrophic
equations (e.g., Pedlosky 1987). For convenience we
take the (constant) reference-state density to be unity.
It may be verified that the system has the following
integral invariants;
energy

#1901 = | %{ivqnz + é(@z)z}d.xdydz, (2.5)

Q

zonal impulse

1 =z
M D] =f yPdxdydz — Ef y®,dxdy , (2.6)
Q D =2
and functionals of the form
€.[®] = f G (®,)dxdy [i=0,1] (2.7
D

=z

(with G;(-) being arbitrary functions), which are
Casimir invariants for this problem (e.g., Shepherd
1990). Note that /[ ®] differs from the zonal mo-
mentum [, q Udxdydz by Casimir invariants; the zonal
impulse and zonal momentum are both related to the
underlying zonal symmetry in the system (Shepherd
1990).

We now investigate the nonlinear stability of the
Eady basic state ® = ¥ = —Ayz, U= -V, = Az, P
= @ = f, where A is any given constant. Let (¢, q)
denote a finite-amplitude disturbance to this steady ba-
sic state, namely

d=U+y, P=Q+q, ®)|,. =B +b;, (28)
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with B; = ¥,|._,, = — Ay. It follows that

1
q= v2¢ + E‘l’zz’ b, = ¢zl =z * (29)
In the normal-mode stability problem, one normally
takes g = 0; however, we do not wish to impose such
arestriction. From (2.1a) and the fact that Q is spatially
uniform, the disturbance potential vorticity g satisfies

9%
ot

then with the boundary condition (2.4a), one obtains

+ 0¥ +4¢,q)=0;

d df{1,

—Zt) =~ = dydz = 0. .
dtZ( ) 7 qu dxdydz (2.10)
Thus, the disturbance potential enstrophy Z(¢) is con-
served in time: Z(¢) = Z(0). Our aim is now to find a
condition under which the disturbance energy,

1
E(r)=fag{lvmungﬁ}dxdydz, 2.11)

and the disturbance available potential energy on the
rigid lids,

1
Ey(t) = J.DZS‘ {(Bo)® + (b))’ }dxdy, (2.12)

can be bounded in terms of the initial disturbance fields,
with the bounds decreasing to zero uniformly as the
initial disturbance tends to zero. If this can be done,
then the condition is evidently sufficient to establish
nonlinear stability of the Eady basic state.

3. Nonlinear stability
a. Bounds on disturbance energy

In this subsection, we use the integral invariants of
the dynamics to provide upper bounds on the distur-
bance energies E(?) and E,(¢). First, define the func-
tional

K1) = E[8] - adl[®] - < (B[8] - €@

AL

where « is a constant to be determined later. Since #
consists of a combination of exact invariants together
with a term involving the sidewall circulations, which
are conserved according to (2.4b), it follows that # is
itself conserved in time. Now define the disturbance
functional

* 0%
—dx
—-X ay

y=Y
}dz, (3.1)
y=-Y

H(t)=X(¥ + ¢] — X [V¥], (3.2)

which is also an invariant of the motion and which
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vanishes for zero disturbance. If we take the arbitrary
functions G; (+) in the definition of €, to be given by

a

A‘)_ A]‘_
Gol€) = =5 &% Gi(§) = ==

A 2A
then it follows that

&%

G,(B; + b)) — G;(B;) = G! (B;)b; + %G;’(B,-)(b,-)z

(3.3)
with
G/ (B:) = (¥ + ay)| ., (3.4a)
and
Gy =24"¢ A_ 2. (3.4b)

Now using (3.2)—(3.4a), it can be shown (after in-
tegrating by parts to eliminate the sidewall circulation
terms) that

H(t) = E(t) + A(t) + H\ (1), (3.5)
where E(r) is given by (2.11), and A(¢) and H,(¢) are
defined by

1
A = _J‘DZS {G1(B1)(b1)* — GG(Bo)(bo)* } dxdy,

(3.6)
H ()= —f (¥ + ay)qdxdydz. 3.7
Q
Now choose a such that
a
2 < A <z. (3.8)
With « satisfying (3.8), it follows that
GUBy) = —co = - 222
A
GiBy = =250 (39

whence

1
A() =~ J.D'2-§ {co(bo)? + €1(b1)* }dxdy, (3.10)

which is negative definite. Now using the fact that H(¢)

= H(0), we can write

—A(1) = E(t) + Hi(t) — E(0) — A(0) — H,(0).
(3.11)

Equation (3.11) will provide the basis for the

upper bounds on disturbance energy, as shown in de-
tail below.



3430 .

We note here the parallel, as well as the contrast,
with Amol’d’s second stability theorem. The invariant
functional being used is H(t), which is not sign defi-
nite. Indeed, the first variation of H(t) at the basic state
is equal to H,(z), which is generally nonzero no matter
how « is chosen. This is quite different from the usual
nonlinear-stability methodology, where the invariant
functional is specially constructed so that its first vari-
ation vanishes at the basic state. However, H,(t) will
turn out to be boundable in terms of the initial distur-
bance [see (3.33)]. This leaves A(¢), which is negative
definite, and E(#), which is positive definite. The prob-
lem then reduces to finding conditions under which
E(t) can be bounded by —A(¢) plus terms depending
only on the initial disturbance. If this can be done, then
(3.11) can be rearranged to provide an upper bound for
the positive definite quantity —A(#). This is analogous
to what is done in proving Arnol’d’s second theorem
(e.g., McIntyre and Shepherd 1987; Mu and Wang
1992). .

To this end, define ¢ = ¢ + ¢ where

fD(l/fo — ) dxdy

w(z,t) = ——F—,
f dxdy
D

Yolx,y,2) = ¥(x,y,2,0). (3.12)
From the definition of ¢,
—‘if ddxdy = 0 (3.13)
ad, ly = 0. .
Since
d | dxdy =0 and
dt Dq y_
d .
— | bidxdy =0 [i=0,1], (3.14)
dtJp
we have that
0,=0 and ¢, =0 [i=0,1]. (3.15)

It follows from (3.15) that

N 5
VA 4 gla=q and Pl =b [i=0,1].
(3.16a,b)

Now multiply (3.16a) by —¢/2 and integrate by parts
over (2, using (3.16b). Noting the inequality

ea®> b?
< — + —, 1
< Geg a1
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which holds for any positive constant e, this yields
1 ~ 1 .
f 11V ? + < ($.) pdxdydz
02 S
1 -
< ff q*dxdydz + ——f J2dxdydz
4 Q 4e Q

! e-J'l 1J‘1~.
+ S 2 b2 — | 252
50[4 DS(b,)dxdy+4€i Ds"’ dxdy

2=z ]

+ |Hye ()], (3.18)
where ¢, €, and ¢, are positive constants having the
appropriate dimensions, to be determined later, and

Yl 7 o
H*(”‘zL) {w Lo

y=Y

}dz. (3.19)

y=-Y

In obtaining the form of H,(t), the lateral boundary
conditions (2.4) have been used.

From Mu and Wang [1992, Egs. (2.19) and (2.20)],
we have

L. .
f SWidxdy| < F(x)f Y *dxdydz
S =z Q
| T
+x | W) dxdydz, (3.20)
oS
where
F, i 1
F =F+—, Fj=———, F,=—,
) 1 X 1 S(z1 — 20) L
(3.21)

and x is an arbitrary positive constant to be determined
later. On the other hand, using (3.15) and integrating
by parts yields

1 7 )2 — 1 2
fn S (§r,)“dxdydz = L S (¢.)"dxdydz,

whence
1 VI
E() = fn > {IV(/JI + E () }dxdydz. (3.22)

Using (2.10), (3.20), and (3.22), the inequality (3.18)
becomes

E() <52(0)+ [(l+l)ﬂ—’Q+—l—]

€ € 4 4e

. 1 1 -
X f Y dxdydz + X (— + — f l((ﬁz)zdxdydz
Q 4 oS

€ €

e | ]
’ EOZJ.DE”’” dxdy + |He(1)[. (3.23)
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To proceed further, we must bound [, §>dxdydz by
using the Poincaré inequality. To this end, let \, be the
least positive eigenvalue of the problem

MU AND SHEPHERD

3431

~ 1 ~
[ @ voraay < [ 196 - vorrasay.
D 2 VD

(3.26)
Vi +Xp =0 inD, %‘2 =0, Integrating (3.26) in z then gives
X
y=-YY
~ 1 "
ad, f Urldxdydz < —f |V 12dxdydz + Hyy (2),
=0. (3.24) Ve A2 Vo
-x ay —— (3.27)
By the definition of §, together with (3.13) and (2.4b),  where
we have 1
~ < o - Hua) = [ {3 1900l + 21900 900
[ - vodsay <o, [ 2oy _g T T °
b - y=-Y.¥
(3.25) + (o) + 2| o (P — l/fo)l}dxdydz' (3.28)
In light of (3.25) and the eigenvalue problem (3.24),
the Poincaré inequality yields Combining (3.23) with (3.27) results in
1 1 1\ F(x) f ) 1 x/1 1 ) f 1+,
—— =+ dxdydz + | = — = —+ — = (¢,)*dxdyd
[2 (60 61> 4)\2 4)\2 ] lVl//' yaz 4 €9 €1 QS(lIl) yaz
€ €; 1 2 1 F(X)
— — | =(b; + | (—+—= H 3.29
<2Z(0) + 504 DS(b,) dxdy + |Hy(1)] [(60 61) 4 e ] wx(1). (3.29)
Now let
. 1 1\ F(x) 1 x{1 1
= 1-{—-+—- )= -—,1-=(—+—]4, 3.30
M mln{ (60 * 61) 2)\2 2)\26 2 (50 61)} ( )
and assume for now that M > 0. In this case (3.29) implies
E(t)<——Z(O)+ i —(b) dxd +— |Hy ()| + 1 —+ = F(X) Hyx (1) (3.31)
‘ aM Y * w0 &) 4 4 o '
which together with (3.10) and (3.11) yields
€ 1 €
<co - ﬁ) J.DE (bo)2dxdy + (01 - ﬁ) f < (b1)’dxdy < ‘“Z(O) + 5 lH*(t)l
2 1 F
naiewl B St (X) H**(t) +2(E(0) + [AO)| + |H\(0)| + [H(D)]). (3.32)
M €o €1 4
This last result provides the bound that we need to 12
prove nonlinear stability. Specifically, if there exist |Hi(1)] < <fﬂ (¥ + ay )zdxdydz>
positive constants €g, €;, €, and x such that M > 0
and the coefficients of the two integrals on the left- ) 12
hand side of (3.32) are both positive, then (3.32) X . (qo)*dxdydz) , (3.33)

provides an upper bound for E,(¢). This bound to-
gether with (3.31) provides an upper bound for E(¢).
The question then becomes whether these bounds can
be expressed in terms of the initial disturbance. To
see this, we need to consider the right-hand side of
(3.32). First consider H,(z), which is defined by
(3.7): using (2.10) together with the Holder ine-
quality we have

where ¢ = q(x, y, z, 0). In this way |H;(¢)| can be
bounded in terms of the initial disturbance field, with
the bound tending to zero as the initial disturbance
tends to zero. In appendix A, upper bounds on |H(?)|
and H,,(?) are established in terms of the initial dis-
turbance field, which likewise tend to zero uniformly
as the initial disturbance tends to zero. The initial quan-
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tities E(0), JA(0)|, and |H,;(0)| all tend to zero in
the limit of the initial disturbance tending to zero.
- Therefore, whenever constants €, €, €, and y exist
satisfying the above-mentioned conditions, it follows
that the Eady basic state is nonlinearly stable in the
sense defined in the introduction.

b. Stability criterion

The problem now reduces to determining conditions
under which there exist constants ¢, ¢, €, and ¥ such
that

>0, ¢>0, ¢>0, x>0, M>0,

2MCO > €g, and 2MC1 > €, (3.34)

where M is defined by (3.30) and ¢; are defined by
(3.9). It can be shown that a necessary and sufficient
condition for (3.34) to hold is that

’2
xz—Fl(l+l)—F2(l.+ l) >0, (335)

Co O Co

where N\, > 0 is defined in terms of the eigenvalue
problem (3.24), and F, and F, are positive constants
defined by (3.21). That (3.35) implies (3.34) is proved
below. The ‘‘necessary’’ part of the statement, that
(3.34) implies (3.35), is proved in appendix B.

Thus, suppose that (3.35) holds; if we define «
= (1/co) + (1/cy), then (3.35) is equivalent to

2
)\.2<_l'> _Fl (l> _F2>0.
K K

The left-hand side of (3.36) is a quadratic form in 1/
k, with positive and negative roots; since 1/« is posi-
tive, it is clear that the inequality (3.36) can hold only
if 1/« is greater than the positive root, namely
Fi +VF} + 4AMF, Pt
2A2 K )

(3.36)

It follows that we may choose x in the interval

F) + VF? + 4\ F, < 1
\s '

< -. .
3 X <= (3.37)
The left-hand inequality of (3.37) implies

)\2)(2 - F]X -~ F,>0; (3.38)

this may be equivalently written as 7 < 1, where 7
= F(x)(x\;), with F(x) defined by (3.21). The
right-hand inequality of (3.37) implies that xx < 1,
which means that we may choose §, in the interval

<1—\/1—XK 1+4V1 — xk
2

0 2

< b < < 1. (3.39)

Obviously such a §, lies between the two roots of the
quadratic x> ~ x + xx/4 = 0. Therefore,
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§3-6,+25 <o,
4
which using the definition of « is equivalent to
X X .
— < §, - - .
do(l-68) ~ 2 aaa-ay

[Note that 6, < 1, by (3.39).] In virtue of (3.40), we
may choose §5 such that

. S X
4C0 (1 - 62) 4C1 (1 - 52) ) (341)

Since 0 < 7 < 1, we may choose §, such that

< 6y < b, —

7'62 < 61 < 62. (3.42)

Finally, let

S S S
20, (8 — T8) T 0 P26, -6

26,
(3.43)

With these choices, it can be seen that M = min{1
- 61,1 = 8,} =1 — 6,. It is not difficult to verify that
such ¢, €, €;, and x do indeed satisfy (3.34). Hence
(3.35) implies (3.34).

Since the condition (3.35) depends on «, the goal is
now to choose « in order to get the sharpest possible
form of the criterion (3.35), that is, the one holding for
the smallest possible value of \,. It is clear from the
form of (3.35) that this is obtained when « takes its
minimum value, which occurs at o = A(zy + z,)/2 and
is k = 4/(z; — 2o). Note that this value of « lies within
the range (3.8), so it is an acceptable choice. Using

€

this value of @, and noting that \, = 72/4Y2, (3.35)

then implies

T 2\/§f
2Y " (zi—z2)N’

We may therefore state the following nonlinear stabil-
ity theorem: If the width of the channel 2Y and the
vertical height of the domain (z; — zo) satisfy (3.44),
then the Eady basic state U = Az is stable to distur-
bances of arbitrary form and amplitude. In particular,
the potential enstrophy, the energy, and the boundary
available potential energy of the disturbances are
bounded uniformly in time in terms of the initial dis-
turbance, with such bounds decreasing to zero as the
initial disturbance decreases to zero. Note that the con-
dition (3.44) is independent of the basic-state shear A.

It is of interest to compare the nonlinear criterion
(3.44) with the stability criterion arising in the linear
(normal mode) stability theory, which is

o 240f
2Y (z-z2)N

(c.g., Pedlosky 1987). When the condition (3.45) is
satisfied, then the Eady basic state is linearly stable to

(3.44)

(3.45)
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disturbances of fixed spatial structure (normal modes)
having g = 0. Conditions (3.44) and (3.45) are clearly
quite similar, differing only by a numerical factor, but
their theoretical content is very different. The two cri-
teria are, of course, consistent with one another.
Whether the different numerical factor represents
something fundamental—in the sense of there being a
regime wherein the flow is not subject to normal-mode
instability yet is nevertheless unstable in a normed
sense—is something the authors do not yet understand.
It is a subject that deserves further investigation.

4. Discussion

By using exact invariants of the full nonlinear dy-
namics, a nonlinear stability theorem has been obtained
for the Eady basic state U = Az in the continuously
stratified, f-plane, Boussinesq model of quasigeo-
strophic flow. In particular, when the physical param-
eters of the problem are such that (3.44) is satisfied,
then the basic state is nonlinearly stable to disturbances
of arbitrary form and magnitude (possibly having non-
zero potential vorticity ). What is meant by nonlinear
stability in this context is that the important quadratic
measures of disturbance amplitude—the potential en-
strophy, the energy, and the available potential energy
on the rigid lids—are all bounded in terms of the initial
disturbance, with the bounds decreasing to zero as the
initial disturbance decreases to zero. This definition of
stability is to be distinguished from the strict mathe-
matical definition of Liapunov stability, which bounds
disturbance norms in terms of the initial values of those
same norms.

Although the present result may be regarded as an
analogue of Arnol’d’s second nonlinear stability theo-
rem for this problem, there are some notable differ-
ences. In particular, the key inequality (3.32) bounds
a quadratic disturbance quantity by a quantity involving
a linear disturbance quantity, H,; this in turn reflects
the fact that the conserved functional H(¢) has a non-
vanishing first variation at the basic state. Both of these
features distinguish the present approach from the en-
ergy-Casimir stability methodology of Arnol’d (1965,
1966; see also Holm et al. 1985).

Another difference with Arnol’d’s second theorem
concerns interpretation. Insofar as the stability criterion
(3.44) is a geometric condition, one might be tempted
to interpret it as a condition on the scale of the basic
flow as compared with the scale of dynamically ad-
missible disturbances. It is well known (MclIntyre and
Shepherd 1987, appendix B) that in the case of ho-
mogeneous boundary conditions, Arnol’d’s second the-
orem can be understood in terms of Fjertoft’s (1953)
‘‘anticascade’’ theorem in precisely this way. How-
ever, with inhomogeneous boundary conditions such as
arise in Eady’s model, the ‘‘scale’’ of the disturbance
is not a well-defined concept; thus, an interpretation in
terms of the anticascade theorem would seem to be
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unjustified. This is in contrast to the case of the Phillips
model of baroclinic instability, where the analogy with
Amol’d’s second theorem is more direct; there the
short-wave part of the marginal stability curve coin-
cides precisely with the nonlinear stability threshold
(Mu et al. 1994).

The nonlinear stability criterion (3.44) is qualita-
tively similar to the linear (normal mode) criterion
(3.45), differing only by a numerical factor. However,
the theoretical content of the two criteria is quite dif-
ferent. Whereas linear stability theorems only delineate
parametric regions of possible instability, an important
feature of nonlinear stability theorems is that they pro-
vide rigorous upper bounds on disturbance norms in
terms of the initial conditions of the problem. These
bounds may be useful in setting limits on possible non-
modal transient growth, for example. And when the
initial flow is unstable but sufficiently close to a stable
flow—in a sense that may be made mathematically
precise—this feature may be used to determine rigor-
ous upper bounds on the saturation amplitude of the
unstable disturbance (Shepherd 1988 et seq.). An ap-
plication of this method to the present problem could
provide an interesting complementary theory to Dra-
zin’s (1970) weakly nonlinear analysis of baroclinic
instability in the Eady model.
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APPENDIX A
Upper Bounds on H,, (¢) and |H(¢)|
a. The estimate for Hyy (1)

From the definition (3.28),

1
Hyo (1) = fn {‘)\—2 [Vipo!® + (1,[/0)2}dxdydz

+ 2(A; + A2), (A1)

where

A= [ 1otd — o)y,
1 -
A= fnx—z |Vipo- V| dxdydz

1
=f — Vo V| dxdydz.
N
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Using the Holder and Poincaré inequalities,

1/2 . l-I2
< ( fs 1 (¢o)2dxdydz> (fﬂ - ll/o)dedde)
< <f (o) 2dxdyd )m—l—
= o o) o
, 172
x (f V@ - ll’o)lzdxd}’dz)
1/2
—;—_( f (wo)zdxdde)
1/2
X (f V(T + §) - V(T + dfo)lzdxdydz)

1/2 .
(f ) dxdydz) (f (Ve + D)I?
1]

172
+ V(¥ + wo)lz}dxdydz> . (A2)

2
<7

Now using conservation of total energy (2.5), together
with the fact that ¢ does not contribute to the energy,
(A.2) implies

‘/5 , 172
A1 = ‘/'_fz <f9 (l’lo) dxdde)

X (L {ZIV(\I! + o) |?

172
+ % [+ l//o);lz}dxdydz) . (A3)

Using similar manipulations,

1 12
Ays — (f |Vll/o|2dxdydz)

172
(f |V!l/|2dxdydz)

1/2
<J. ‘leo dedde)

1/2

(f {1V (T + ¢)|* + IV‘Plz}dxdydz>

1/2
(f lVlll() dedde>
x ([ {ivew+pol + g1+ your:

. 0 S 0)z

12
+|V\D|2}dxdydz) , (A4

again using conservation of total energy. The combi-
nation of (A.1), (A.3), and (A.4) demonstrates that
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H,4 (1) is bounded from above by a quantity depending
only on the initial disturbance, which tends to zero as
the initial disturbance tends to zero.

b. The estimate for |Hy(t))

From the definition (3.19) together with the Hélder
inequality, we have
1/2
dz)
y=Y

<l “ 1,2
|He ()] < 3 (L ¥
* 9o

8 <f10 [ -x Oy
N % <J‘21 le dz)llZ
20 y=~Y
2
X (f [ %o 4o ] dz)m. (A.5)
20 y=—Y

-X ay
The problem now reduces to bounding the integrals of
2 in the above expression in terms of the initial dis-
turbance. To this end, let y(y) = (y + Y)/(2Y). First
consider y = Y:

[(x, ¥, 2, 0)]* = f

dx

2 172
)
y=Y

— {y(y)§?*}dy

_ L J' 2dy + f 29() ¥y dy
\2Y+1J' wzdﬁf @y)%dy.
(A.6)

The left-hand side of (A.6) is independent of x, by the
boundary condition (2.4a). Noting this, and integrating
(A.6) over x and z, then yields

2 2Y+1J‘~
2 2 d
L¢ axXy Jo Ve

dz <
y=Y

L .
+2X . (Vi [2dxdydz. (A7)
Using (3.27) with (A.7), we then have

fz'J;’- Lo (L, L
o LT Naxya, T 2x

2 <
f vl dxdydz+ 4XY

_ 2+l 1 ,
- (2xn2+x)fn{'w‘1’””°”

+ é (T + ), 1% + IV\IIP}dxdydz

H*a (t)

2 + 1
4XY

+

Hys (1), (A8)



1 DECEMBER 1994

the last inequality following from conservation of en-
ergy, as in (A4).

Precisely the same manipulations lead to (A.8) with
y = Y on the left-hand side replaced by y = —Y. Since
H,,(t) has been shown in section a of this appendix
to be bounded in terms of the initial disturbance, the
combination of (A.5) with (A.8) demonstrates that
| Hy (2)] is bounded from above by a quantity depend-
ing only on the initial disturbance, which tends to zero
as the initial disturbance tends to zero.

APPENDIX B

Proof That (3.34) Implies (3.35)

We show below that (3.34) implies (3.35) —equiv-
alently, that the latter condition is necessary for the
existence of constants ¢, €, €;, and x satisfying (3.34).

Therefore, suppose that ¢, €, €, and x exist satis-
fying (3.34). Let

6]—_—(_1_.+l)ﬂX_)+ 1

€ €/ 2N 2eNy’
x(1 1 X
b==—+—), 6=, (Bl
2 2(60 e,) 3 2¢€0 ( )

which is equivalent to (3.43). The hypothesis (3.34)
implies

X X
2 > == Mc, > ———=—,
Moo= 26 M9 >3 o
0<dh<b<l, 1h<éh<l, x>0, (B2)

where M = min{l — §,, 1 — 6,}.
There are two cases to consider. In the case 6, = §,,
we have M = 1 — §;, and (B.2) thus implies

X X
2¢0(1 — 6,) > =, 2¢,(1 —6;) > —5— .

co( 1) 26, ci( 1) 2(52 6
Hence,

X X
—— L < by - ———
4co(1 = 6) 2 52 4c,(1 - 6,)

& X

<—=—-—>_ (B3

T 4c 1 ( 1-46 1) ( )
The inequality obtained by omitting the two middle
terms of (B.3) is equivalent to

§1—6 +XZ <,

2 (B.4)

recalling the definition k = (1/¢y) + (1/c,). Since §,
> 0O satisfies the inequality (B.4), the quadratic must
have real roots; this implies

1 — xxkr >0, (B.5)
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which is equivalent to

FzK

A.z"“FlK__X_>O (B6)

since 7 = F(x)/(x\;). On the other hand, (B.3) and
the fact that 6, < 6, yields

X —_x
4co(1 = 6) 4ey(1 = 6))

Omitting the middle part of the above inequality pro-
duces

<63<§1“—

-6 +X <o

4 (B.7)

Since 6, > O satisfies (B.7), an analogous argument to
that concerning (B.4) implies

1
l—-xxk>0e k< —. (B.8)
X
Combining (B.8) with (B.6) then implies
AZ - F]K - F2K2 > 0, (B.9)

which is just (3.35).
The second case to consider is 6, < 8,, for which M
= 1 — 4, and (B.2) therefore implies

X X
2¢0(1 — &) > 2 2¢,(1 = 6) > —2—— .
co( 2) 253 ¢y ( 2) 2(62 — 53)

Hence,
X X
—L—— < 5 < Gy ————
deo(l — &) 2 52 dei (1 - 6)°
which implies that
55—52+§<0. (B.10)

The fact that §, > 0 satisfies (B.10) then implies (B.8).
In this case, since 76, < §; < 8,, it follows that 0 < 7
< 1, which is equivalent to
S F, + VF? + 4\, F,
X 2N :

Combining (B.11) with (B.8) then implies (B.9),
which is just (3.35).

(B.11)
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