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 2

Hippurate, the glycine conjugate of benzoic acid, is a normal constituent of the endogenous 

urinary metabolite profile and has long been associated with the microbial degradation of 

certain dietary components, hepatic function and toluene exposure, and is also commonly used 

as a measure of renal clearance. Here we discuss the potential relevance of hippurate excretion 

with regards to normal endogenous metabolism and trends in excretion relating to gender, age, 

and the intestinal microbiota. Additionally, the significance of hippurate excretion with regards 

to disease states including obesity, diabetes, gastrointestinal diseases, impaired renal function, 

psychological disorders and autism, as well as toxicity and parasitic infection, are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TEXT. 

 

Introduction 

Page 2 of 70

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3

 

Hippurate, the glycine conjugate of benzoic acid, is a normal component of urine with a strong 

association with diet and the intestinal microbiota. Spectroscopic profiling of urine has found 

hippurate to be a distinguishing feature of many physiological and pathological conditions. 

Since it is a ubiquitous compound in nature, its utility in elucidating biochemical mechanisms 

is partially dependent on co-perturbed metabolites (Table 1). As well as being part of the 

endogenous urinary metabolite profile, hippurate has other specific uses; it has been identified 

as a biomarker for high dose exposure to certain toxic compounds such as toluene,1-2 and is also 

commonly used as a measure of renal clearance.3-4 Additionally, the ability of a microorganism 

to hydrolyze hippurate to benzoic acid and glycine has been used extensively as an aid in 

bacterial species characterization and identification.5-12 Here we review the origin, etiology and 

behavior of hippurate in response to physiological and pathological challenges, and consider 

the effects of gene-environment interaction on its urinary excretion.  

 

History, chemistry and biosynthesis 

 

Hippurate, also known as hippuric acid, benzoylglycine, (benzoylamino)-acetate, is the glycine 

conjugate of benzoic acid, and has the chemical formula C9H9NO3. Hippurate was first 

identified in urine by Liebig in 1829,13 and the glycine conjugation of benzoate is thought to 

have been the first described metabolism reaction,14 after a report by Alexander Ure in 1841 

demonstrated a relationship between the ingestion of benzoic acid and the excretion of 

hippurate.15 The reaction was then later confirmed by Wilhelm Keller in 1842.16 Liebig 

assigned the name ‘hippuric’ from the Greek word for horse, hippos, as the acid was first 
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 4

isolated from horse urine. The metabolite is found in high concentrations in the urine of horses 

and other herbivores and the decomposition of the alkaline hippurates has been attributed to 

causing the odor associated with horse urine. 

 

Hippurate has a molecular weight of 179.17266 g/mol, a melting point of 187 – 188 °C and a 

boiling point of 240 °C. In a 1H NMR spectrum (phosphate buffer, pH 7.4; prepared in 8:2 

H2O:D2O), hippurate is identified by the presence of peaks at 3.97 (doublet, CH2), 7.56 (triplet, 

m-CH), 7.64 (triplet, p-CH) and 7.84 (doublet, αCH) ppm, and in 13C NMR spectra by the 

presence of chemical shifts at (ppm):  179.4, 173.1, 134.8, 131.4 and 129.8.17-19 In mass 

spectrometry hippurate has a mass-to-charge ratio of 180.0660 in positive ion analysis, and 

178.0504 in negative ion analysis. Fragmentation of hippurate using mass spectrometry 

predominantly involves loss of glycine. 

 

Urinary hippurate concentrations can be measured using a variety of techniques including 1H 20 

and 13C NMR spectroscopy,21 capillary zone electrophoresis (CZE) and capillary 

electrochromatography (CEC) coupled with NMR spectroscopy,22 high performance liquid 

chromatography (HPLC),23-24 HPLC coupled with mass spectrometry (HPLC-MS),25 gas 

chromatography (GC),2, 26 GC-MS,27 solid phase extraction (SPE),28 colorimetric reaction,29 

immunochromatographic analysis30 and microfluidic chip-based electrochemical 

immunoassay.31  

 

Some dictionaries and other literature state that hippurate is a substance that is found in the 

urine of herbivores and rarely in man (‘hippuric acid’ Encyclopaedia Britannica Online, 2011). 
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 5

Despite this common assertion, more recent measurements of the comparative urinary 

concentration of hippurate in horse and man in the literature are scarce. However, in a book 

published in 1885, Gresswell and Gresswell state that hippurate “occurs in very small 

proportion in the urine of man (less than 1 per cent.) and carnivora, but is present in abundance 

as alkaline hippurates in that of herbivorous animals.”, and reference Ernst von Bibra as finding 

hippurate to be “from five to fifteen parts in 1000 of the urine of the horse”.32 While these 

comments might suggest that hippurate is a trace component in urine, when compared to other 

common organic molecules present in the urine, as detected by 1H NMR spectroscopy for 

example, it is seen to be one of the dominant signals in the aromatic region of samples obtained 

from a wide range of species, including man. 

 

The typical urinary concentration of hippurate in man has been measured as 1.83 ± 1.24 mM 

(absolute), and 2.28 ± 1.43 mM (normalized to creatinine), in healthy subjects,33 and The 

Human Metabolome Database reports urinary concentrations of hippurate, relative to 

creatinine, ranging from 27.92 to 932.66 µmol/mmol creatinine.34  More recently, the mean 24-

hr urinary excretion for hippurate was measured by UPLC-MS/MS as 6284.6 (4008.1) 

µmol/24-hr in men and 4793.0 (3293.3) µmol/24-hr in women (standard deviation shown in 

brackets).35 The findings of this latter study may be more informative than single time point 

concentration values, as 24-hr urinary excretion measurements account for intra-individual 

differences and factors such as diurnal variation and diet, which may affect the urinary 

concentration of both hippurate and creatinine. 

 

The biosynthesis of hippurate occurs within the mitochondrial matrix and requires two 

reactions,36 as illustrated in Figure 1. The first reaction involves the conversion of benzoic acid 
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 6

to benzoyl adenylate via pyrophosphate (PPi) exchange with ATP. Benzoyl-CoA synthetase 

catalyses this step and substitutes the adenylate moiety for coenzyme A (CoA). In the second 

reaction, glycine freely crosses the inner mitochondrial membrane to react with benzoyl-CoA,37 

catalyzed by benzoyl CoA: glycine N-acyltransferase, to produce hippurate.38-43 Benzoyl CoA: 

glycine N-acyltransferase has been found to have a higher specific activity compared to 

benzoyl-CoA synthetase; thus, administration of substances which are able to form CoA esters 

with the latter enzyme may inhibit the first step in glycine conjugation of benzoic acid, an 

effect studied using valproate.44 Evidence suggests that hepatic uptake of hippuric acid is 

mediated by MCT2, a monocarboxylate transporter, and that there is competition for this 

transporter with benzoate and L-lactate.45 Investigators have determined that active renal 

tubular secretion is the principle elimination route for hippurate,46 and disruption of this 

mechanism results in accumulation of hippurate in the blood.47 Upon ingestion, benzoic acid is 

biotransformed to hippurate and excreted in urine within 4 hours in man.48-49  
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 7

 

Figure 1. Possible routes of metabolism of dietary polyphenolic compounds, leading to the 

excretion of hippurate. Adapted from Ure 1841; Kao et al., 1978; Akira et al., 1994; and 

Clifford et al., 2000.15,48,63,82 
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 8

Rate-limiting factors for hippurate formation 

 

Several factors have been implicated as rate-limiting steps in benzoic acid glycine conjugation, 

and it has been demonstrated that, following intravenous administration of sodium benzoate, 

both glycine and CoA supply are limiting factors for hippurate production.50-51  

 

Many investigators have concluded that glycine availability is one of the most significant 

factors in determining the rate of hippurate production. An investigation in rats in 1941 

demonstrated that the growth inhibiting-effect of orally administered sodium benzoate was 

normalized by glycine supplementation.52 This was further supported by a study in which the 

co-administration of glycine with sodium benzoate resulted in a normalization of liver serine 

and glycine concentrations, and also reduced benzoyl CoA accumulation, compared to 

controls.53 Studies have also found that glycine administration results in increased hippurate 

production in man.54-55 

 

In addition to glycine, the depletion of CoA has been implicated as a rate-limiting factor. If 

available glycine supplies become reduced, CoA is trapped as benzoyl-CoA; the result is that 

free CoA is unavailable to be recycled for the first reaction in glycine conjugation, and thus 

production of further benzoyl-CoA is halted, limiting the rate of the reaction and the production 

of hippurate.50 Further to this, it has also been suggested that the glycine cleavage system may 

be important in determining the rate of glycine conjugation, due to its role in endogenous 

glycine catabolism.51 In addition to rate-limiting factors, evidence suggests that the rate of 

Page 8 of 70

ACS Paragon Plus Environment

Journal of Proteome Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 9

glycine conjugation is subject to inter-individual variability in humans, and is normally 

distributed within the population.56 

 

Species differences in glycine conjugation of benzoic acid 

 

Inter-species variation in benzoic acid metabolism has been investigated in several studies57-61; 

as with man, it has been found that 95-100% of benzoic acid is excreted as hippurate in several 

animals including rodents, the rabbit, cat and the Capuchin and Rhesus monkey. However, 

differences in the excretion of benzoic acid metabolites were found in animals including the 

dog, ferret, hedgehog, pig and sheep, with up to 20% of administered benzoic acid excreted as 

benzoyl glucuronide and benzoic acid. These differences have been attributed to the dose of 

benzoic acid administered, and also inter-species variation in the glycine and the glucuronic 

acid conjugation capacity of kidney and liver cells, and the rate of glycine mobilisation.62-63 In 

man, hippurate  

synthesis occurs in both the liver and cortical cells of the kidney55, 64-65; although, it is thought 

that, due to the anatomical position and larger mass of the liver, this organ is more 

quantitatively significant for the glycine conjugation of benzoic acid.50, 56 However, it is also 

important to note the major site of biosynthesis of hippurate is not always the liver. Indeed, in 

the dog it would seem that the liver has no part in hippurate synthesis and that this occurs in the 

kidney.66 
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 10

Gender  

 

Differences in hippurate excretion in males and females have been illustrated in animal studies; 

Williams et al. found that the urinary metabolite profiles of male and female 8-week-old 

Zucker rats could be differentiated using PLS-DA modeling of 1H NMR spectral data, with 

hippurate elevated in the urine of female animals.67 Higher excretion of hippurate by females 

was also found by Gavaghan McKee et al. across three different strains of mice (Alpk:ApfCD, 

C57BL10J and the “Nude mouse”).68 

 

Gender-associated variation in the excretion of hippurate has also been observed in studies in 

man. For example, females were found to excrete a significantly greater amount of hippurate 

compared to males in a study of a Brazilian population (P<0.05).69 A 1H NMR-based study 

which recruited subjects from Xiamen, China, employed PCA to highlight a trend of increased 

hippurate excretion in females, although the difference was not statistically significant 

according to a further ANOVA analysis.70 Similarly, Psihogios et al. used 1H NMR coupled 

with PLS-DA, and found that hippurate excretion was higher in the female subjects, but that the 

difference between gender groups was not statistically significant as judged by an unpaired t-

test.71 As demonstrated by these studies, high inter-individual variation can confound the 

interpretation of data relating to gender-associated differences in hippurate excretion. In 

contrast to these studies, Wijeyesekera et al., found that 24-hr hippurate excretion was 

significantly higher in men compared to women.35 This difference in findings most likely 

reflects the intra-individual variation that is accounted for with 24-hr measurements, compared 

to single timepoint urine collections. 
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 11

Age 

 

Animal studies have demonstrated a trend of increasing hippurate excretion during the early 

stages of life. 1H NMR spectroscopic analysis of urine samples from male Wistar-derived rats 

collected from 4 to 20 weeks of age demonstrated that hippurate excretion was relatively low 

and highly variable at 4 weeks of age. Excretion then increased as the animals aged, before 

stabilizing at approximately 8 weeks (Figure 2). It was thought that this pattern was due to the 

maturation of the gut microbiota and adaptation to an adult diet.25 These results are further 

supported by an analysis in Sprague-Dawley rats,72 and also a life-long study in dogs, in which 

excretion of hippurate was found to be increased in dogs aged 1.5 years, compared to samples 

taken from the same animals at 13 weeks old.73 

 

Figure 2. Normalized spectral intensity of hippurate from 1H NMR spectra of urine samples 

collected from male rats aged between 4 and 20 weeks (Data expressed as mean ± standard 

deviation). Taken from Williams et al.25 
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Studies in man have also highlighted age-related differences in hippurate excretion. A study 

which recruited subjects from Minas Gerais, Brazil, with no occupational exposure to toluene, 

found that subjects aged 36-60 years old (n = 45) excreted significantly more hippurate 

compared to subjects aged 18-35 years old (n = 70) (P<0.05).69 Wijeyesekera et al also found a 

trend of increased 24-hr hippurate excretion with increasing age, with higher excretion in 

individuals aged 50-59, compared to individuals aged 40-49 years.35 However, in contrast to 

these findings, a recent study of a Greek population concluded that subjects over 50 years of 

age tended to excrete lower concentrations of hippurate compared to subjects under 35 years of 

age.71 It is difficult to interpret data regarding age-related differences in hippurate excretion in 

man, due to the high inter-individual and intra-individual variance in synthesis of hippurate.56, 

74 Additionally, several environmental factors have been shown to significantly influence 

hippurate excretion, such as diet, disease and exposure to certain toxins, which are often 

difficult to control within the context of a human study, and which may co-vary with age, for 

example body weight. 

 

Diet 

 

Benzoic acid, and thus hippurate, can be produced from the metabolism of many dietary 

components including phenylalanine,75 quinic acid,76 shikimic acid,76-78 and various phenolic 

compounds such as chlorogenic acid and (+)-catechin (see Figure 1).79 Hippurate excretion has 

long been associated with the metabolism of polyphenol-rich components of the diet such as 

vegetables, fruit, tea and coffee.80-82 The large polyphenolic molecules found in the diet, such 

as chlorogenic acid and (+)-catechin, are transformed via microbial and mammalian co-

metabolism through a series of steps, resulting in a range of simpler aromatics, such as 
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 13

phenylpropionic acid, which can then be further metabolized to produce benzoic acids.79, 82-83 

Also, benzoic acid used as a food preservative is a further source of hippurate synthesis.  

 

There has been much interest in the key polyphenolic molecules found in the human diet due to 

their antioxidant potential and associated impact on health. As such, various studies have 

investigated the metabolism and absorption of polyphenols such as chlorogenic acid,84 quinic 

acid76 and cinnamic acid,85-87 and in each case, hippurate has been identified as a predominant 

urinary metabolite. 

 

Additionally, a number of studies have shown that increased hippurate excretion can result 

from the ingestion of specific dietary components, including chamomile tea,88 Gingko biloba,89-

90 apple cider,91 sweet potato,92 cranberry,93 and other edible fruits.94 The metabolism of tea and 

the bioavailability of tea flavanoids has been the subject of particular interest,79, 82, 95-98 and it 

has been shown that hippurate is the main urinary metabolite from consumption of black82, 95 

and green96 tea, with a three-fold increase in hippurate excretion reported following the 

consumption of eight cups of black tea per day.82 

 

It is thought that hippurate production, following consumption of tea, is due to the metabolism 

of catechins and related polymers such as theaflavins and thearubigins.99 The phenolic 

molecules originating from tea are poorly absorbed in the small intestine, and are thus available 

for metabolism by the colonic microbiota.100 The microbial species cleave the catechin ring into 

valerolactones, which are then metabolized to phenylpropionic acids. These molecules are 

absorbed and metabolized in the liver via β-oxidation to produce benzoic acid, before glycine 
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conjugation and excretion as hippurate.83, 101 Olthof et al. demonstrated the significance of the 

gut microbiota in metabolizing polyphenolic compounds when it was shown that, following 

administration of cholorogenic acid and tea phenols, subjects with an intact colon metabolized 

roughly half of the phenols to hippurate; whereas in subjects without a colon, only trace 

amounts of phenolic acid metabolites were excreted.79  

 

There has also been interest in how black and green tea may differ in their effects on human 

metabolism,97 and much debate as to the superiority of green tea with respect to conferring 

health benefits. Van Dorsten et al. compared the effects of black and green tea on metabolism 

in 17 male subjects, in a randomized cross-over study. Urine samples were analyzed using 1H 

NMR spectroscopy coupled with PCA and PLS-DA. Consumption of both black and green tea 

resulted in increased excretion of hippurate and 1,3-dihydroxyphenyl-2-O-sulfate; however, 

PCA demonstrated separate clustering of samples for black and green tea, with green tea 

consumption resulting in the excretion of several unidentified aromatic metabolites. 

Additionally, subtle differences in the effect on endogenous metabolism were found between 

green and black tea, with green tea causing an increase in the excretion of TCA-cycle 

intermediates, such as pyruvate, oxaloacetate, 2-oxoglutarate, succinate and citrate.  

 

Certain studies have examined the impact of entire food groups and diets on urinary metabolite 

profiles. In a recent 1H NMR spectroscopy-based metabonomic study, urine samples were 

collected from 41 male and 40 female omnivorous (OMN) subjects, aged between 23 and 55; 

and 42 male and 38 female lacto-vegetarian (VEG) subjects, aged between 18 and 40. VEG 

participants were observed to excrete higher amounts of hippurate than those on a OMN diet. 

The greater phenolic content of the lacto-vegetarian diet was implicated in such differences. In 
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 15

addition, succinate, citrate and formate excretion was also found to be higher in VEG samples, 

whereas TMAO, taurine, glycine, phenylalanine and methylhistidine were higher in OMN 

samples. However, significant differences in the lifestyles of VEG and OMN subjects may also 

have contributed to the differences in urinary metabolites observed.70 

 

Similar findings were described by Walsh et al. in a study which compared urinary metabolite 

profiles from subjects on a low-phytochemical diet (LPD) in which fruit and vegetables were 

absent, a standard-phytochemical diet (SPD) which did contain sources of fruits and vegetables, 

and also a ‘normal diet’ (ND), which allowed subjects to follow their usual dietary routine. 

Samples were analyzed using 1H NMR spectroscopy and mass spectrometry, and PCA and 

PLS-DA revealed that the LPD samples contained lower amounts of hippurate compared to the 

SPD and ND, further supporting the association between phytochemical intake and hippurate 

excretion.102 Further to this, a recent study by Fardet et al. highlighted the potential impact of 

whole grains on human metabolism; it was found that a change in diet from 60% refined wheat 

flour to 60% whole-grain wheat flour resulted in an increase in the excretion of hippurate, a 

result the authors attributed to the increased polyphenol content of the latter diet 103. In 

addition, specific dietary interventions have also been shown to result in reduced hippurate 

excretion; in a recent NMR-based metabonomic study it was found that a milk protein diet 

reduced the urinary excretion of hippurate. The authors attributed this result to changes in gut 

microbial metabolism.104 

 

The influence of a diet high in benzoic acid has also been demonstrated; Zuppi et al. 

investigated the difference in urinary metabolites of subjects from different geographical 

locations, and thus differing diets. A comparison of urine samples from 25 subjects living in 
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Rome, consuming a typical Mediterranean diet, and 25 subjects living in Ny-Alesund 

(Svaldbard, Norway), consuming a diet high in preserved food, revealed that the latter group 

excreted higher amounts of hippurate. This difference was thought to have derived from the 

high benzoic acid content of preserved food.105 

 

Microbiota 

 

Research is ongoing into the wider importance of the intestinal microbiota in host health and 

disease106-108; a number of studies have demonstrated the importance of the gut microbiota in 

contributing to the excretion of a range of metabolites including TMAO, indoxyl sulfate, 

trimethylamine, phenylacetylglutamine, and hippurate, and as such they are often referred to as 

urinary mammalian-microbial co-metabolites. The significance of perturbation in hippurate 

levels is often attributed to gut microbial activity; certainly, germ free animals do not excrete 

hippurate, and on exposure to the environment, at around 2 weeks post exposure, hippurate 

becomes the dominant aromatic metabolite (Figure 3).109-112 Likewise, treatment of rats and 

mice with antibiotics have been shown to eliminate hippurate (Figure 4), and as with the germ 

free rats, concentrations have been shown to stabilize and reach a maximum at around three 

weeks post dose.113-114 
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Figure 3. Expansion of the aromatic region (δ9.5-5.5) of a 500 MHz 1H NMR spectrum of 

rat urine at selected time points (shown on the right). Time 0h represents the introduction of 

the germ free rats to a standard laboratory environment. Note that by day 21, hippurate is a 

dominant species in the aromatic region of the spectrum. Taken from Nicholls et al.112  
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Figure 4. Aromatic region of 600 MHz 1H NMR spectra of urine obtained from a rat pre-

dose, 4 days treatment with penicillin and streptomycin sulfate and 4 days after the final 

dosing. Adapted from Swann et al. 114 

 

The role of the gut microbiota in the metabolism of polyphenolic compounds has been 

investigated extensively via the use of orally administered antibiotics in ‘conventional’ animals 

possessing an established intestinal microbiota. Results have shown that antibiotic-induced 

suppression of the gut microbiota results in a reduction in the excretion of hippurate and related 
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metabolites (Figure 4).113, 115-119 In addition, it has been shown that ‘germ free’ animals, born 

into and maintained in a sterilized environment, and lacking in conventional intestinal 

microbiota, are unable to excrete hippurate or related metabolites, thus confirming their 

microbial origin.109-111 Furthermore, it was shown that when germ free animals were introduced 

to a standard non-sterile laboratory environment112 or inoculated with intestinal bacteria,120 

excretion of hippurate and other phenolic acids significantly increased. Taken together, these 

results indicate that the presence of an established gut microbiota is fundamental to the 

metabolism of phenolic dietary components, and consequently the production of hippurate. 

 

There is evidence to suggest that high-molecular-weight polyphenolic compounds are poorly 

absorbed in the small intestine121-122; for example, it was calculated that only 33% of 

administered chlorogenic acid was absorbed in the small intestine of ileostomy subjects.100 This 

allows for a large proportion of consumed polyphenolic compounds to reach the colon where 

the majority of commensal bacteria reside (109-1012 cfu/ml). In vitro and in vivo studies have 

demonstrated the capacity of the intestinal bacteria in metabolizing polyphenolic compounds 

through a variety of reactions, including dehydroxylation, reduction, hydrolysis, 

decarboxylation and demethylation.109, 123-127 For example, hydrolysis of chlorogenic acid by 

the gut microbiota yields caffeic acid and quinic acid; the microbiota are then able to reduce the 

former to 3,4-dihydroxyphenylpropionic acid, and then dehydroxylate this to 3-

hydroxyphenylpropionic acid (3-HPPA). Both 3-HPPA and quinic acid can then be further 

metabolized to benzoic acid, and excreted as hippurate.84, 101, 125-126 

 

Certain bacterial species have been linked to specific reactions involved in the metabolism of 

phenolic compounds.128 Accordingly, it has been postulated that changes in the species 
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population or activities of the intestinal microbiota may result in a difference in the metabolic 

processing of polyphenolic compounds within the colon and, consequently, a difference in the 

yield of microbially derived urinary metabolites. Thus, the urinary metabolite profile can be an 

informative tool in the analysis of the intestinal microbial profile.  

 

Further to this, certain studies have speculated that a potential redistribution of the microbiota 

has been caused by a change in diet101 or cage environment.115, 129 For example, in a study of 

Wistar rats by Phipps et al., dietary modulation was found to cause a change in the aromatic 

excretion profile, such that excretion of 3-HPPA was replaced by hippurate. Interestingly, when 

the animals were returned to the original Special Dietary Services (SDS) diet, excretion of 

hippurate persisted. It was proposed that, in addition to the precursors available in the diet, the 

absence and presence of urinary hippurate and 3-HPPA was influenced by variation of the 

intestinal microbiota, and that a change in diet had potentially caused a redistribution of the 

microbiota, resulting in the production of hippurate as the primary excretion product, regardless 

of the specific diet.101 See Figure 1 for the metabolic pathways involved. 

 

Disease states and disorders 

 

Obesity.  

 

There is gathering evidence to suggest that alterations in the functional intestinal microbiome-

host relationship are associated with the development of obesity; in addition, hippurate has 
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been highlighted as a discriminatory metabolite in a number of metabonomic comparisons of 

the urinary profiles of obese and lean subjects.  

 

The intestinal microbiota are beneficial for the host in several respects, with one key activity 

being energy extraction and metabolism of otherwise indigestible dietary components. The 

relationship between the intestinal microbiota and an increase in caloric extraction and 

promotion of fat deposition, was clearly demonstrated by Bäckhed et al.; conventional mice 

were found to have 42% more total body fat compared to germ-free mice, despite consuming 

29% less food than the germ-free animals. Further to this, the conventionalization of germ-free 

mice with intestinal bacteria from the cecum of conventional mice produced a 57% increase in 

total body fat content after 14 days, despite an associated decrease in chow consumption.130  

 

Several studies have demonstrated a difference in the species populations of the microbiota of 

lean and obese individuals, most noticeably in terms of the relative proportions of the two 

dominant phyla of anaerobic bacteria, the Bacteroidetes and Firmicutes131-133; a finding also 

supported by animal studies.134-137 

 

A relatively small human study by Ley et al. explored the relationship between caloric intake 

and the impact on intestinal microbial ecology; an analysis of the intestinal microbiota revealed 

that 12 obese individuals had fewer Bacteroidetes (P<0.001), and a greater number of 

Firmicutes (P=0.002), compared to lean controls. They were then randomly assigned to either a 

fat-restricted (FAT-R) or carbohydrate-restricted (CARB-R) low calorie diet. Over the course 
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of one year, the relative abundance of Bacteroidetes increased, and the number of Firmicutes 

decreased, and the increase in Bacteroidetes correlated with percentage loss of body weight.131 

 

This shift in the relative proportions of Firmicutes and Bacteroidetes during weight loss was 

also seen in a study of 39 overweight and obese adolescents, using fluorescence in situ 

hybridization (FISH) analysis.133 Additionally, a metagenomic study of 154 individuals, 

comprising adult monozygotic and dizygotic twin pairs concordant for leanness or obesity, and 

their mothers, found that obesity was associated with phylum-level alterations in gut microbial 

ecology and reduced bacterial diversity.132  

 

However, several studies have indicated that the relationship between obesity and the intestinal 

microbiota goes beyond the relative proportions of Firmicutes and Bacteroidetes. For example, 

studies have found higher numbers of Bacteroidetes during excessive weight gain, or in obese 

compared to lean individuals,138-139 or no difference in the proportions of Bacteroidetes 

between obese and lean groups.140 Thus, it is clear that it is too broad a taxonomic description 

to compare microbiota in terms of Bacteroidetes,141 and that there may be complex associations 

with obesity at the genus level, as has been found with Bifidobacteria.142 Taken together, these 

data imply that small changes and very specific modulation of intestinal microbial ecology may 

be related to the development of obesity. 

 

In addition to the evidence of perturbations in intestinal bacteria associated with the obese 

phenotype, a number of studies have shown that this condition results in an altered urinary 

metabolite profile, compared to lean subjects.143-144 For example, Calvani et al. used a 1H 
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NMR-based metabonomic approach to analyze the urinary metabolite profiles of 15 morbidly 

obese individuals and age-matched healthy controls. Significant separation of the obese and 

lean subjects was achieved using PLS-DA. Hippurate was identified as the most important 

discriminant metabolite, and was found to be lower in the samples from the obese 

individuals.144 Decreased hippurate excretion was also previously seen in an 1H NMR-based 

metabonomic analysis of Zucker (fa/fa) obese rats, compared to Zucker (fa/-) lean controls.145 

Further to this, life-long caloric restriction has also been linked to variation in hippurate 

excretion; Wang et al. concluded that life-long diet restriction altered the activities of the gut 

microbiota, as demonstrated by variation in aromatic metabolites and aliphatic amine 

compounds, with hippurate excretion consistently higher in calorie-restricted dogs, compared to 

controls.73 

 

Taking into consideration the evidence relating to the characterization of an ‘obese 

microbiome’, it is likely that the differences in hippurate excretion seen in these studies are 

due, at least in part, to functional or compositional differences in intestinal microbiota between 

the obese and lean individuals. Indeed, a recent study by Waldram et al. combined a 1H NMR-

based metabonomic analysis of urinary metabolite profiles with FISH and DGGE analyses of 

variation in the structural composition of the intestinal microbiome. It was shown that Zucker 

(fa/fa) obese rats excreted less hippurate compared to Zucker (-/-) and (fa/-) lean controls, and 

that this correlated with lower Bifidobacteria counts in the obese rats.146 More recent studies 

however, suggest that the functional relationship between the host and microbiome may be far 

more complex than first appreciated. Significant variation in the composition of the gut 

microbiota has been shown to be subject to environmental effects, such as animal housing (so 

called “cage-effects”), whilst the urinary hippurate profile may be more dependent on host 

phenotype, rather than particular populations of microbiota per se (Lees et al, in preparation). It 
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is hoped that correlation of urinary metabolite profiles, to measure the metabolic output of host-

intestinal microbiome interactions, with bacterial compositional profiling approaches, such as 

next generation sequencing, will give further insight in to the significance of functional 

differences in host-microbiome interaction in health and disease.  

 

Diabetes.  

 

Urinary metabolite profiles have been used by a number of investigators to investigate 

differences in metabolism relating to diabetes. Zuppi et al. performed 1H NMR spectroscopic 

analysis of urine from children and adolescents with type 1 diabetes; the spectra were 

normalized to the signal of creatinine and metabolites were quantified using peak height. 

Comparisons with samples from sex and age-matched healthy individuals revealed that 

hippurate excretion was significantly elevated in diabetic individuals (P < 0.001).147 The 

authors suggested that the increased hippurate excretion might have been due to increased 

glomerular filtration rate, a characteristic of type 1 diabetes,148  or other differences in renal 

function. It was also proposed that the diabetic individuals had increased availability of hepatic 

acetyl-CoA, and thus an increased capacity for the glycine conjugation of benzoic acid. 

However, the authors made no mention of controlling for diet-related differences between the 

groups, and it is possible that this influenced the concentration of hippurate in the samples. 

 

Increased hippurate excretion has also been seen in studies of type II diabetic patients; 

investigators have found differences between type II diabetic patients and healthy controls by 

supervised multivariate statistical analysis of the 1H NMR spectra of urine samples 149 and also 
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through quantification of metabolites.150 Doorn et al. found that hippurate excretion was 

positively correlated with glycosuria and glycohemoglobin, which might reflect an association 

between hippurate excretion and deterioration of metabolic control, or alteration in renal 

function in type II diabetic patients. Further to this, the authors used principal component 

discriminant analysis (PC-DA) to investigate the effect of rosiglitazone, an antidiabetic 

pharmaceutical, on metabolism in type II diabetics and healthy controls. It was found that 

treatment resulted in a reduction in hippurate excretion in diabetic patients, and no significant 

treatment-related changes in metabolite excretion in the healthy controls were found. 

 

In contrast to these findings, Salek et al. used a 1H NMR-based metabonomic approach to 

compare the urinary metabolite profiles of type II diabetes patients with healthy volunteers, and 

identified hippurate to be lower in the urine of type II diabetes patients compared to controls, 

using PLS-DA.145 However, it was not made clear how significantly signals from hippurate 

contributed to the model, and thus, how significant the difference in excretion was between the 

groups. 

 

It is important to note that type II diabetes is often related to obesity and other components of 

‘the metabolic syndrome’, as they are risk factors for the disease.151 These associated 

complications may also influence hippurate excretion, and as such, consideration should also be 

given to differences in diet, and potential differences in microbiota as a result of the ‘obese 

microbiome’, when interpreting results. 

 

Blood pressure and atherosclerosis.  
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A correlation of increased blood pressure with reduced hippurate excretion was established in a 

study of human populations; the International Study of Macronutrients and Blood Pressure 

(INTERMAP) used an 1H NMR–based metabonomic approach to investigate the urinary 

metabolite phenotype variation across and within population samples from China, Japan, the 

United Kingdom, and the United States. The excretion profiles varied across different 

geographical populations, and gut microbial-mammalian co-metabolites, including hippurate, 

were found to be discriminatory. This analysis was then linked to data on the individuals 

regarding blood pressure, and hippurate was found to be inversely associated with blood 

pressure in multiple linear regression models. It was postulated that this association might 

reflect differences in diet and gut microbial activity between the different populations.152 

 

An association between hippurate excretion and blood pressure has also been explored using 

the urinary metabolite profiles of spontaneously hypertensive rats (SHR). Akira et al. found 

that hippurate excretion was lower in SHR compared to normotensive Wistar Kyoto rats, using 

1H NMR spectroscopy combined with PCA.153 The authors considered that this difference in 

hippurate excretion might reflect the differing microbiomes of the two strains, due to 

differences in host genetic and metabolic factors, as the diet was kept the same for both groups. 

The authors note that the animals were bred under the same circumstances, however, it cannot 

be ruled out that differing cage environments may also have contributed. 

 

In addition to an association with blood pressure, hippurate has also been identified as a 

potential biomarker in atherosclerosis rat models. Using ultra fast liquid chromatography 
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coupled with IT-TOF mass spectrometry (UFLC/MS-IT-TOF) to analyze the urine of diet-

induced atherosclerotic rats, Zhang et al. identified several discriminatory metabolites using 

multivariate statistical analysis, with hippurate excretion found to be higher in the 

atherosclerotic rats, compared to controls.154 This result contrasts with other studies that have 

shown hippurate to be associated with a lean phenotype and with ingestion of a flavanol rich 

diet.82, 95-96, 144 No specific mechanism was offered by the authors with regard to this 

discrepancy in hippurate excretion. It is plausible that higher hippurate excretion may relate to 

the progression of atherosclerosis however, differing dietary regimes between the two groups 

as well as potential differences in cage environment may also have contributed to the observed 

results. 

 

Gastrointestinal Diseases.  

 

There is increasing evidence to suggest that the gut microbiota contribute to the development of 

various gastrointestinal diseases such as inflammatory bowel disease, colorectal cancer and 

irritable bowel syndrome.155-157 Molecular techniques have been used in several studies to 

demonstrate differences in the species populations of mucosal or fecal bacteria in IBD patients 

compared with healthy individuals,158-165 with evidence of a decrease in microbial species 

diversity in IBD.166 Further to this, urinary metabolite profiles have been shown to differ 

between individuals with Crohn’s disease and ulcerative colitis and those sampled from healthy 

controls.167-168 In an analysis of urine samples using 1H NMR spectroscopy combined with 

multivariate statistics, Williams et al. found that hippurate was the dominant metabolite for 

discriminating between Crohn’s disease patients and healthy controls, and also between 

patients with Crohn’s disease and ulcerative colitis. The study also compared quantified levels 
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of hippurate, expressed as a relative index to total spectral integral. Hippurate excretion was 

significantly lower in patients with ulcerative colitis compared to controls (P=0.0001), and 

lowest overall for individuals with Crohn’s disease. In an attempt to minimize confounding 

factors, detailed histories of food intake were kept for all participants and analyzed for potential 

differences in tea intake and other dietary sources of precursors for benzoic acid and hippurate. 

Statistical analysis of these dietary factors revealed no differences between groups, and thus, 

the authors postulated that the differences in hippurate excretion were a reflection of 

differences in the intestinal microbiota of the different disease groups. Following this study, 

Williams et al. provided further evidence in support of this theory regarding Crohn’s disease 

patients specifically. In an analysis of urinary NMR spectra, baseline urinary hippurate 

concentrations were found to be significantly lower in patients with Crohn’s disease, compared 

to controls, despite no significant difference in the diets of the two groups. Further to this, in 

order to investigate whether the reduced concentration of urinary hippurate seen in the Crohn’s 

disease patients was due to an intrinsic deficiency in glycine conjugation, a dose of sodium 

benzoate was administered to both groups, and the concentration of urinary hippurate 

measured.  The peak excretion of hippurate was seen at one hour post-dose, and no significant 

difference was found between the control and disease groups. The investigators concluded that 

the patients with Crohn’s disease did therefore not have a deficit in the conjugation of benzoate, 

providing strong evidence for dysbiosis of the microbiome underlying the reduced hippurate 

excretion seen in Crohn’s disease patients.169 

 

Renal function.  
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Hippurate has been characterized as a protein-bound uremic toxin,170-171 accumulating in serum 

when renal clearance is impaired.172 It has been suggested that the renal clearance of 

endogenous hippurate is a useful indicator of other alterations in renal secretion that are 

associated with reduced expression of organic anion transporters in chronic renal failure.46 In 

this manner hippurate can be used in addition to urea as a marker for the assessment of the 

efficacy of dialysis.173 

 

The kidneys serve as both a site of glycine conjugation of benzoic acid, and also as the primary 

elimination route for hippurate via renal tubular secretion.  As such, altered renal functioning 

due to disease may result in the disruption of hippurate production or its elimination. A trend of 

reduced hippurate excretion has been noted by investigators of certain renal disorders; for 

example, Bairaktari et al. investigated renal tubular damage in patients with obstructive 

jaundice and noted reduced hippurate excretion in patients compared to age and sex-matched 

controls.174 Further to this, the 1H NMR signal of hippurate was absent from the urine of a 

patient presenting with rhabdomyolysis, and associated renal tubular malfunction. Following 

treatment of the condition, and subsequent improvements to renal function, hippurate excretion 

was observed to increase.175 Additionally, patients with glomerulonephritis (GN) have also 

been found to excrete reduced hippurate. Psihogios et al. analyzed the urine samples of patients 

with mild, moderate and severe GN using an 1H NMR-based metabonomic approach.176 OPLS-

DA models revealed metabolic differences between samples from GN patients and healthy 

controls, and also differentiation between those with mild and severe lesions, with hippurate 

identified as contributing significantly to the model. The onset of tubulointerstitial lesions were 

found to be associated with a decreased excretion of hippurate, while further deterioration 

resulted in the total depletion of urinary hippurate. The authors proposed that this result was 
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indicative of a potential alteration in metabolism, or a reflection of the efficacy of tubular 

secretion, as this is the primary elimination route for hippurate.46 

 

More recently, decreased hippurate excretion was observed in patients with primary renal 

hypouricemia (PRH), a rare condition that results in increased renal clearance of urate. OPLS-

DA models of 1H NMR spectral data demonstrated separation between urine samples from 

PRH patients and sex and age-matched healthy individuals, with hippurate identified as an 

important metabolite underlying the separation. The decreased excretion of hippurate in the 

PRH patients was thought to have resulted from compromised tubular secretion, or as a result 

of reduced availability of glycine, since increased excretion of this amino acid was seen in 

hypouricemic individuals.177 

 

Psychological disorders.  

 

Variation in hippurate excretion has long been investigated in patients with anxiety, depression, 

schizophrenia and other psychological disorders. Investigators have described decreased 

excretion of hippurate in patients with schizophrenia and depression,178-179 and elevated 

hippurate excretion during episodes of anxiety.180-182 Diminished hippurate excretion in 

schizophrenic patients is thought to relate to reduced availability of glycine,178 however the 

connection between glycine and this disorder remains to be elucidated.183 
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More recently, an association between anxiety and hippurate excretion has been shown using a 

metabonomic approach; Martin et al. described a ‘specific metabolic signature’, characterized 

by 1H NMR and MS, which was associated with individuals with high anxiety traits. It was 

found that individuals with high anxiety had differing concentrations of gut microbially derived 

metabolites, including higher hippurate excretion. Interestingly, daily consumption of dark 

chocolate for two weeks was found to reduce urinary excretion of cortisol and catecholamines, 

in subjects with high anxiety, and also partially normalized stress-related differences in 

hippurate, as compared to controls.184 

 

Variation in hippurate excretion was also observed after Sprague-Dawley rats were subjected to 

acute stress and chronic unpredictable mild stress, in the form of ‘cold exposure’, ‘forced 

swim’, and ‘chronic unpredictable mild stress’ (CUMS) tests.185 This was further investigated 

by Zheng et al. in an UPLC-MS-based metabonomic study of an animal model of depression 

produced by CUMS, and it was found that CUMS-treated rats were characterized by increased 

hippurate excretion, compared to controls.186 Variation in plasma hippurate concentrations in 

an animal model of depression has also been noted.187 However, it is unknown to what extent 

such animal models of stress and depression are able to give insight in to human psychological 

disorders and any associated alteration in metabolism. 

 

Autism.  

 

Autism spectrum disorders (ASDs) are primarily characterized by a complex range of socio-

psychological and neurodevelopmental problems, with great variation in the severity and 
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specific nature of deficits among individuals.188 In addition to these clinical signs, autism is 

associated with a range of metabolic, immunological and gastrointestinal problems.189-191 In 

order to investigate the metabolic abnormalities associated with autism and potentially identify 

diagnostic markers, Yap et al. analyzed the urine samples of 39 autistic children, their 

unaffected siblings, and age-matched controls, using 1H NMR spectroscopy and multivariate 

statistical analyses.192 The relative patterns of mammalian-microbial co-metabolites, including 

dimethylamine, phenyacetylglutamine and hippurate, were found to differ between the samples 

from autistic children and controls. The investigators observed a trend towards decreased 

hippurate excretion in samples from autistic children, although a non-parametric 2-tailed Mann-

Whitney test revealed that the difference was not statistically significant. Additionally, a prior 

study by Lis et al. also found an association between hippurate excretion and autism using 

high-resolution ion-exchange chromatography. After analysis of urine samples from 19 autistic 

children, a trend of decreased hippurate excretion was described, compared to controls.193 Yap 

et al. suggested that the differences in microbially derived metabolites could be related to 

gastrointestinal dysfunction associated with autism, and specifically, differences in the 

clostridial species diversity of the microbiota.194-195 

 

Toxicity. 

 

Variation in hippurate excretion has been observed following administration or exposure to a 

number of compounds associated with toxicity. As with altered renal functioning due to 

disease, nephrotoxins also have the potential to affect both hippurate synthesis and elimination. 

Indeed, decreased hippurate excretion has been observed following the administration of a 
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variety of nephrotoxins including mercury II chloride, and other S3 proximal tubular 

nephrotoxins; ifosfamide and calcineurin inhibitors.196-204  

 

Inhibition of proximal tubular secretion and increased hydrolysis of hippurate by kidney 

aminoacylase have been cited as possible mechanisms for reduced hippurate excretion in the 

case of ifosfamide201-202 and calcineurin inhibitors,204 respectively. However, certain 

nephrotoxins, such as gentamicin and cephaloridine, act as antibiotics and therefore, 

modulation of the microbiota is the likely mechanism for the variation in hippurate excretion 

observed with these compounds.196, 198-200, 205 Modification of the microbiota has been 

associated with a number of other toxic compounds, resulting in either an increase206-208 or 

decrease209 in hippurate excretion. 

 

In addition to nephrotoxins, certain hepatotoxins, including hydrazine, methylene dianiline, 

galactosamine and Huang-yao-zi, have also been linked with decreased hippurate excretion.203, 

210-212 The liver is thought to be the primary site of glycine conjugation of benzoic acid in many 

species, and as such, disruption of this reaction may be a possible mechanism for reduced 

hippurate excretion. Liu et al. proposed that administration of Huang Yao-zi caused damage to 

hepatic mitochondria, resulting in a shortage of ATP, and thus inhibiting the ATP-dependent 

process of hippurate synthesis.211 The hippurate ratio has been highlighted as a potential 

preoperative tool for the assessment of functional hepatic reserve in cirrhotic patients selected 

for liver resection.213 
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Variation in hippurate excretion has also been linked to compounds with more generalized, 

multi-system organ toxicity such as cadmium214 and selenium.215 In addition, inhibition of 

glycine conjugation has been proposed as a possible cause of reduced hippurate excretion 

following administration of chlorophenoxyacetic acid herbicides216 and 1,3-butadiene.217 

 

Increased hippurate excretion also results directly from the metabolism of certain toxic 

compounds such as toluene,1, 218 N-ethylbenzamide219 and gasoline.220 Toluene is primarily 

metabolized via hydroxylation to benzyl alcohol by members of the cytochrome P450 

superfamily.221 Benzyl alcohol is then metabolized to benzaldehyde and benzoic acid, with the 

majority of benzoic acid glycine conjugated and excreted as hippurate.222-223 Similarly, benzoic 

acid is the source of hippurate excretion following exposure to N-ethylbenzamide; it is first 

metabolized via hydrolysis to ethylamine and benzoic acid, with the majority of the dose 

excreted as hippurate.219 Accordingly, an increase in the excretion of hippurate has been 

observed following environmental exposure to such compounds1, 224 with hippurate cited as a 

urinary biomarker for high dose exposure to toluene.1, 218 

 

Parasitic infection.  

 

Reduced hippurate excretion has been associated with a number of parasitic infections, 

investigated using a metabonomic approach; these have included Schistosoma mansoni, 

Schistosoma japonicum, Trypanosoma brucei brucei, Echinostoma caproni and Necator 

americanus.225-231 Moreover, hippurate excretion was found to be negatively correlated with the 

levels of worm burden.230 In addition to a reduction in hippurate excretion, certain studies also 
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found alterations in other mammalian-microbial co-metabolites, suggestive of an alteration in 

the species population or activities of the microbiota. Additionally, infection with either E. 

caproni, S. mansoni or S. japonicum resulted in reduced hippurate excretion and increased 

phenylacetylglycine, p-cresol-glucuronide and trimethylamine excretion suggesting that these 

trematodes share similarities in how they influence the gut microbiota.225-227  

 

It has also been suggested that decreased hippurate excretion following S. mansoni infection in 

mice may have been in part due to altered glycine conjugation,225 as S. mansoni infection has 

been previously associated with increased cytochrome P450 activity,232 which may have 

influenced phase II metabolism. 

 

Co-variation with other urinary metabolites  

 

In several of the metabonomic studies discussed in this review, TCA cycle intermediates, in 

particular citrate, succinate and 2-oxoglutarate, have often been found to co-vary with hippurate 

excretion in the same direction (i.e. either increased or decreased in biofluids) (Table 1). In 

certain cases this co-variation can be explained by the link between hippurate formation and 

mitochondrial function. The first step in the metabolism of benzoate to hippurate requires ATP, 

and both steps take place in the mitochondrial matrix. Indeed, Krahenbuhl et al. demonstrated 

that benzoate metabolism, and thus hippurate formation, was a reflection of hepatic 

mitochondrial function in rats.233 Thus, it is possible that impaired mitochondrial functioning 

may have contributed to the decreased excretion of hippurate and citrate in patients with 

obstructive jaundice and glomerulonephritis 174, 176.  Additionally, diminished hepatic and renal 
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mitochondrial function may have been a factor in the reduced excretion of hippurate, citrate, 2-

oxoglutarate and succinate documented in investigations of nephrotoxins and hepatotoxins.201, 

204, 210-212 
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Table 1: Variation in the excretion of hippurate associated with differences in diet, microbiota, disease states and disorders, toxicity, and parasitic infection. Arrows pointing 
upwards indicate increased excretion; arrows pointing downwards indicate decreased excretion. H.A; hippuric acid. 

Group of interest 
Comparison 

group 

H.A 

excretion 

In samples from group of interest relative to 

controls Technique(s) 

used for 

measuring 

hippurate 

Sample size Subjects used Reference Other urinary 

metabolites for which 

excretion ���� 

Other urinary 

metabolites for 

which excretion ���� 

Diet   

Black and green tea 
Wash out 
periods ����    

1,3-dihydroxyphenyl-2-O-
sulfate, glycine, valine, 
pyruvate, 2-oxoglutarate, 
succinate, dimethylamine, 
N-acetyl (glycoproteins) 

Glutamine/glutamate 
1H NMR 
spectroscopy 

17 Healthy men 97 

60% whole-grain wheat 
flour diet 

60% refined 
wheat flour 
diet 

����    

Tyrosine, tryptophan, 
creatine, citrate, 
phenylalanine, fumarate 

Pyruvate, taurine  
1H NMR 
spectroscopy 

2 groups (n = 
10/group) 

Male Wistar 
rats 

103 

  

Standard phytochemical 
diet (SPD) 

Low 
phytochemical 
diet (LPD) 

����      
Creatinine and methyl 
histidine  

1H NMR 
spectroscopy 
and HPLC-
MS 

21 (12 women, 
9 men) 

Healthy 
women and 
men 

102 

Lacto-vegetarian subjects 
Omnivorous 
subjects ����    Succinate, citrate, formate 

TMAO, taurine, 
glycine, phenylalanine, 
methyl histidine 

1H NMR 
spectroscopy 

161 (78 women, 
83 men) 

Healthy men 
and women 70 

Microbiota   

Suppression of 
microbiota with 
antibiotics 

Saline/vehicle 
injection ����    Guanidoacetic acid m-HPPA 

1H NMR 
spectroscopy 

Controls vs 
antibiotics (n = 
10/group) 

Male Wistar 
rats 115 

Controls vs 
antibiotics (n = 
6/group) 

Female 
outbred NMRI 
strain mice 

113 

Germ-free animals 
Conventional 
animals ����    Creatinine 

3-hydroxycinnamic 
acid, PAG, 4-
hydroxypropionic acid, 
N-acetylated 

1H NMR 
spectroscopy 

Conventional vs 
germ-free (n = 
5/group) 

C3H/HeJ mice 111 
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glycoprotein 

Germ-free animals 
introduced to non-sterile 
environment/inoculated 
with intestinal 
microbiota 

Germ-free 
urinary 
profiles 

����    

Trimethylamine N-oxide, 
Phenylacetylglycine, 3-
hydroxypropionic acid, 
benzoic acid 

  
1H NMR 
spectroscopy 

3 
Male Fischer 
344 germ-free 
rats 

112 

Disease states and disorders:   

Obesity   

Obese individuals 
Healthy 
controls ����    2-hydroxyisobutyrate Trigonelline, xanthine 

1H NMR 
spectroscopy 

25 (15 obese, 10 
controls) 

Men 143 

Obese Zucker (fa/fa) rats 
Lean Zucker 
(fa/-) and (-/-) 
rats 

����    

α-hydroxy-n-butyrate, 
lactate, fumarate, citrate, 
free fatty acids, DMA, 
dimethylglycine, valine, 
lysine, glutamine/glutamate, 
succinate/malate, formate, 3-
methylglutarate, propionate, 
acetate 

2-oxoglutarate, 
phenylacetylglycine 
(PAG), allantoin,N-
acetylglycoprotein, 
proline, ornithines, 
creatinine, pyridoxine, 
guanidoacetate 

1H NMR 
spectroscopy 

16 (n = 8 for 
lean and obese 
Zucker rats) 

Male Zucker 
rats 

144 

1H NMR 
spectroscopy 

24 (n = 8 per 
genotype)  

Male Zucker 
rats 145 

Diabetes   

Children with type 1 
diabetes 

Healthy 
controls ����    Citrate, alanine, lactate   

1H NMR 
spectroscopy 

50 (n = 
25/group) 

Children with 
type 1 diabetes 
and age- and 
sex-matched 
controls 

146 

Type II diabetic patients 
Healthy 
controls ����    

Lactate, citrate, glycine, 
alanine, TMAO, 
dimethylamine,  creatine, 
acetate, betaine, 
phenylalanine, tyrosine 

Glutamate/glutamine, 
N-methyl 
nicotinamide, uridine. 

1H NMR 
spectroscopy 

53 (33 type II 
diabetic 
patients, 20 
controls) 

Type II 
diabetic 
patients 

149 

1H NMR 
spectroscopy 

32 (16 patients, 
16 healthy 
subjects) 

Type II 
diabetic 
patients 

148 
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Blood pressure   

Subjects with high blood 
pressure 

(correlation) ����    
Alanine (positive correlation 
with blood pressure) 

Formate (inverse 
correlation) 

1H NMR 
spectroscopy 

4,630 
participants 

Men and 
women in 
China, Japan, 
UK and USA. 

151 

Spontaneously 
hypertensive rats 

Wistar Kyoto 
controls ����      Citrate, 2-oxoglutarate 

1H NMR 
spectroscopy 

12 (n = 6/group) 

Spontaneously 
hypertensive 
and Wistar 
Kyoto rats 

152 

Gastrointestinal diseases   

Crohns disease (CD) and 
ulcerative colitis (UC) 
patients 

Healthy 
controls ����    Formate 4-cresol sulfate 

1H NMR 
spectroscopy 

206 subjects (86 
CD patients, 60 
UC patients, 60 
healthy 
controls) 

Male and 
female CD 
and UC 
patients, and 
healthy 
controls 

166 

Renal function 

  

Patients with obstructive 
jaundice 

Healthy 
controls ����    3-hydroxybutyrate, acetate Citrate 

1H NMR 
spectroscopy 

75 (35 patients, 
40 healthy 
individuals) Male and 

female 
patients and 
healthy 
controls 

172 

Patients with 
glomerulonephritis 

Healthy 
controls ����    Lactate, acetate, TMAO 

Citrate, glycine, and 
creatinine 

77 patients, 85 
controls 174 

Patients with primary 
renal hypouricemia 

Healthy 
controls ����    

Phenylalanine, alanine, 
glycine, glutamate, acetate 

Creatinine, TMAO 

36 patients, 39 
sex- and age-
matched healthy 
individuals 

175 

Psychological disorders   

Individuals with high 
anxiety traits 

Individuals 
with low-
anxiety traits 

����    

Glycine, citrate, 3-
methoxytyrosine, β-alanine, 
proline, 3,4-
dihydroxyphenylalanine 
(DOPA), adrenaline 

Methyl-succinate, 
trans-aconitate, p-
cresol sulfate 

1H NMR 
spectroscopy 

30 subjects (13 
high anxiety, 17 
low anxiety) 

Male and 
females with 
high or low 
anxiety traits 

182 
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Chronic unpredictable 
mild stress-treated rats 

Control rats 
(housed 
together) 

����    

Kynurenic acid, xanthurenic 
acid, phenylalanine, N2-
succinyl-L-ornithine, 
phenylacetylglycine 

Tryptophan, indoxyl 
sulfate, indole-3-
acetate, citrate, 2-
oxoglutarate, creatinine 

UPLC-MS 16 (n = 8/group) 
Male 
Sprague–
Dawley rats 

184 

Autism   

Autistic children 
Healthy 
controls ����    

N-methyl-2-pyridone-5-
carboxamide, N-methyl 
nicotinic acid, and N-methyl 
nicotinamide,  taurine 

Glutamate, 
phenyacetylglutamine. 

1H NMR 
spectroscopy 

39 autistic 
children, 28 
nonautistic 
siblings 

Male and 
female 
children 

190 

Toxicity   

Nephrotoxins 
pre-dose urine 
sample/vehicle 
controls 

����    
Glucose, glycine, alanine, 
histidine, lactate, acetate, 
succinate, TMAO 

Citrate, creatinine, 2-
oxoglutarate 

1H NMR 
spectroscopy 

11 

Patients who 
received 
ifosfamide 
chemotherapy 

200 

1H NMR 
spectroscopy 

36 (6 treatment 
groups, n  = 
6/group) 

Male Wistar 
rats 

202 

Nephrotoxins (which act 
as antibiotics) 

Vehicle 
controls ����    

Glucose, lactate, 
acetoacetate, alanine, valine, 
lysine,glycine, 
glutamine/glutamate, citrate 

Allantoin 

1H NMR 
spectroscopy 

12 (4 groups, n 
= 3/group) 

Male Fischer 
344 rats 

194 

1H NMR 
spectroscopy 

12 (n = 3/group) 
Male New 
Zealand White 
rabbits  

196 

Hepatotoxins 
Vehicle 
controls ����    Alanine, creatine, taurine 

2-oxoglutarate, citrate, 
succinate, TMAO  

1H NMR 
spectroscopy 

10 (n = 5/group) 
Male 
Sprague–
Dawley rats 

209 

1H NMR 
spectroscopy 

20 (n = 5/group) 
Male Han 
Wistar rats 210 

1H NMR 
spectroscopy 

15 (n = 3/group) 
Male Crj:CD 
(SD) rats 208 

Parasitic infection   

S. mansoni, S. 

japonicum, T. brucei 

brucei, E. caproni and N. 

americanus infection 

uninfected 
mice ����    

TMA, PAG, pyruvate, p-
cresol glucuronide 

Citrate, succinate, 
creatine, taurine, 
acetate, 2-
ketoisocaproate, 
butyrate 

1H NMR 
spectroscopy 

20 (n = 
10/group) 

Female mice 
(NMRI strain) 88 

36 (n = 
18/group) 

Male Syrian 
SLAC 
hamsters 

224 

24 (n = Female NMRI 225 
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12/group) mice 

24 (n = 
12/group) 

Female out-
bred NMRI 
mice 

227 

20 (n = 
10/group) 

Male Syrian 
SLAC 
hamsters 

228 

20 (n = 
10/group) 

Male golden 
hamsters 229 

 
Co-variation in the excretion of hippurate and TCA cycle intermediates has been seen in other diverse subject areas; with decreased excretion 

observed in studies of hypertension and parasitic infection153, 225-226, 231; and increases observed in studies of diet, diabetes and psychological 

disorders.70, 97, 103, 147, 184 
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In the study of SHR by Akira et al., it was found that SHR excreted reduced concentrations of 

hippurate, citrate and 2-oxoglutarate, compared to normotensive Wistar Kyoto rats.153  The 

authors speculated that the reduced citrate excretion may have been due to increased proximal 

tubular reabsorption of this metabolite, or also alteration of the TCA cycle. The reduced 

excretion of hippurate in the SHR strain was proposed by the authors to be due to strain-related 

differences in the microbiomes of the animals. Nevertheless, if the TCA cycle was impaired in 

the SHR, this may have influenced the rate of metabolism of benzoate, and thus hippurate 

formation. 

 

Differences in the microbiome were also suggested to underlie reduced hippurate excretion in 

several studies of parasitic infection.225-226, 231 However, the authors also cited that the reduced 

excretion of TCA cycle intermediates could be due to an inadequate acetyl-CoA formation,225 

and “perturbation in mitochondrial function”.226 Accordingly, it is possible that reduced 

mitochondrial ability for glycine conjugation of benzoate also contributed to the reduced 

excretion of hippurate observed in these studies. 

 

Conclusions 

 

Together with established connections with dietary components, hepatic function and toluene 

exposure, hippurate has been associated with a diverse range of disease states and alterations in 

metabolism. In particular, the relationship between hippurate excretion and variation in the 

microbiota is proving to be a significant area for investigation, particularly in light of evidence 

relating to the differing microbiomes of obese and lean individuals, and also those with 
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gastrointestinal diseases. Clearly, given the many factors that have been found to be associated 

with changes in the urinary excretion of hippurate, its use as a biomarker needs to be performed 

with care. It is not unusual for these variations to be accompanied by changes in the excretion 

of other metabolites (Table 1). It is likely that the value of urinary hippurate as a biomarker lies 

in the conditional relationships between hippurate excretion and the excretion of a variety of 

other urinary metabolites, with the directional change in concentration of a variety of 

metabolites in combination, giving rise to a specific co-variation pattern, indicative of the 

disease state or response to intervention, rather than one metabolite alone. Future developments 

in analytical techniques and statistical analyses, and the combined use of complementary 

techniques such as proteomics, metabonomics and metagenomics, will give further insight into 

the biological significance of urinary metabolites such as hippurate, host endogenous 

metabolism and intestinal microbial metabolism, in health and disease. 
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Dietary sources of polyphenolic compounds: fruit, vegetables, tea, coffee
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H NMR spectroscopy—metabolic alterations: (A–F) normalised intensities obtained from speci�c spectral regions, with corresponding
H NMR spectra of urine samples collected from male AP rats aged between 4 and 20 weeks old. Data expressed

Mol. BioSyst. , 2005, 1 , 166–175 | 169
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