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ABSTRACT

The question of linear sheared-disturbance evolution in constant-shear parallel flow is here reexamined with
regard to the temporary-amplification phenomenon noted first by Orr in 1907. The results apply directly to
Rossby waves on a beta-plane, and are also relevant to the Eady model of baroclinic instability. It is shown that
an isotropic initial distribution of standing waves maintains a constant energy level throughout the shearing
process, the amplification of some waves being precisely balanced by the decay of the others. An expression is
obtained for the energy of a distribution of disturbances whose wavevectors lie within a given angular wedge,
and an upper bound derived. It is concluded that the case for ubiquitous amplification made in recent studies
may have been somewhat overstated: while carefully-chosen individual Fourier components can amplify con-
siderably before they decay, a general distribution will tend to exhibit little or no amplification.

1. Introduction

The subject of the time development of sheared dis-
turbances has a long and interesting history, dating back
at least as far as Lord Kelvin (Thomson, 1887). In the
course of addressing certain questions regarding the
stability of shear flow, Kelvin made the important con-
. tribution of finding an exact solution to the problem
of disturbance development in two-dimensional vis-
cous parallel flow with constant shear. This early work
was then developed further by Orr (1907), who resolved
many of the stability issues by clarifying the distinction
between the discrete (or normal-mode) spectrum and
the continuous spectrum of perturbation eigenfunc-
tions. Then by considering the evolution of arbitrary
initial disturbances in the manner of Kelvin, Orr
showed that the energy density of inviscid plane waves
with phase lines leaning into the shear would experience
a temporary amplification before eventually dying
away. He summarized this phenomenon as follows:
“It accordingly appears that, in this simple case, al-
though the disturbance, if sufficiently small [(so that
linear theory is valid—a non sequitur for single plane
waves which happen to be exact nonlinear solutions)],
must ultimately decrease indefinitely, yet, before doing
so, it may be very much increased . . . [Indeed] the
ratio of increase may be made as great as we like.”
(Orr, 1907, p. 32; bracketed text mine.)

Within the geophysical fluid dynamics community,
it is fair to say that the striking normal-mode baroclinic
instability theories of Charney (1947) and of Eady
(1949) served to divert the attention of most researchers
away from the study of initial-value problems. Indeed
it is only fairly recently that the insights of Kelvin and
Orr have been actively revived in the literature, in

recxaminations of the plane Couette flow problem U(y)
= Syby Rosen (1971), Yamagata (1976), Farrell (1982),
Tung (1983), and Boyd (1983). While the last four au-
thors allow the possibility of Rossby wave propagation,
this does not alter the nature of the problem in any
fundamental way: propagating waves always encounter
the same shear S. Predating these recent studies are
the papers of Case (1960) and of Pedlosky (1964), but
those analyses are valid only in the asymptotic limit
of large time; they consequently miss the temporary
amplification phenomenon which is the focus of cur-
rent attention.

The purpose of the present note is to point out a few
aspects of the plane Couette flow problem that have
not yet been described in the literature, particularly
with regard to the extent of temporary amplification.
To keep the treatment as simple as possible and to
facilitate direct comparison with most of the recent
work, attention is limited to the case of inviscid dis-
turbances in an unbounded linear shear flow. The exact
solution of the linearized initial-value problem is de-
scribed in Section 2, while the energetic evolution of
a single standing wave is derived in Section 3. The new
results come from considering the integrated evolution
of a distribution of initial disturbances, in Section 4;
the principal finding is that an initially isotropic dis-
tribution maintains a constant energy level for all time.
In consequence, an initial distribution of standing
waves of uniform amplitude with wavevector angles
covering a section Af out of 7/2 has its amplification
bounded by =/(2A6). This suggests that the case for
ubiquitous amplification made in recent studies may
have been somewhat overstated. Some of the impli-
cations of these results are discussed in Section 5.
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2. The exact solution

The inviscid linear evolution of disturbances in a
shear flow is governed by the linearized vorticity equa-
tion

a 9\
(at+Uax)V¢/ Uy =0, (1)
where V¥ is the disturbance streamfunction and U(y, 1)
the given basic-state flow. In general, the nonseparable
form of (1) prevents an exact analytical solution. For
a linear shear flow U = Sy, however, (1) may be ma-
nipulated into a separable equation in the spatial co-
ordinates by using the “convected coordinates” trans-
formation

n=1y, 2

This procedure was employed implicitly by both Kelvin
(Thomson, 1887) and Orr (1907), and formalized by
Phillips (1966). Using (2) to transform (1), the material
derivative becomes d/0r and one obtains

9 are* (o 3\
a5 [agz * (81; St ag) ]‘0 0. ®
where the vorticity { = {,, + ¥, and is evidently con-
served; Eq. (3) must be considered together with the
initial condition {(£, , 7 = 0) = {4(£, ) and the bound-
ary condition that |{| remain bounded as £, y — 0.
Then (3) allows the exact, 7-independent solution

§(& m, 7) = Re[§o(k, Dekerin], 4

where {y(k, ) is the Fourier transform of {(£, 7). The
principle of superposition being valid for this linear
problem, one can build up the solution to general initial
conditions by combining plane waves of the form (4);
in-the original coordinates these become

§Cx, y, 1) = Re[expilkx + (I ~ Skn)y + ¢]], (5)

where ¢ is a phase shift parameter. It is evident that
the solution (5) is nonseparable, but that at any given
time it represents a plane wave. Indeed the time evo-
lution of the wave is simply that of a tilting over of
phase lines towards the x-axis, sometimes called the
“Venetian-blind effect.”

The relation between y and ¢, together with the con-
servation of wave enstrophy density, both described by
(3), lead to the following time dependence for the wave
(kinetic) energy density:

T =1,

E=x—-8,;

Ty

5 Iy
k* + (I — Skey?
_ kKt
Tk + (I - Sk

Ek, 1) =

E(k, 1,0, 6)

written as a function of the initial wavenumbers k and
l. Incidentally, this expression is identical to those ob-

tained by Tung (1983) and by Boyd (1983) in their
Rossby-wave analyses, demonstrating the irrelevance
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of beta to this aspect of the problem. The properties
of (6) are strikingly evident: the energy of any wave
with k # 0 will eventually decay with a ¢ 2 dependence;
but if Sk/ > 0, then there will be a temporary ampli-
fication preceding the decay. It is the latter point which
has attracted so much recent interest, and which was
raised originally by Orr (1907). The former feature is
the one which is relevant to asymptotic analyses such
as those of Case (1960) and of Pedlosky (1964); it was
also discussed by Kelvin (Thomson, 1887).

3. Temporary amplification of a standing wave

In what follows the analysis is limited to the standing-
wave problem, namely, that beginning from a pair of
waves (k, /) and (k, —/) with the same initial energy.
Since the interest is in integrated results, this is not
really restrictive. Standing waves have also been ex-
plicitly treated by Orr (1907) and by Boyd (1983). One
may choose k and S positive for definiteness, and then
consideration of positive / covers the range of possible
waves. There is no loss of generality in scaling time so
that S = 1, and length so that k2 + /2 = 1. Then the
ratio of actual to initial wave energy density of the two
waves may be written

Ek, I, t) + Etk, =1, 1)
E(k, 1, 0) + E(k, —1,0)
_ 1+ k% )

(1 + k%2 — 4k %2’
it is understood that k, / € [0, 1] and ¢ € [0, o). Now,

to investigate if and when 7 has a maximum, note that
the condition for 81/t to vanish is that

2k + 4kt + 2k%4k2 — 3 = 0,
so that

Ik, 0=

(7

®)

kt=0 or kt=Q2l- 1Y% 9

in the above, the scaling relation k2 -+ /2 = 1 has been
used freely. The initial conditions guarantee that, with
the exception of the trivial case k = 0, the total wave
field will initially have an amplifying component due
to the (k, /) contribution, as well as a decaying com-
ponent due to the (k, —/) contribution. Equation (9)
states that at ¢ = 0 the instantaneous growth rate of the
former will exactly balance the decay rate of the latter.
As t — oo, of course, I approaches zero. Whether the
amplifying component can induce a temporary in-
crease in / evidently depends on the initial wavevector
orientation: (9) implies that for 2/ < 1, or § = arctan(//
k) < =/6, I(t) will decay monotonically; while if /6
< 0 < /2, then I(f) will take a simple maximum. In
the latter circumstance, it is readily verified that

1 1
m for E<l<1.

As 8§ — 7/2 and [ — 1, the maximum value of I be-
comes arbitrarily large (the point of the Orr (1907)

Inax(l) = (10)
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quotation given in Section 1), but it is attained after a
very long time. In practice one might expect there to
exist a minimum nonzero value of & (through discre-
tization of the spectrum in a numerical model, for ex-
ample), in which case (10) would have an upper bound.
But it is usually the moderate-k disturbances which are
of most interest, since they attain their maximum am-
plitude quite rapidly. For the / = 2k ~ 0.89 waves
considered by Tung (1983) and by Boyd (1983), the
maximum amplification I is 2.65 and is attained at
t=20.

4. Integrated results

As the single standing-wave initial conditions of
Section 3 are somewhat special and rather unrealistic,
it is of interest to examine the behavior of a distribution

tanfz
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of initial waves. To arrive at a general formula, let
6 = arctan(//k) and define
1 J‘"Z
= I8, t)do
@ =6 o "OD

J(ols 023 t) (ll)

to be the average amplification of waves with 6, < 6
< 0. Then substituting (7) with k = cosf and [ = sinf
into (11) yields
S0y, 0, 1)

1 62 (1 + £2 cos®0)db
(6, — 6,) Jo, (1 + % cos®8)? — 412 cos®d sin®f ’

which becomes, upon using the Euler substitution
= tanf (noting that df = cos®#dx and that sec?d
=1+ x?,

(1 + x*+ t¥dx

2xt)

T, 62,0 = (0, — 01) Juano, (1 + X%+ 12 + 2xt)(1 + x2 + 12 —
1 tand? 1 1
" 200, — 6,) Juann, [(x+z)2+ R 1}‘1“”
1
20, - 6y)

The most striking new result comes from evaluating
(12) with 8, = 0 and 6, = =/2, namely, for an average
over all possible waves with k2 + /2 = I:

JO, ©/2, 1) = 1. (13)

Therefore the energy of an ensemble of waves with an
initially isotropic distribution of energy remains con-
- stant for all time. This relation implies that the measure
or weight of the amplifying waves is always large
enough to balance the asymptotic decay of the others,
yet is never so large that the total energy is greater than
its initial value.
Consider the case of 8, = 7r/2 — ¢ with ¢ small, so
that a small range of the shallowest waves is excluded,
and 6, = 0 as above; then (12) implies

J(O, g — t)

1 [ (1 + et) (1 - el)]
~ — | arctan + arctan
7r € €
1 for e<1

~ 2 14
— for > I (14)
el

hence the energy stays level until £ = O(1/¢), and then
drops off like £72 just as in the single-wave case. On the
other hand, if 6, = x/2 but 6, # 0, the fact that J(O,
f;,)—0ast— o0 imp]ies that

J,, 7/2, ) — as t—oo. (15)

201

[arctan(tand, + ) + arctan(tané, — t) — arctan(tanf, + ) — arctan(tané, — ¢)].

(12)

For such distributions the asymptotic-decay fate of
single plane waves is avoided. It is indeed easy to see
from (13) that in general J has the upper bound

™
2(0: — 01)°

but this is a least upper bound only when 8, = n/2;
otherwise the amplification falls short of (16) and the
asymptotic decay eventually prevails.

Some plots of J against time are shown in Fig. 1 for
various values of 8, and 6,, in order to illustrate the
points discussed above. Even in the rather extreme case
of §, = w/3 and 6, = 57/12 (or § = 60°~75°) the am-
plification is only threefold, one-half of the bound (16).
The physical point to be made is that it is rather un-
likely that the energy of an arbitrary disturbance would
be concentrated in a narrow range of wavevectors, still
less in a single Fourier component: generally the mea-
sured energy would be spread over a fairly broad range
of 6, making the amplification process inefficient;
moreover, the broader the range the smaller the bound
(16) would become, and the more of an overestimate
it would be.

J(aly 02’ t)S (16)

5. Discussion

The much studied problem of the time development
of sheared disturbances in plane Couette flow, solved
originally by Lord Kelvin (Thomson, 1887), has been
reexamined with. special regard to Orr’s (1907) tem-
porary-amplification phenomenon. The results are di-
rectly applicable to the development of Rossby waves
in linear shear flow, and, with the exception of bound-
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FiG. 1. The time evolution of J(8,, 65, ?) for selected values of 8,
and 6,: (a) 15-30°; (b) 30-60°; (c) 0-90°; (d) 45-90°; (¢) 60-75°.
The small figures illustrate that portion of the spectral circle k> + /2
= 1 which is included, with k along the horizontal and / along the
vertical.

ary effects, to the Eady model of baroclinic instability.
Temporary amplification of sheared disturbances, rep-
resenting the initial algebraic growth by elements of
the continuous spectrum, has been the object of much
recent attention in the literature (e.g., Yamagata, 1976;
Farrell, 1982; Tung, 1983; Boyd, 1983; and, in a some-
what more general context, Pierrehumbert, 1983). In
fact, Farrell has gone so far as to suggest that this phe-
nomenon might explain some cases of “Type B” cy-
clogenesis, in the sense defined by Petterssen and Sme-
bye (1971). While Orr’s result—namely, that the ener-
getic amplification of a single plane wave may be made
arbitrarily large by making the wave sufficiently shal-
low, i.e., k <€ I—is certainly true, the present work
demonstrates that, for a general disturbance, one can-
not expect any significant amplification whatsoever.
Specifically, an isotropic initial distribution of waves
with the same total wavenumber will maintain a con-
stant energy level for all time.

Corollaries of the foregoing result follow easily. Any
initial distribution of standing waves of uniform am-
plitude which includes the region about k = 0 will grow
monotonically, approaching a large-time asymptotic
limit of an amplification factor equal to the inverse of
the fraction of the spectral band originally excited [see
(15)], and avoiding the single-wave asymptotic decay.
For any such distribution which excludes the imme-
diate vicinity of kX = 0 the same upper bound must
apply, but it may no longer be a very good indicator
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of the maximum amplitude; indeed the energy need
not grow at all. Even if the energy does grow, the bound
will be quite severe for a distribution with reasonably
large spectral breadth, and the amplification could well
be insignificant.

The connection between idealized studies such as
the present one—which is linearized, zonally homo-
geneous, and restricted to a rather special mean-flow
shear—and the observed development of atmospheric
disturbances, is, to say the least, tenuous. However, it
is perhaps no more tenuous than the presumed con-
nection for normal-mode instability calculations. The
most promising avenue of future research into “de-
velopment theory” must surely be the consideration
of the evolution of unstable disturbances in zonally-
inhomogeneous flows, with nonlinear wave, mean-flow
interaction effects included; unfortunately, the math-
ematics involved in such investigations is extremely
forbidding. The present work illustrates that even the
simplest, most resolved problems may have surprising
characteristics yet to be elucidated, the discovery of
which is essential to an understanding of more com-
plicated phenomena.
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