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Abstract 

Two sources of bias arise in conventional loss predictions in the wake of natural disasters.  One source of bias stems 
from neglect of accounting for animal genetic resource loss.  A second source of bias stems from failure to identify, 
in addition to the direct effects of such loss, the indirect effects arising from implications impacting animal-human 
interactions.  We argue that, in some contexts, the magnitude of bias imputed by neglecting animal genetic resource 
stocks is substantial.  We show, in addition, and contrary to popular belief, that the biases attributable to losses in 
distinct genetic resource stocks are very likely to be the same.  We derive the formal equivalence across the distinct 
resource stocks by deriving an envelope result in a model that forms the mainstay of enquiry in subsistence farming 

and we validate the theory, empirically, in a World-Society-for-the-Protection-of-Animals application (142 words). 
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Introduction 

Subsistence farming systems comprise a vast swath of humanity (Singh, Squire and Strauss, 1986).  One of the most 

important features of subsistence systems is their dependence on animal genetic resource stocks for their welfare 

(Campbell and Knowles, 2011).  Because animal genetic resource stocks are welfare-enhancing, their existence 

bestows value within the households that employ them.  And because they receive value, households are willing to 

relinquish units of other productive resources in order to mitigate loss in the welfare-enhancing animal resource 

stocks.  These simple observations can be employed in order to develop robust methodology for valuing livestock 

loss within livestock dependent households.  It is conjectured that such loss may be substantial; may bias relief-

effort targets during post-disaster management; and, hitherto neglected in post-disaster social accounting exercises, 

need to be computed (Livestock Emergency Guidelines and Standards, 2009).  These facts motivate a search for the 

values that subsistence households place on animal inputs.  This search is especially important when it is realized 

that animal inputs promote productivity, enhance the surplus-generating potential of the household and can, as a 

consequence, promote immersion into markets that are contemporaneously constrained by thinness and instability.  

We consider the problem of placing formal economic valuations on livestock inputs in the context of a rich data set 

on milk-market participation by small-holder dairy producers in the Ethiopian highlands (Nicholson, 1997).  We 

take up this search in the context of a familiar framework for household decision-making (Singh, Squire and Strauss, 

1986); formal development of a comprehensive, multi-dimensional hierarchical model (Good, 1980); and 

algorithmic developments that exploit fully the existence of known full conditional distributions for all of the 

relevant unknown quantities (Gelfand and Smith, 1990).  Hence, the model and its fundamentals have roots set 

firmly in the computational advances that have been with us since the early 1990’s (Gelfand, 2000). However, these 

advances have yet to be exploited to their full potential for the purpose of valuing animal genetic resource stock 

losses. 

1. Crossbreeding programmes in the Ethiopian highlands and background to the study sites 

Crossbreeding of imported animals with indigenous stock began in Ethiopia in 1968 (Kiwuwa, Trail, Kurtu, Worku, 

Anderson and Durkin, 1983).  Since their introduction, performance has been closely monitored at a number of 

institutions.  An extensive set of records on the performance of various crosses has been compiled.  Cross-breed 

animals’ enormous potential for increasing per-capita milk production is well-documented.  For example, between 

1968 and 1977 crosses between the local Arsi and Zebu animals with introduced stock produced significant 



increases in output, measured in terms of annual, fat-corrected milk yield (kg) per-unit metabolic weight of milking 

cows (kg).  The main findings include sizable enhancement of yields over extant indigenous stock to the order of 

75% in some instances.  Thus, hybrid-vigor has been important in the Ethiopian highlands since the late 1960’s.  

However, the advantages of increased yields has brought with it some intense demands on management; cross-breed 

animals are susceptible to local diseases such as anthrax, rinderpest, and blackleg; and adopters have often been 

required to change management practices.  Consequently, adoption rates have been lowered from what might have 

been expected given the initial, sizable increases in production yields (Brokken and Seyoum, 1990).   

 The ‘laboratory’ for investigation is a panel of observations on N = 68 sample units (households) at two 

respective sites (being N1 = 35 at the Ilu Kura peasant association and N2 = 33 at the Mirti peasant association), 

each, approximately one-hundred miles, in opposite directions, from the capital, Addis Ababa.  The panel 

periodicity is approximately four months, representing three visits in the same production year.  At each visit, 

production output on the day in question is measured, along with a record of the amount of milk sold, the number of 

local-breed and crossbreed cows milked, and other relevant socio-demographic characteristics of the households.  

Thus the available data consist of the panel records across the households on selected covariates and on the two 

response variables ‘output’ and ‘sales.’  The selected covariates include the key livestock variables ‘Crossbreed’ and 

‘Local-breed’ cows; two site-specific dummy variables, ‘Ilu-Kura’ and ‘Mirti;’ three intellectual-capital 

accumulators, ‘Experience,’ ‘Education’ and ‘Extension;’ and one sales-related covariate that we deem a priori 

significant in the decision to immerse in the market, namely ‘Distance.’  Respectively, Output and Sales refer to the 

amounts of fluid milk (in liters) that the household produced, respectively, sold, on the day that the interview was 

enacted; Ilu-Kura, respectively, Mirti are binary covariates assuming the value one if the household in question 

resided within the peasant association, and assume the value zero, otherwise; Experience denotes the number of 

years of farming experience accumulated by the household head; Education refers to the total number of years of 

formal education accumulated by the household head; Extension refers to the number of times in the twelve months 

prior to the interview that the household was visited by an extension agent discussing either production or marketing 

activities; and Distance represents the amount of time (in minutes) that it takes the household to transport bucketed 

fluid milk to the milk-cooperative.  Additional institutional and geographical background relevant to our 

investigation is available elsewhere (Staal, Delgado and Nicholson, 1997; Holloway, Barrett and Ehui, 2000; 

Holloway, Nicholson, Delgado, Ehui and Staal, 2000; Holloway and Ehui, 2001; Holloway, Barrett and Ehui, 2001; 



Holloway, Dorfman and Ehui, 2001; Holloway, Nicholson, Delgado, Ehui and Staal, 2004; Holloway, Barrett and 

Ehui, 2005; and Holloway, Teklu and Ehui, 2008). 

2. Canonical implementations 

Relegating detail to the appendix, we enact loss predictions across the two genetic resource stocks in five steps.  The 

first step derives the formal household production framework upon which the productivity estimates are grounded 

(Singh, Squire and Strauss, 1986);  the second step derives the precise metrics upon which the loss estimates depend 

through the application of the standard calculus (Chiang and Wainwright, 2005) and the envelope theorem, 

exploiting Roy’s identity (Roy, 1947); the third step selects covariates for the empirical implementation following 

extensive models comparisons Chib, 1995); the fourth step generates empirical estimates of the respective genetic-

resource stocks using matrix extensions (Bauwens, 1984; Drèze and Richard, 1983) of well-known adaptations of 

the normal-linear model (Lindley and Smith, 1972); and the fifth and final step generates the loss estimates by 

exploiting standard results for the normal-linear model and the resulting posterior predictive distributions (Zellner, 

1971; Koop, 2003; Koop, Poirier and Tobias, 2008).  The covariate specifications that we consider are four, which 

we refer to as ‘models’ wherein, we define Model One, as the model consisting of just the livestock inputs, 

Crossbreed and Local-breed; Model Two, consisting of the livestock inputs and the two site specific dummy 

variables, Ilu-Kura and Mirti; Model Three, consisting of the latter specification plus the additional covariates 

Experience, Education, Extension and Distance; and, finally, Model Four, consisting of just the livestock covariates, 

Crossbreed and Local-breed, and the single, site-specific dummy variable, Mirti.  Across these ‘models’ we 

implement, in turn, three respective specifications.  Specification One consists of the normal linear model (Zellner, 

1971; Koop, 2003; Koop, Poirier and Tobias, 2008); Specification Two permits the constant terms in the linear 

model to vary in the usual, hierarchical manner (Koop, 2003; Koop, Poiries and Tobias, 2008; Good, 1980); and 

Specification Three permits all of the covariate coefficients to relate hierarchically (Lindley and Smith, 1972; Koop, 

2003; Koop, Poirier and Tobias, 2008). With these three specifications and these four models at hand, the Cartesian 

product Models × Specifications leads to a total of twelve credible alternatives with which to assess the losses at 

interest.  The results of the twelve experiments are reported, graphically, in figure 1.  The diagonal entries in the 

figure shaded in red represent the line of best fit among the data; the twelve alternative specifications represent 

reasonable scatter along the best-fit line and suggest, without discriminating further, that any single representation 

seems satisfactory as a form of explanation across the observed responses.  Some signs of possible bias are evident 



at larger outlier quantities, but, for the most part, the correlations between the scatter and the line of best fit seem 

satisfactory.  Consequently, we turn to the problem of selecting a ‘best’ formulation with which to predict loss 

(Chib, 1995).  An extensive model selection exercise suggests that the a posteriori preferred explanation for the 

response data resides in the second specification and in the model with the parsimonious covariate description 

consisting of the Local-Breed, Crossbreed and Mirti covariates.  Indeed, a wide variety of alternative specifications 

enacted suggests that only these three covariates are consistently significant in explaining milk-output production 

within the Ethiopian-highlands households.  Turning to the important matter of posterior prediction and assessing 

the actual magnitude of marginal productivities across the two distinct resource stocks, we summarize are essential 

findings in the contour plots in figure 2.  The crossbreed input leads to marginal productivities about twice the scale 

of those for the indigenous breed animals; produces estimates that are considerably more precise; but are, 

nonetheless, significantly correlated across the two, alternative, genetic resource stocks.  In the absence of further 

adaptation, given the marginal-productivity estimates, we are able to construct loss estimates based purely on these 

inferences about animal productivity.  However, additional, relevant sample information is hitherto ignored.  

3. Extended implementations 

One extensively documented aspect of the institutional setting (Singh, Squire and Strauss, 1986; Staal, Delgado and 

Nicholson, 1997; de Janvry, Fafchamps and Sadoulet, 1991; Sadoulet and de Janvry, 1995) is the inter-linkage 

between production and sales decisions.  The notion that many households encounter barriers to entry, both 

pecuniary and non-pecuniary and, therefore, generate observations on milk-market participation in the sales 

dimension that are censored (Tobin, 1958) at some unobserved threshold motivates additional statistical scrutiny.  A 

set of alternative censored regressions is developed and, relegating all of the essential mathematical details to the 

supplementary materials section we take up the search for an appropriate form in much the same way as we pursued 

across the single-equation,  canonical forms., above.  Thus, in like fashion, results for the matrix-Normal extension 

of the single-equation models evolve and produce the estimates of fit presented in figure 3.  Some minor 

improvements are apparent from comparison of figures 1 and 3.  The preferred model specification within the matrix 

system is found to be a standard censored-regression model (Tobin, 1958) employing standard Bayesian procedures 

(Chib, 1992) in which the two equations, one pertaining to sales and the other to output, have hierarchical, 

household-specific constants that are correlated.  This formulation produces the marginal productivity distributions 

reported in figure 4 and which we use to translate into meaningful aggregates of loss computed on the ‘national-



annual scale.’ Using this calculation, and, recalling that, by virtue of the facts that the marginal products which θ�� 

and θ�� depict are random variables and, thus, have distributions (recall figures 2 and 4), so too will the quantity θ� 

which we derive as our estimate of the annual average cost of loss of livestock in US dollars.  The joint distribution 

of the respective genetic stock loss estimates is depicted in figure 5.  Specifically, we determine that catastrophic 

loss of the order of one-hundred percent in grade indigenous stock and in cross-breed animals result in losses, of 

approximately $US 3.84 × 1010 and $US 3.37 × 1010, respectively.  That these measures represent significant 

quantities which, if neglected, could seriously bias social accounting exercises is apparent; and that the marginal 

distributions corresponding to the two dimensions of figure 5 are quite comparable is also apparent.  Thus, when 

nature occasionally gives cause to summon the social accountant two sources of bias arise in conventional loss 

predictions in the wake of natural disasters.  We have shown these biases to be substantial and we have shown also 

that there is good reason to believe that the losses computed across distinct genetic resource stocks are 

approximately the same. 

4. Conclusion 

Two sources of bias arise in conventional loss predictions in the wake of natural disasters.  One source of bias stems 

from neglect of accounting for animal genetic resource loss.  A second source of bias stems from failure to identify, 

in addition to the direct effects of such loss, the indirect effects arising from implications impacting animal-human 

interactions.  We have argued that, in some contexts, the magnitude of bias imputed by neglecting animal genetic 

resource stocks is substantial.  We have shown, in addition, and contrary to popular belief, that the biases 

attributable to losses in distinct genetic resource stocks are very likely to be the same.  We have derived the formal 

equivalence across the distinct resource stocks by deriving an envelope result in a model that forms the mainstay of 

enquiry in subsistence farming and we have validated the theory, empirically, in a World-Society-for-the-Protection-

of-Animals application in the Ethiopian Highlands.  Further work should investigate the results derived herein to a 

wide and broader set of contexts. 

Appendix 

The motivating framework underlying conceptual developments is the household production model (Singh, Squire 

and Strauss, 1986) which is the sine qua non of modern development economic investigations and forms a mainstay 

of models within which costs of time predominate (Becker, 1965; Fair, 1978; Deaton and Muellbauer, 1980) 

Consisting of a maximand defined over utilities derived from consuming a home-produced good, a market-produced 



good, and leisure; optimization occurs with choices made subject to the restrictions that expenditure cannot exceed 

disposable income, that leisure and work combined cannot exceed the total stock of time available to the household, 

and that physical output cannot exceed its technological possibilities.  With the primal model (Chiang and 

Wainwright, 2005) at hand, we enact the Lagrangean method (Chiang and Wainwright, 2005) and consider changes 

in endowments and their impact on indirect utility and, consequently, welfare.  By considering one of these 

endowments to be livestock, the Envelope Theorem (Chiang and Wainwriight, 2005), Roy’s Identity (Roy, 1947), 

and some further standard calculus (Chiang and Wainwright, 2005) yield the indirect values sought, namely ∆ω = pa 

ƒl(⋅,l) ∆l.  Here, ∆ω denotes the ‘change in income’ consequent upon a ‘change in the animal genetic resource 

stock’ or ‘∆l;’ ‘pa’ denotes ‘the per-unit price of milk output;’ ‘ƒl(⋅,l)’ denotes the ‘marginal productivity of 

livestock, ‘l’, in the production enterprise ‘ƒ(⋅,l);’ and ‘∆l’ denotes the total change in the livestock resource that is 

created by the investigator in order to simulate ‘catastrophe.’  Given each of the elements on the right hand side of 

the equality ‘∆ω = pa ƒl(⋅,l) ∆l,’ the left-hand side is available immediately.  The term ‘pa’ is publicly available at 

each of the two study sites; the term ‘∆l’ is selected and within the control of the investigator; but the term ‘ƒl(⋅,l)’ 

must be estimated.  Considerable econometric efforts are devoted to the latter objective in the knowledge that these 

parametric reports may be very sensitive to alternative model specifications.  The extensive model-selection search 

yields a preferred specification which, in turn, yields precise estimates of the respective marginal productivities of 

cross-breed and grade, indigenous stocks.  The matrix system producing the estimates in figure 3 is based on 

modifications to the normal linear model(Zellner, 1971; Koop, 2003; Koop, Poirier and Tobias, 2008), including 

extensions to consider multiple decision-making (Drèze and Richard, 1983; Bauwens, 1984), extensions to consider 

both standard and non-standard censoring mechanisms (Nelson, 1977; Chib, 1992), and extensions of the basic 

Gibbs-sampling algorithm using the powerful marginal-likelihood-from-the-Gibbs-sampling methodology (Chib, 

1995).  Finally, in order to translate the household-specific, marginal-product estimates, derived from the 

econometric estimates at the two sample sites, into a more meaningful aggregate per-annum metric, we compute the 

θ� ≡ {p1×(N1/N)+p2×(N2/N)} × {(θ� �×(Nl/Nl))+(θ��×(Nc/Nl))} × σs:pa × σpa:w × σw:e × σeb:us × σd:y, where θ� is the loss 

estimate; p1 denotes the Ethiopian birr price in the Ilu Kura peasant association; N1 denotes the sample size in the Ilu 

Kura peasant association; p2 denotes the Ethiopian birr price in the Mirti peasant association; N2 denotes the sample 

size in the Mirti peasant association; N denotes the total sample size; θ� � denotes the marginal productivity of local-



breed cows; Nl denotes the total number of local-breed cows employed; θ�� denotes the marginal productivity of 

cross-breed cows; Nc denotes the number of cross-breed animals employed; Nl denotes the total number of livestock 

employed; σa:pa denotes the scale factor transforming the sample to the peasant association; σpa:w denotes the scale 

factor transforming the peasant association to the wereda; σw:e denotes the scale factor transforming the wereda to 

the Ethiopian geographic aggregate; σeb:us denotes the scale factor transforming Ethiopian birr into US dollars; and, 

finally, σd:y, the ‘temporal aggregate’ denotes the transformation from days into years.   Applying these aggregations 

we arrive at the final economic loss estimates depicted in figure 5.   

 Details of the explicit procedures evolve from the following section summary, which subdivides into the 

respective subsections entitled ‘background,’ ‘notation,’ ‘density development,’ ‘observational equations,’ 

‘specifications,’ ‘models,’ ‘priors,’ ‘parameter estimation,’ ‘models comparisons,’ and ‘marginal likelihood 

computation.’   

A.1 Background 

Implementation is facilitated by amending well-known results in three, small, but important, ways.  First, we extend 

to the matrix-Normal framework hierarchical developments (Drèze and Richard, 1983) defined, specifically, for the 

vector-Normal-linear model.  Second, we modularize the process known as completing-the-square, extending the 

vector-valued Normal form, as it appears, for example, in (Zellner, 1971), to an automated, matrix-Normal 

presentation.  Third, we modify, slightly, the basic marginal-likelihood identity as outlined in (Chib, 1995) which 

forms the mainstay of models comparisons.  The first modification facilitates hierarchical developments in the 

multiple-equation setting; the second modification is convenient for encoding the Gibbs-sampling algorithms, in 

debugging computing routines and in automating their descriptions; the third modification circumvents problematic 

integrations defined over latent data during marginal likelihood evaluation.  In these contexts, in addition to 

(Zellner, 1971; Drèze and Richard, 1983; and Chib, 1995), some familiarity with conjugate developments in 

reduced-form multiple-equations Normal-data systems, as appears, for example, in (Bauwens, 1984) and in (Drèze 

and Richard, 1984) is desirable.  Primers for the scalar-Normal and vector-Normal derivations presented within this 

appendix are (Zellner, 1971; Koop, 2003; and Koop, Poirier and Tobias, 2008).  

A.2 Notation 



By way of notation we use lower-case Greek and Roman numerals to reference scalar quantities, use emboldened 

lower-case symbols to reference vectors and use emboldened upper-case symbols to reference matrix quantities.  

Thus, let θθθθ ≡ (θ1, θ2, .., θN)′ denote a vector of parameters of interest, where ‘′’ denotes the ‘transpose’ of the column 

vector θθθθ; π(θθθθ) denotes the prior probability density function (pdf) for θθθθ; and π(θθθθ|y) the posterior pdf for θθθθ; where y ≡ 

(y1, y2, .., yN)′ denotes data.  Frequently, we reference the data generating model ƒ(y|θθθθ), which is the likelihood 

function when viewed as a function of θθθθ and, sometimes, make use of variants of the ƒ(⋅⋅⋅⋅|⋅⋅⋅⋅) notation in order to 

reference particular probability density functions.  Occasionally we find it useful to reference just the variable part 

of the density (integrating constant excluded) in which case we use the symbol ‘∝’ to denote ‘is proportional to.’  In 

view of the prior-to-posterior conjugacy shared by each model that we consider, we adopt the notational convention 

employed by  (Drèze and Richard, 1983) wherein postscripts indicated ‘o’ reflect prior information and postscripts 

indicated ‘*’ reflect posterior information; accordingly ƒ(θθθθ|θθθθo) ≡ π(θθθθ) and ƒ(θθθθ|θθθθ*) ≡ π(θθθθ|y).  Additionally, we will 

find it useful, to refer separately to the observed responses, which we denote Y; distinguish between the observed 

responses and those that are latent, which we denote, Z;  and distinguish, again, between the observed and latent 

responses and another, we reference, when the observed and latent responses are combined, which we denote V.  

The exact dimensions of the response quantities, Y, Z and V will become apparent when their model-specific 

dimensions are defined, subsequently.  Finally, we use indices i = 1, 2, .., N, to reference the households in question, 

where, we remind the reader, N = 68; use t = 1, 2, .., T in order to reference periods within the ‘panel,’ in which T = 

3; and use S to denote the sample collection which is S = N×T = 204.   

 A.3 Probability density functions  

We use three probability density functions.  The first, which we use to model correlation in equation errors, is the 

inverted-Wishart distribution, namely, ƒ
�×�

��
�ΣΣΣΣ|	, ν�  ≡ 2-.5νM π-.25M(M-1) ∏ Γ�.5�ν � 1 � ����

���
-1 |S|.5ν |ΣΣΣΣ|-.5(ν+M+1) 

exp{ -.5 trace ΣΣΣΣ-1 S }.  The second, which we use to model covariate response, is the matrix-Normal distribution, 

which we specify as ƒ
�×�

��
�ΘΘΘΘ|ΘΘΘΘ�, ΣΣΣΣ,ΩΩΩΩ�  ≡ (2π)-.5NM |ΣΣΣΣ|-.5N |ΩΩΩΩ|-.5M exp{ -.5 trace ΣΣΣΣ-1 (ΘΘΘΘ-ΘΘΘΘ�)′ ΩΩΩΩ-1 (ΘΘΘΘ-ΘΘΘΘ�) }.  Finally, we 

make use of the uniform distribution ƒ
�×�

�
�α|β, γ�  ≡ (γ-β)-1.  With reference to  ƒ

�×�

��
�ΣΣΣΣ|	, ν�, we emphasize that ΣΣΣΣ 

has dimension M×M; with reference to ƒ
�×�

��
�ΘΘΘΘ|ΘΘΘΘ�, ΣΣΣΣ,ΩΩΩΩ� , we emphasize that ΘΘΘΘ has dimension N×M; and with 

reference to ƒ
�×�

�
�α|β, γ�, we emphasize that α is a scalar.  Occasionally, we reference the multivariate-Normal and 



the univariate-Normal distributions, which are special cases of ƒ
�×�

��
�ΘΘΘΘ|ΘΘΘΘ�, ΣΣΣΣ,ΩΩΩΩ�, wherein M = 1 in the first case and 

N = M = 1, in the second.  Frequently, we reference the covariance matrix of dimension NM×NM, corresponding to 

the column expansion of ΘΘΘΘ, of dimension N×M, which is ΣΣΣΣ⊗ΩΩΩΩ, and where ‘⊗’  denotes the Kronecker product.  

Finally, we make repeated use of the well-known transformation property corresponding to the matrix-Normal (see, 

for example, (17, p. 72, and the references cited there), namely that, given ƒ
�×�

��
�ΘΘΘΘ|ΘΘΘΘ�, ΣΣΣΣ,ΩΩΩΩ�, and the transformation 

ΛΛΛΛ ≡ AΘΘΘΘB, where A is a P×N matrix of rank P ≤ N and B is an M×Q matrix of rank Q ≤ M; then ΛΛΛΛ ≡ AΘΘΘΘB has 

distribution ƒ
�×�

��
�ΛΛΛΛ|�ΘΘΘΘ��, �′ΣΣΣΣ�, �ΩΩΩΩ�′�. 

A.4 Observational equations 

Each of the estimating models we consider can be specified as variants of the observational equation 

  F = G ϑϑϑϑ + U,         (A.1) 

where F ≡ (f1, f2, .., fM) denotes an S×N collection of responses, G ≡ (g1, g2, .., gR) is N×R collection of observations 

on known covariates, ϑϑϑϑ ≡ (ϕϕϕϕ1, ϕϕϕϕ2, .. ϕϕϕϕM) is an R×M collection of unknown covariate responses and U ≡ (u1, u2, .., 

uM) is an S×M collection of random disturbances.  In addition, and retained throughout as a maintained hypothesis, 

we assume that the disturbance matrix U has the matrix-Normal distribution, ƒ
�×�

��
� |!	", ΣΣΣΣ, #	�, where 0SM denotes 

the S×M-dimensional null matrix and where IS denotes the S-dimensional identity matrix. 

A.5 Specifications 

The total number of variants that we consider is twelve, being the Cartesian product Specifications × Models in 

which ‘Specifications’ refers to assumptions about the hierarchical structures and in which ‘Models’ refers to 

assumptions about the censoring  mechanisms.  On the first count, Specification One, assumes that hierarchical 

structures are non-existent; in this case G ≡ X ≡ (x1, x2, .., xK) of dimension S×K defines a (dense) covariate matrix 

of observations on relevant covariates; the corresponding response matrix is ϑϑϑϑ = ΨΨΨΨ ≡ (ψψψψ1, ψψψψ2, …, ψψψψM), of dimension 

K×M; and we place investigator-specific priors on the distributions for ΣΣΣΣ and ΨΨΨΨ.  We detail the prior information 

used subsequent to introducing the remaining specifications and the various censoring mechanisms.  Specification 

Two introduces hierarchical constants, in which case G is partitioned into G ≡ [W X] where W ≡ (w1, w2, .., wM) ≡ 

IN⊗ιιιιT, of dimension S×N, is a binary matrix of unit vectors; X ≡ (x1, x2, .., xK) retains dimension S×K, as before;  



we partition ϑϑϑϑ as ϑϑϑϑ ≡ [ΞΞΞΞ ΨΨΨΨ], of dimension S×M,  where ΞΞΞΞ ≡ (ξξξξ1, ξξξξ2, …, ξξξξM) has dimension N×M;  we assume, in the 

hierarchical spirit, that ΞΞΞΞ, in turn, evolves according to ƒ
�×�

��
�ΞΞΞΞ|$ΓΓΓΓ, ΣΣΣΣ, %&'ΞΞΞΞ&�  where H ≡  IM⊗ιιιιT, CovΞΞΞΞo denotes 

an investigator-induced component of the covariance matrix ΣΣΣΣ⊗CovΞΞΞΞo corresponding to the column expansion of ΞΞΞΞ; 

and we place investigator-induced priors on the matrices ΣΣΣΣ, ΓΓΓΓ and ΨΨΨΨ.    Finally, Specification Three, assumes that all 

of the regression coefficients evolve hierarchically, in which case we restructure G into P ≡ block-diagonal{X} 

where block-diagonal{X} ≡ diagonal{X1′, X2′, .., XN′}′ is the NT×NK block-diagonal arrangement of the 

household-common components of X with typical element, Xi, a matrix of dimension T×K; we redefine ϑϑϑϑ as ϑϑϑϑ ≡≡≡≡ ∆∆∆∆ 

where ∆∆∆∆ ≡ (δδδδ1, δδδδ2, …, δδδδM), of dimension NK×M; we assume that ∆∆∆∆, in turn, evolves according to  

ƒ
�(×�

��
�∆∆∆∆|)ΨΨΨΨ, ΣΣΣΣ, %&'∆∆∆∆&� , Q ≡ ιιιιN⊗IK, Cov∆∆∆∆o denotes an investigator-induced component of the covariance matrix 

ΣΣΣΣ⊗Cov∆∆∆∆o corresponding to the column expansion of ∆∆∆∆; and we place investigator-induced priors on the matrices ΣΣΣΣ 

and ΨΨΨΨ.   

A.6 Models 

Turning to specializations of the separate specifications, we enact four distinct formulations, henceforth referred to 

as Models in order to accommodate the censoring which is prevalent within the data.  For this purpose, introduce ΤΤΤΤ 

≡≡≡≡ { τij, i = 1, 2, .., N,  j = 1, 2, .., T } and consider specializations across the four, respective forms.  In the first 

specialization, which we refer to as Model One, we assume that the thresholds are non-existent and, thus, ignore the 

presence of censoring.  In the second formulation, Model Two, we enact conventional censoring as in (Tobin, 1957) 

and define τij = 0, for all i = 1, 2, .., N and j = 1, 2, T.  In the third formulation, which is Model Three, we enact a 

random censoring threshold, which is τij = τ, common for all i = 1, 2, .., N and j = 1, 2, .., T.  And in the final 

formulation, Model Four, we enact, conditional censoring wherein τij ≡ zij =  xij′ββββm+1 + uijm+1, for all i = 1, 2, .., N 

and j = 1, 2, .., T, where xij denotes covariate information and ββββm+1 denotes the corresponding vector of response 

coefficients.  In this latter setting three features of the sampling environment warrant comment.  First, unlike Models 

One, Two and Three, the Model Four censoring threshold is agent-and-period specific; it allows for the possibility 

of cross-equation correlation; requires implementation of an additional equation containing the latent censoring 

thresholds; and extends important, preceding work, most notably the random-censoring-threshold (Nelson, 1977) 

and, more recently, the single-equation Bayesian implementation of the Tobit regression of (Chib, 1992).  Finally, 



we emphasize that, whereas, Models One, Two and Three contain estimating systems of dimension S×M, under 

Model Four the system assumes dimension S×(M+1).  

A.7 Prior probability density functions 

In conceptualizing priors proprietary is necessary in order to enable model comparison.  We adopt the approach of 

employing ‘weak but proper’ forms and additional comment is relevant.  Whereas conjugacy imposes restrictions on 

the cross-equation covariances of ΓΓΓΓ and ΨΨΨΨ, conjugacy of itself does not impose stringent a priori restrictions on the 

distribution of ΣΣΣΣ.  Hence, we allow ΣΣΣΣ to evolve a priori according toƒ
�×�

��
�ΣΣΣΣ|	&, ν*� , So = IM × 102, νo = M+2, 

which is indeed ‘weak’ but ‘proper.’  Second, although the restriction that the conjugate prior covariance matrices 

conditioned by ΣΣΣΣ revert to ‘restrictive ‘block-diagonal structures is well documented (Drèze and Richard, 1983) – 

see especially, their comments on page 541; an indication they attribute to (Rothenberg, 1963) – those criticisms are 

less relevant here, for three reasons.  First, by view of the fact that we place a priori weight equally across twelve 

models the restrictive feature of any one form is mitigated.  Second, the inclusion of hierarchical components permit 

sufficient variability across coefficient columns that they further mitigate these concerns.  Third, conjugacy endows 

the posterior quantities with an attractive feature that considerably facilitates models comparison.  Thus, the prior 

assumptions that we invoke for the relevant response matrices are ƒ
(×�

��
�ΨΨΨΨ|ΨΨΨΨ*, ΣΣΣΣ, %&'ΨΨΨΨ&� , ΨΨΨΨo = 0KM, CovΨΨΨΨo = IK 

× 102 and ƒ
(×�

��
�ΓΓΓΓ|ΓΓΓΓ*, ΣΣΣΣ, %&'ΓΓΓΓ&� , ΓΓΓΓo = 01M, CovΓΓΓΓo = I1 × 102, which are also ‘weak’ but ‘proper.’ 

A.8 Parameter estimation strategy 

Despite complications, the estimation retains the same basic simplicity inherent in all Normal-data models.  

Moreover, because all of the essential vector-valued results in (Lindley and Smith, 1972) extend intuitively and 

readily to the matrix form, the entire posterior analysis would be available in closed-form, if not for censoring.  In 

the presence of censoring we adopt a Gibbs-sampling estimation strategy and the execution is routine.  Here, we 

outline the basic estimation algorithms and detail amendments required to incorporate censoring.  In terms of 

Specification One, Model One represents the basic matrix-Normal formulation wherein ƒ
+×�

��
�,|-ΨΨΨΨ, ΣΣΣΣ, #	�, 

ƒ
�×�

��
�ΣΣΣΣ|	*, ν� , and ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ*, ΣΣΣΣ, %&'ΨΨΨΨ&�, comprise the joint distribution for the data and the parameters.  It 

follows that the joint posterior for the unknown quantities is defined by the conjugate distributions ƒ
�×�

��
�ΣΣΣΣ|	., ν.�  

and ƒ
(×�

��
�ΨΨΨΨ|ΨΨΨΨ., ΣΣΣΣ, %&'ΨΨΨΨ.� and that the fully conditional distributions underlying the Gibbs-sampling algorithm are 



ƒ
�×�

��
�ΣΣΣΣ|	#, ν#�  and ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ#, ΣΣΣΣ, %&'ΨΨΨΨ#�, where, S# ≡ (ΨΨΨΨ-ΨΨΨΨo)′ CovΨΨΨΨo

-1 (ΨΨΨΨ-ΨΨΨΨo) + (Y-XΨΨΨΨ)′ IS (Y-XΨΨΨΨ), ν# ≡ 

K+S, CovΨΨΨΨ# ≡ (X′ISX+CovΨΨΨΨo
 -1)-1 and ΨΨΨΨ# ≡ CovΨΨΨΨ# (X′ISX+CovΨΨΨΨo

 -1ΨΨΨΨo)
-1.  On the first count, the definitions of S# 

and ν# follow, straight-forwardly, from the definition of the inverted-Wishart distribution.  On the second, count, the 

definitions CovΨΨΨΨ# and ΨΨΨΨ# are available from well-known results (Zellner, 1971; Bauwens, 1983; Drèze and 

Richard, 1984) for the matrix-Normal model.  Nevertheless, we explicate developments in order to introduce a 

procedure automating repeated derivations for the response coefficients.  Each of the matrix-Normal coefficient 

matrices, for example, ΘΘΘΘ, has a fully-conditional, data-dependent form derivable in terms of generic matrices A, B, 

C, D and E, namely, ƒ(ΘΘΘΘ) ∝ exp{ -.5 trace (A-BΘΘΘΘ)′ C (A-BΘΘΘΘ) ΣΣΣΣ-1 } × exp{ -.5 trace (ΘΘΘΘ-D)′ E (ΘΘΘΘ-D) ΣΣΣΣ-1 }.  Thus, 

completing the square in similar fashion to the vector-Normal (Zellner, 1971, p. 381; 19, pp. 5 and 6) we have 

  ƒmN(ΘΘΘΘ)  ∝  exp{ -.5 trace (ΘΘΘΘ-ΘΘΘΘ#)′ CovΘΘΘΘ#
-1 (ΘΘΘΘ-ΘΘΘΘ#) ΣΣΣΣ

-1 }  ∝  ƒmN(ΘΘΘΘ|ΘΘΘΘ#,ΣΣΣΣ,CovΘΘΘΘ#),  (A.2) 

where CovΘΘΘΘ# ≡ (B′CB+E)-1 and ΘΘΘΘ# ≡ (B′CB+E)-1 (B′CA+ED).  Thus, one can confirm that CovΨΨΨΨ# ≡ (B′CB+E)-1 

and ΨΨΨΨ# ≡ (B′CB+E)-1 (B′CA+ED) where A ≡ Y, B ≡ X, C ≡ Is, D ≡ ΨΨΨΨo and E ≡ CovΨΨΨΨo
 -1, as conjectured, and that 

the formal, Gibbs-sampling algorithm required for implementing Specification-One, Model-One consists of 

consecutive draws from ƒ
�×�

��
�ΣΣΣΣ|	#, ν#�  and ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ#, ΣΣΣΣ, %&'ΨΨΨΨ#�.  In the conventional censoring extension of 

Model One, Model Two employs V in place of Y and contains the additional draw from  

ƒ
�×�

0�
�z�23|µ�23,σ�23, ��∞, 05�  for {ijk} ∈ c ≡{ ijk | yijk = 0}, where c denotes the censor set for households i = 1, 2, .., N 

in time periods j = 1, 2, .., T and with respect to output quantity k; and from  ƒ
�×�

0�
�z�23|µ�23,σ�23, ��∞, 05�  denotes 

the (fully conditional) truncated-Normal, univariate distribution, with mean µijk and standard deviation σijk, defined 

on the interval (-∞,0] for the scalar latent quantity zijk.  Here the univariate-Normal draws are retrievable by direct 

application of the decompositions in (Zellner, 1971, pp. 381-382) and direct, one-to-one draws are available from 

the probability-integral transform as outlined, for example, in (Albert and Chib, 1993, p. 202).  Under 

Specification-One, Model-Three, we require an additional draw for the random censoring threshold, which is a 

(scalar) uniform distribution  ƒ
�×�

�
�τ|τ��6#, τ�78#� , where (exploiting similarities between the posterior distributions 

for the ordered-probit bin boundaries in (Albert and Chib, 1993) and the fully conditional posterior distribution for 

the threshold parameter, τ) we deduce that τmin# ≡ max{max{zijk,{ijk}∈c},τmino} and τmax# ≡ min{min{yijk, 

{ijk}∉c},τmaxo}.  Here, parameters τmino and τmaxo comprise the support for τ within the prior pdf ƒ
�×�

�
�τ|τ��6*, τ�78*�  



and ƒ
�×�

0�
�z�23|µ�23,σ�23, ��∞, τ5�  denotes the (fully conditional) truncated-Normal distribution for the latent data.  

Finally, within Model-Four introduces the conditional censoring threshold such that from  

ƒ
�×�

0�
�z�23|µ�23,σ�23, ��∞, z�2�9�5�  now denotes the relevant truncated-Normal distribution and the following details 

are emphasized.  First, introduction of the threshold introduces one additional entire column of latent data into V.  

Accordingly, in the absence of restrictions on the parameter space, the regression model is unidentified.  A 

convenient remedy (borrowed from probit analysis) is to restrict one of the diagonal terms in ΣΣΣΣ to one and derived 

the fully conditional distributions for the remaining, non-restricted components of ΣΣΣΣ.  The idea for this modification 

stems from an investigation of  ‘infinite regression’ (Dawid, 1998), with further modifications and refinements 

arising in the context of multinomial-probit estimation (Nobile, 2000; McCulloch and Rossi, 2000), with, finally, 

explicit derivations for the draw for ΣΣΣΣ outlined in an appendix to an application on transport choice (Linardarkis and 

Dellaportas, 2003).  Finally, in addition to the covariance restriction, one must draw the latent data in the M+1st 

column of V, which are made according to   ƒ
�×�

0�
�z�2�9�|µ�23,σ�23, :z�23, �∞�� , for {ijk} ∈ c, and 

ƒ
�×�

0�
�z�2�9�|µ�23,σ�23, ��∞, z�235� , for {ijk} ∉ c.  Turning to Specification-Two, the basic model has component 

conditional distributions consisting of five forms, namely ƒ
+×�

��
�,|;ΞΞΞΞ� -ΨΨΨΨ, ΣΣΣΣ, #	�, ƒ(×�

��
�ΨΨΨΨ|ΨΨΨΨ*, ΣΣΣΣ, %&'ΨΨΨΨ&�, 

ƒ
�×�

��
�ΞΞΞΞ|$ΓΓΓΓ, ΣΣΣΣ, %&'ΞΞΞΞ&�, ƒ�×�

��
�ΓΓΓΓ|ΓΓΓΓ*, ΣΣΣΣ, %&'ΓΓΓΓ&�, and ƒ

�×�

��
�ΣΣΣΣ|	*, ν�.  The joint posterior is defined by the conjugate 

distributions ƒ
�×�

��
�ΣΣΣΣ|	., ν.� , ƒ�×�

��
�ΓΓΓΓ|ΓΓΓΓ., ΣΣΣΣ, %&'ΓΓΓΓ.�,  ƒ

�×�

��
�ΞΞΞΞ|ΞΞΞΞ., ΣΣΣΣ, %&'ΞΞΞΞ.� and ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ., ΣΣΣΣ, %&'ΨΨΨΨ.� and the 

fully conditional distributions required for implementation are ƒ
�×�

��
�ΣΣΣΣ|	#, ν#� , ƒ

�×�

��
�ΓΓΓΓ|ΓΓΓΓ#, ΣΣΣΣ, %&'ΓΓΓΓ#�,  

ƒ
�×�

��
�ΞΞΞΞ|ΞΞΞΞ#, ΣΣΣΣ, %&'ΞΞΞΞ#� and ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ#, ΣΣΣΣ, %&'ΨΨΨΨ#�, where S# ≡ (ΓΓΓΓ-ΓΓΓΓo)′ CovΓΓΓΓo

-1 (ΓΓΓΓ-ΓΓΓΓo) + (ΞΞΞΞ-HΓΓΓΓ)′ CovΞΞΞΞo
-1 (ΞΞΞΞ-HΓΓΓΓ) 

+ (ΨΨΨΨ-ΨΨΨΨo)′ CovΨΨΨΨo
-1 (ΨΨΨΨ-ΨΨΨΨo) + (Y-WΞΞΞΞ-XΨΨΨΨ)′ IS (Y-WΞΞΞΞ-XΨΨΨΨ), ν# ≡ 1+N+K+S, CovΓΓΓΓ# ≡ (B′CB+E)-1 and ΓΓΓΓ# ≡ 

(B′CB+E)-1 (B′CA+ED) where A ≡ ΞΞΞΞ, B ≡ H, C ≡ CovΞΞΞΞo, D ≡ ΓΓΓΓo and E ≡ CovΓΓΓΓo
 -1, CovA# ≡ (B′CB+E)-1 and ΞΞΞΞ# ≡ 

(B′CB+E)-1 (B′CA+ED) where A ≡ Y-XB, B ≡ W, C ≡ Is, D ≡ ΞΞΞΞo and E ≡ CovΞΞΞΞo
 -1 and CovΨΨΨΨ# ≡ (B′CB+E)-1 and 

ΨΨΨΨ# ≡ (B′CB+E)-1 (B′CA+ED) where A ≡ Y-WΞΞΞΞ, B ≡ X, C ≡ Is, D ≡ ΨΨΨΨo and E ≡ CovΨΨΨΨo
-1. The conventionally-

censored, randomly-censored and conditionally-censored regressions (respectively, Model-Two, Model-Three and 

Model-Four) are executed in similar fashion to the manner described under Specification-One.  Specification-Three 

consists of the distributional components ƒ
+×�

��
�,|<∆∆∆∆, ΣΣΣΣ, #	�, ƒ(�×�

��
�∆∆∆∆|)ΨΨΨΨ, ΣΣΣΣ, %&'∆∆∆∆&�,  ƒ(×�

��
�ΨΨΨΨ|ΨΨΨΨ*, ΣΣΣΣ, %&'ΨΨΨΨ&�, and 

ƒ
�×�

��
�ΣΣΣΣ|	*, ν*�;  the joint posterior contains components ƒ

�×�

��
�ΣΣΣΣ|	., ν.� ,  ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ., ΣΣΣΣ, %&'ΨΨΨΨ.� and 



ƒ
�(×�

��
�∆∆∆∆|∆∆∆∆, ΣΣΣΣ, %&'∆∆∆∆.�; and the corresponding fully conditional distributions are ƒ

�×�

��
�ΣΣΣΣ|	#, ν#� ,  

ƒ
(×�

��
�ΨΨΨΨ|ΨΨΨΨ#, ΣΣΣΣ, %&'ΨΨΨΨ#� and ƒ

�(×�

��
�∆∆∆∆|∆∆∆∆#, ΣΣΣΣ, %&'∆∆∆∆#�, where S# ≡ (ΨΨΨΨ-ΨΨΨΨo)′ CovΨΨΨΨo

-1 (ΨΨΨΨ-ΨΨΨΨo) + (∆∆∆∆-QΨΨΨΨ)′ Cov∆∆∆∆o
-1 (∆∆∆∆-

QΨΨΨΨ) + (Y-P∆∆∆∆)′ IS (Y-P∆∆∆∆), ν# ≡ K+NK+S, Cov∆∆∆∆# ≡ (B′CB+E)-1 and ∆∆∆∆# ≡ (B′CB+E)-1 (B′CA+ED) where A ≡ Y, B 

≡ P, C ≡ Cov∆∆∆∆o, D ≡ QΨΨΨΨ and E ≡ Cov∆∆∆∆o
 -1, CovΨΨΨΨ# ≡ (B′CB+E)-1 and ΨΨΨΨ# ≡ (B′CB+E)-1 (B′CA+ED) where A ≡ ∆∆∆∆, 

B ≡ Q, C ≡ Cov∆∆∆∆o
-1, D ≡ ΨΨΨΨo and E ≡ CovΨΨΨΨo

-1.  Finally, as above, the conventionally-censored, randomly-censored 

and conditionally censored regressions (respectively, Model-Two, Model-Three and Model-Four) are executed in 

similar fashion to the manner described in Specification-One. 

A9 Models comparison strategy 

The essential input in models comparison is the marginal likelihood, estimates of which demand numerical methods 

due to the presence of censoring.  The technique preferred by us is a generalization of the Gibbs-sampling technique 

proposed by (Rothenberg, 1963) who shows that a robust estimate of the marginal likelihood is available via simple 

extensions of the basic Gibbs algorithm used in parameter estimation.  However, we find it convenient and 

considerably more efficient to execute models comparisons using the marginal distributions for the data as opposed 

to the fully conditional data distributions one typically employs.  Because, in the generalization to the matrix-

Normal, the vector-Normal contributions in (Drèze and Richard, 1984, equation (4), page 5) go through in the same 

way, the marginal distributions are easily obtained.  Under Specification-One the marginal distribution for Y 

remains ƒ
+×�

��
�,|-ΨΨΨΨ, ΣΣΣΣ, #	�; under Specification-Two the marginal distribution is ƒ

+×�

��
�,|;$ΓΓΓΓ � -ΨΨΨΨ, ΣΣΣΣ, #	�; and 

under Specification-Three the marginal distribution for the data is ƒ
+×�

��
�,|<)∆∆∆∆, ΣΣΣΣ, #	�.  Thus, Specification-One is 

enacted according to the Gibbs-sampling algorithm already discussed.  Under Specification-Two we draw, 

respectively, from  ƒ
�×�

��
�ΣΣΣΣ|	#, ν#� , ƒ�×�

��
�ΓΓΓΓ|ΓΓΓΓ#, ΣΣΣΣ, %&'ΓΓΓΓ#�, and  ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ#, ΣΣΣΣ, %&'ΨΨΨΨ#�, where S# ≡ (ΓΓΓΓ-ΓΓΓΓo)′ 

CovΓΓΓΓo
-1 (ΓΓΓΓ-ΓΓΓΓo) + (ΨΨΨΨ-ΨΨΨΨo)′ CovΨΨΨΨo

-1 (ΨΨΨΨ-ΨΨΨΨo) + (Y-WVΓΓΓΓ-XΨΨΨΨ)′ (IS+WCovΞΞΞΞoW′)-1 (Y- WVΓΓΓΓ-XΨΨΨΨ), ν# ≡ 1+K+S, 

CovΓΓΓΓ# ≡ (B′CB+E)-1 and ΓΓΓΓ# ≡ (B′CB+E)-1 (B′CA+ED) where A ≡ Y, B ≡ WH, C ≡ (IS+WCovΞΞΞΞoW′)-1, D ≡ ΓΓΓΓo , E 

≡ CovΓΓΓΓo
 -1; and CovΨΨΨΨ# ≡ (B′CB+E)-1 and ΨΨΨΨ# ≡ (B′CB+E)-1 (B′CA+ED) where A ≡ Y-WHΓΓΓΓ, B ≡ X, C ≡ 

(IS+WCovΞΞΞΞoW′)-1, D ≡ ΨΨΨΨo and E ≡ CovΨΨΨΨo
 -1.  Finally, under Specification-Three the Gibbs-sampling algorithm 

consists of draws from ƒ
�×�

��
�ΣΣΣΣ|	#, ν#�  and  ƒ

(×�

��
�ΨΨΨΨ|ΨΨΨΨ#, ΣΣΣΣ, %&'ΨΨΨΨ#�, where S# ≡ (ΨΨΨΨ-ΨΨΨΨo)′ CovΨΨΨΨo

-1 (ΨΨΨΨ-ΨΨΨΨo) + (Y-



PQΨΨΨΨ)′ (IS+PCov∆∆∆∆oP′)-1 (Y-PQΨΨΨΨ), ν# ≡ K+S, CovΨΨΨΨ# ≡ (B′CB+E)-1 and ΨΨΨΨ# ≡ (B′CB+E)-1 (B′CA+ED) where A ≡ 

Y, B ≡ PQ, C ≡ (IS+PCov∆∆∆∆oP′)-1, D ≡ ΨΨΨΨo and E ≡ CovΨΨΨΨo
-1. 

A.10 Marginal likelihood computation 

Defining the non-observed data, collectively, as Z; defining the parameters, collectively, as ΘΘΘΘ; and defining the 

observed data, collectively, as Y; the  joint distribution for all quantities, ƒ(ΘΘΘΘ,Z,Y), can be written, alternatively, as 

ƒ(ΘΘΘΘ,Z,Y) = ƒ(ΘΘΘΘ,Z|Y) × ƒ(Y), ƒ(Y,ΘΘΘΘ,Z) = ƒ(Y,ΘΘΘΘ|Z) × ƒ(Z), or ƒ(Z,Y, ΘΘΘΘ) = ƒ(Z,Y|ΘΘΘΘ) × ƒ(ΘΘΘΘ).  Writing the joint 

density in this fashion is important because it emphasizes the important feature of the estimation yielding alternative 

strategies for computing the marginal likelihood for the data, ƒ(Y), which is the essential input into models 

comparisons.  More specifically, using the facts that ƒ(ΘΘΘΘ,Z) = ƒ(Z|ΘΘΘΘ) × ƒ(ΘΘΘΘ) and ƒ(ΘΘΘΘ,Z|Y) = ƒ(Z|ΘΘΘΘ,Y) × ƒ(ΘΘΘΘ|Y), 

we can write ƒ(Y) = ƒ(Y|ΘΘΘΘ,Z) × ƒ(Z|ΘΘΘΘ) × ƒ(ΘΘΘΘ) ÷ ƒ(Z|ΘΘΘΘ,Y) ÷ ƒ(ΘΘΘΘ|Y) and, more usefully, ƒ(Y) = ƒ(Y,Z|ΘΘΘΘ) × ƒ(ΘΘΘΘ) ÷ 

ƒ(ΘΘΘΘ|Z,Y) ÷ ƒ(Z|Y).  The strategy that we adopt here is the familiar one of integrating over the latent data so that, on 

the computationally convenient logarithmic scale, our estimating equation, for the marginal likelihood, is  ln ƒ(Y) = 

ln ƒ(Y|ΘΘΘΘ*) + ln ƒ(ΘΘΘΘ*) - ln ƒ(ΘΘΘΘ*|Y), which is the multiple-equation analog of text equation (5).  In our setting, each of 

the components on the right-hand side, except the last component, is available in closed form.  The quantity, 

ƒ(Y|ΘΘΘΘ*), is the matrix-Normal density, evaluated at the point ΘΘΘΘ = ΘΘΘΘ*, integrated over the latent data, Z; and the 

quantity ƒ(ΘΘΘΘ*|Y) is simply the conjugate posterior distribution for the parameters, evaluated at the point ΘΘΘΘ = ΘΘΘΘ*, and 

once, again, integrated over the latent data, Z.  By noting that ƒ(Y,Z|ΘΘΘΘ) = ƒ(Y|Z,ΘΘΘΘ) × ƒ(Z|ΘΘΘΘ), and that ƒ(Z,ΘΘΘΘ|Y) = 

ƒ(ΘΘΘΘ|Z,Y) × ƒ(Z|Y), we note that appropriate Monte Carlo estimates of ƒ(Y|ΘΘΘΘ*)  and ƒ(ΘΘΘΘ*|Y) are, respectively, 

ƒ��,|ΘΘΘΘ
.
�  ≡ 

�

=
∑ ƒ�,|?
@�� A�B�,ΘΘΘΘ

.�  where Z(1), Z(2),  .., Z(G) denote draws marginally from the density ƒ(Z|ΘΘΘΘ) and  

ƒ��ΘΘΘΘ
.|,�  ≡ 

�

=
∑ ƒ�ΘΘΘΘ

.|?
@�� A�B�, ,�  where Z(1), Z(2),  .., Z(G) denote draws from the density ƒ(Z|Y).  Thus, a robust 

estimate of the marginal likelihood in the presence of latent data is available by extending procedures outlined in 

(Rothenberg, 1963).  Table 3 presents the results of applying (A.3) across the twelve-component, Cartesian product 

Specifications × Models.  Finally, all of the algorithmic developments are implemented in MATLAB© version 7.10 

with the Statistics Toolbox© installed on a modest hardware platform and the entire computer code and the data are 

available from the authors upon request. 
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Fig. 1. Single-equation posterior predictions: Milk output (liters per household per day).  The red dotted entry 
depicts the line of perfect fit.  The red squares along the red dotted line depict the observations on milk output from 
each of the households at each period in the panel. The black dots depict predictions on milk output obtained from 
the three canonical statistical forms. 
 
  



 
Fig. 2. Single-equation, marginal-product contours: Milk output increments (liters of milk per household per 
day) per unit increment in livestock (crossbreed and indigenous-breed cows).  Marginal products attributable to 
crossbreed animals are depicted horizontally and marginal products attributable to indigenous-breed animals are 
depicted vertically.  Gradual intensity or red spectrum depicts gradual intensity of mass.  Posterior means 
coordinates estimate (2,62, 1.30); posterior medians coordinates estimates (2,69, 1.28); ninety-five percent highest 
posterior density coordinates estimates ([1.54, 3.33], [0.98,1.77]). 
 
  



 
Fig. 3. Multiple-equation posterior predictions: Milk output (liters per household per day).  The red dotted 
entry depicts the line of perfect fit.  The red squares along the red dotted line depict the observations on milk output 
from each of the households at each period in the panel. The black dots depict predictions on milk output obtained 
from the three extended statistical forms. 
 
  



 
Fig. 4. Multiple-equation, marginal-product contours: Milk output increments (liters of milk per household 
per day) per unit increment in livestock (crossbreed and indigenous-breed cows).  Marginal products 
attributable to crossbreed animals are depicted horizontally and marginal products attributable to indigenous-breed 
animals are depicted vertically.  Gradual intensity or red spectrum depicts gradual intensity of mass. Posterior means 
coordinates estimate (2,68, 1.30); posterior medians coordinates estimates (2,68, 1.29); ninety-five percent highest 
posterior density coordinates estimates ([1.86, 3.38], [1.04,1.64]). 
 
  



 
Fig. 5. Multiple-equation, catastrophic-livestock loss contours: Present economic values ($US ×××× 1010) per unit 
increment in (1997) Ethiopian national herds (all crossbreed cows and all indigenous-breed cows).  Values of 
economic loss attributable to crossbreed animals are depicted on the horizontal axis and values of economic loss 
attributable to indigenous-breed animals are depicted vertically.  Gradual intensity or red spectrum depicts gradual 
intensity of mass.  Posterior means coordinates estimate (3.84,3.37); posterior medians coordinates estimates (3.79, 
3.37); ninety-five percent highest posterior density coordinates estimates ([3.06, 4,84], [4.84, 4.25]). 
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