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Online Bayesian Inference in Some
Time-Frequency Representations of

Non-Stationary Processes
Richard G. Everitt*, Christophe Andrieu, and Manuel Davy

Abstract—The use of Bayesian inference in the inference
of time-frequency representations has, thus far, been limited
to offline analysis of signals, using a smoothing spline based
model of the time-frequency plane. In this paper we introduce
a new framework that allows the routine use of Bayesian
inference for online estimation of the time-varying spectral
density of a locally stationary Gaussian process. The core of
our approach is the use of a likelihood inspired by a local
Whittle approximation. This choice, along with the use of
a recursive algorithm for non-parametric estimation of the
local spectral density, permits the use of a particle filter for
estimating the time-varying spectral density online. We provide
demonstrations of the algorithm through tracking chirps and
the analysis of musical data.

Index Terms—Signal processing algorithms, particle filters,
spectrogram, Bayesian methods, frequency domain analysis.
EDICS Categories: DSP-TFSR, MLR-BAYL, MLR-MUSI,
SSP-NSSP, SSP-TRAC.

I. INTRODUCTION

A. Background

Time-frequency representations (TFRs) are celebrated sig-
nal processing tools, for they turn time domain signals into
images, representing the time-frequency decomposition of
the signal, whose interpretation is intuitive. Such images are
thus often used as early analysis tools, to be used when
faced with non-stationary signals for which the concept of
frequency is relevant. Typical applications range from audio
signals (speech, music, animal cries) [1], biomedical time
series (EEG, ECG, EMG) [2], accelerometer signals [3]
collected on dynamic mechanical systems, etc.

Aside their ability to provide easy-to-understand images,
TFRs can be used in automated decision applications. [4]
showed that some Cohen’s group TFRs can be used to im-
plement optimal linear detection, by providing an equivalent
implementation of the time domain matched filter in the time
frequency domain. This seminal work was followed by a
number of studies about time-frequency detection / classi-
fication of signals, see e.g., [5]–[8]. All these approaches
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rely on the idea that the noise is spread all over the time-
frequency plane, thus increasing the local signal-to-noise
ratio. Based on the same idea, several algorithms have been
proposed to estimate signal parameters directly from TFRs,
most of which being devoted to linear chirps, see e.g., [9].
Others are devoted to more general time-varying spectrum
estimation. In particular, many studies have focused on
estimating narrow band time-frequency trajectories (also
termed components), see [10], [11] among others. Most
of these techniques implement Kalman filtering where the
observations are extracted from peaks of TFRs (sequential
approach), or fit curves onto the TFR (batch approach). As
shown by these many previous studies, using TFRs for es-
timation or decision purposes leads to powerful algorithms.
Many practical problems have received a convincing solution
through the use of these methods [12], [13]. For a general
overview of the time-frequency analysis, see [14].

In parallel to the development of time-frequency tech-
niques, statistical signal processing tools have developed
considerably over the last few years. In particular, up-to-
date Bayesian approaches enable to estimate parameters in
situations where the model is highly non-linear and/or non-
Gaussian, thanks to Monte Carlo methods. Surprisingly, few
works have been devoted to apply these techniques to TFRs.
Previous work can be summarised as follows:

1) Monte Carlo Markov Chain (MCMC) for estimating
the coefficients of Gabor representations [15], [16].

2) Tracking the pole parameterisation of time-varying
autoregression (TVAR) models using sequential Monte
Carlo [17].

3) Tracking trajectories in spectrograms by sequential
Monte Carlo (SMC) [18].

4) Using reversible-jump MCMC to infer the parameters
of a model for the time-varying spectrum of a locally
stationary process [19] and [20]. The model in these
papers partitions the process into segments, using a
mixture of smoothing splines to model the log spec-
trum of each segment and time varying mixing weights
to introduce non-stationarity across the segments.

Despite these advances, there exists no principled approach
to Bayesian inference that uses the full TFR as a raw
observation and relates it to some statistical model through
a likelihood function. Devising such a methodology is the
aim of this paper.
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B. Overview of the approach

This paper brings together TFRs and the Bayesian
paradigm for statistical inference. More precisely, we aim
to take advantage of the numerous conceptual benefits of
TFRs in order to motivate and develop models for non-
stationary processes while at the same time exploiting the
Bayesian paradigm for both incorporating prior information
and quantifying uncertainty in the inference procedure. This
leads to a natural description of the process to be analysed
in terms of a state-space model which is well suited to
the sequential processing of data (often referred to as fil-
tering) and the incorporation of prior temporal information
(e.g. smoothness, abrupt changes, etc). Sequential processing
might be desirable in scenarios where an update of the
information contained in the signal is required as soon as
a new data is available, but can also present a significant
computational and storage advantage when large datasets are
involved. SMC methods (aka particle filters) are well estab-
lished statistical techniques that allow one to effectively and
efficiently carry out sequential inference for such models, in
the presence of nonlinearity and non-Gaussianity.

The main difficulty inherent to achieve the goals set
above was to find a principled way of relating TFRs to the
classical statistical parametric inference framework and in
particular define a likelihood function for such objects. Our
approach consists of exploiting Whittle type approximations
to the likelihood of Gaussian processes. These approximate
likelihoods have the advantage that they can be shown to
depend exclusively on the spectral properties of the data
and the candidate statistical parametric model. Although
originally developed in the context of stationary processes,
recent theoretical advances have allowed for the rigorous
generalisation of this framework to some types of non-
stationary processes; a review of such approximations is
provided in section II. This is the route we follow in this
paper. In section III we show how the standard Bayesian
state-space modelling framework, in conjunction with Whit-
tle type likelihoods, lends itself naturally to the modelling of
non-stationary processes in the spectral domain. A generic
particle filter to perform sequential inference is also briefly
reviewed.

At the core of our approach to sequential estimation is to
use efficient recursive estimators of time-frequency images
from data. A novel solution to this problem is described
in section III-C, which relies on an unusual interpretation
of the power spectral density (PSD) of stationary processes
and its non-stationary counterparts. In section IV we apply
our methodology to tracking chirps whose signals overlap in
time-frequency space and in section V to a simple problem
in the analysis of musical data.

II. FROM THE GAUSSIAN LIKELIHOOD TO THE
SPECTROGRAM

A. The Whittle approximation

When looking at TFRs, it is tempting to try to fit a
parametric model in order to reduce dimensionality and

improve interpretability, including interpretability by a com-
puter. However the choice of a likelihood in such situations
is not always obvious. In this section we develop such a
likelihood which is motivated by Whittle’s approximant of
the likelihood for stationary processes and inspired by its
extension suggested in [21] for locally stationary processes.

Consider a zero mean real valued stationary Gaussian
process {yt|t = 1, . . . , T} for some T ≥ 1 with nonzero
PSD fθ : [−π, π] → (0,∞) dependent on a parameter
θ ∈ Θ. In [22] it was shown that the log-likelihood of a
real valued realisation of such a stationary Gaussian process
can for a general class of processes be approximated for T
large enough by

Lθ(y1:T ) := C− T

4π

ˆ π

−π
[log(2πfθ(ω)) + IT (ω)/fθ(ω)]dω,

(1)
for some constant C, where IT (ω) is the periodogram of the
data, defined for ω ∈ [−π, π] as

IT (ω) :=
1

T

∣∣∣∣∣
T∑
t=1

yt exp(−ıωt)

∣∣∣∣∣
2

. (2)

This approximation can easily be extended to accommo-
date vector valued time series and rates of convergence
of this approximation can also be derived (see [22] and
[23]). The interest of this approximation is that it relates
the spectral properties of the data (the periodogram) to the
statistical model for the data (the PSD fθ) in a principled
manner and presents the advantage of allowing modelling of
this class of processes directly in the spectral domain.

There is a large literature on the use of this approximation
for maximum likelihood inference of the parameter θ ( [23]
is a good starting point). However, the approach of [24],
where the Whittle approximation to the likelihood as a part
of a Bayesian model, is of more relevance to this paper.
In this paper a numerical approximation to the integral in
equation (1) is used, evaluating the integrand at the Fourier
frequencies {ωk = 2πk/T | 0 ≤ k ≤ bT/2c} to obtain

L̂θ(y1:T ) = C − 1

2

∑
k

[log(2πfθ(ωk)) + IT (ωk)/fθ(ωk)].

(3)
In the Bayesian model in [24] this likelihood is further

approximated by a mixture of Gaussians (for computational
reasons), and MCMC is used to infer a smoothing spline
representation of the log PSD. From our perspective, the
most important characteristic of this work is that the use of
the Whittle approximation provides a principled approach to
Bayesian inference of any appropriate statistical model of the
PSD, using the periodogram directly as an observation. This
flexibility in the choice of model for the PSD is exploited
in [25] and [26], amongst others.

B. Locally stationary processes

For our analogous methodology for the Bayesian estima-
tion of TFRs, a natural question is that of the existence of
such approximations for Gaussian non-stationary processes



EVERITT et al.: ONLINE BAYESIAN INFERENCE IN SOME TIME-FREQUENCY REPRESENTATIONS OF NON-STATIONARY PROCESSES 3

that would allow us to relate a TFR of the observed pro-
cess and a parametric model through a likelihood, or an
approximation of such a likelihood. A significant step in
this direction was achieved by [21] who extended Whittle’s
approximant to a particular class of non-stationary processes
called “locally stationary processes” [21], [27]–[30]. This
class of processes can be thought of as being a time varying
generalisation of stationary harmonisable processes and are
assumed to have a representation of the form (assuming for
simplicity that E(Yt,T ) = 0 for t = 1, . . . , T )

Yt,T =

ˆ π

−π
exp(ıωt)ΛT (t, ω)dξ(ω), (4)

where {ξ(ω)} is a complex valued Gaussian process on
[−π, π] with additional statistical properties detailed in the
appendix and {ΛT (t, ω) : {1, . . . , T} × [−π, π] → C, T ∈
N} is a family of complex valued functions which can be
approximated by a function Λ : [0, 1] × [−π, π] → C,
Λ(u, ω)∗ = Λ(u,−ω) such that there exists K satisfying

sup
(t,ω)∈{1,...,T}×[−π,π]

|ΛT (t, ω)− Λ (t/T, ω)| ≤ KT−1. (5)

This class of processes is especially useful, since it
defines a unique evolutionary spectrum for many commonly
used processes, including time-varying ARMA or GARCH
processes, for example.

In the context of parametric estimation it is natural to con-
sider a family of potential candidates {Λθ, θ ∈ Θ} in order to
explain the data. The quantity fθ(u, ω) := |Λθ(u, ω)|2 ≥ 0,
the evolutionary spectrum, can be thought of as being a
parametric TFR for the process.

In close analogy with Whittle’s likelihood approximation
for Gaussian stationary processes, and for the purpose of
statistical inference, In [21] the following approximation of
the log likelihood for T observations of a Gaussian locally
stationary process is derived

Lθ(y1:T ) := C +

T∑
t=1

− 1

4π

ˆ π

−π
[log(2πfθ(t, ω)) +

ĨT (t, ω)/fθ(t, ω)]dω, (6)

where C is a constant and ĨT (t, ω) is the pre-periodogram

ĨT (t, ω) =
∑

{k∈N:1≤t+1/2±k/2≤T}

ybt+1/2+k/2c

y∗bt+1/2−k/2c exp(−ıωk), (7)

with ∗ denoting complex conjugation and bc the largest
integer smaller than the argument (the pre-periodogram is
a particular discretisation of the Wigner-Ville distribution,
and is essentially an estimator of the evolutionary spectrum).
It is noted in [21] that the likelihood approximation may
be factorised as Lθ =

∑T
t=1 lθ,t, where each factor can

be thought of as the “local log likelihood” at time t. By
analogy with the stationary case, it is suggested by [21]
to maximise this approximate likelihood over values of θ,
approximating a maximum likelihood estimator. Theoretical
results are provided concerning the asymptotic consistency

of the maximum approximate likelihood estimator derived
by maximising Lθ(y1:T ), as well as a central limit theorem.

Bayesian estimation of the evolutionary spectrum of a
locally stationary process has previously been considered
in [19] and [20]. In common with this paper, the choice
of likelihood in these papers is also motivated by [30].
However, they differ from our work in that the likelihood
used for the segmented process in their model (see section
I-A) is simply the Whittle approximation for the likelihood
of the data in each segment - inference of the parameters of
their model is based on the periodogram of the data in each
segment. In addition, our goal is to infer the evolutionary
spectrum online, whereas these papers take a batch approach.

C. Approach

In the present paper we develop a methodology to perform
sequential Bayesian inference for processes modelled in the
spectral domain that uses time-frequency estimates as input.
Our model for the observed data y1:T is parameterised by
the time-varying parameter {θt}, which we treat as a random
variable. The aim of the Bayesian approach is to infer
a sequence of posterior distributions {p(θt|Y1:t = y1:t)}
thus describing the uncertainty present in inferring {θt},
in contrast to maximum likelihood estimators which seek
only a point estimate. The Bayesian formulation consists of
specifying: a prior p(θ1:T ) on the time-varying parameter;
and a likelihood g(Y1:T |θ1:T ), modelling how a random
process Y1:T arises given the underlying parameter θ1:T . The
posterior p(θ1:T |Y1:T = y1:T ) is then found via Bayes’ the-
orem: p(θ1:T |Y1:T = y1:T ) ∝ p(θ1:T )g(Y1:T = y1:T |θ1:T ).

The likelihood we use is inspired by Dahlhaus’ develop-
ments for locally stationary processes, but differs in that we
assume the evolutionary spectrum to consist of a succession
of local spectra fθt for the varying values {θt} and we chose
the prior such that p(θ1:T ) forms a Markov chain: p(θ1:T ) =
p(θ1)

∏T−1
t=1 p(θt+1|θt). This flexible approach allows us

to easily incorporate information about the shapes for the
possible “local” spectra as well as smoothness or jump in the
sequence {θt}. This, together with the sequential constraint
naturally leads us to formulate the related inference about
the process as that of a filtering problem in a dynamical
system framework. Due to the non-linearity involved, one
needs to resort to a particle filter in in order to estimate the
sequence of posterior distributions {p(θt|y1:t)}. A crucial
point in order to carry out this inference sequentially in time
is the ability to recursively estimate the evolving spectrum;
this is detailed in section III.

III. STATE-SPACE FORMULATION AND PARTICLE FILTER

A. Statistical model

We assume that the data {yt} ⊂ YN is generated by the
following state-space model

log(g(yt|θt, y1:t−1)) = C − 1

4π

ˆ π

−π
[log(2πfθt(ω)) +

Î(t, ω)/fθt(ω)]dω (8)



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, JANUARY 20XX

for some constant C, a time-frequency estimate Î(t, ω) of
the the evolving spectrum and a parametric model for the
evolving spectra fθt : [−π, π] → [0,+∞) dependent on a
parameter θt ∈ Θ. The sequence {θt} is a Markov chain with
initial distribution θ0 ∼ µ and θt|θ1:t−1 ∼ f(·|θt−1). Note
that there are numerous other possibilities for the choice of
the log-likelihood, such as −

´ π
−π |fθt(ω)− Î(t, ω)|2dω, but

that their choice might be more difficult to justify statistically
than ours (see section III-E).

Example 1. Assume that we are interested in tracking
chirps, but that we are not given enough information con-
cerning the evolution the instantaneous frequency of the
process. In such situations one for example may choose that
for θ = (a, ω0, s) ∈ Θ = [0,+∞)× [0, π)× [0,+∞)

fθ(ω) = a exp(−(ω − ω0)2/s)I(0 ≤ ω ≤ π) (9)

or
fθ(ω) =

a

1 + (ω − ω0)2/s
I(0 ≤ ω ≤ π). (10)

Then one can suggest the following a priori evolution
in time of the parameter of the evolving spectrum, where
N (.; , σ2) denotes a normal distribution with variance σ2:

at+1|(at, ω0
t , st) ∼ N (at+1; at, σ

2
a)I(at+1 ≥ 0) (11)

ω0
t+1|(at, ω0

t , st) ∼ N (ω0
t+1;ω0

t , σ
2
ω)I(0 ≤ ω0

t+1 ≤ π)
(12)

st+1|(at, ω0
t , st) ∼ N (st+1; st, σ

2
s)I(st+1 ≥ 0). (13)

Using a model such as that defined above, it is possible
to use static inference methods such as MCMC for the
inference of the parameters {θt}. However, our aim is to
estimate {θt} recursively in time as the data {yt} become
available. In our framework all information about {θt} is
given by the so-called filtering distributions {p(θt|y1:t)}
which cannot be computed analytically and recursively in
time due to the intractability of the likelihoods involved.
Hence we suggest here to resort to a particle filter algorithm.

B. Particle filters

Particle filters fall in the category of Monte Carlo algo-
rithms, whose principle consists of replacing the difficult to
use algebraic representation of a probability density with
a non-parametric representation in terms of (dependent)
samples from the underlying distribution. The concentration
of samples in a particular region of the space is repre-
sentative of the probability distribution that we are trying
to approximate. This turns out to be a powerful principle
which has the major advantage of circumventing analytical
intractability in complex systems. We now briefly describe
how such methods can be used in the present context in
order to perform sequential inference.

Assume that at time t − 1, a collection of N (N � 1)
random samples {θi1:t−1|i = 1, . . . , N}, called particles,
distributed approximately according to p (dθ1:t−1| y1:t−1) is

available. The empirical distribution

p̂N (dθ1:t−1| y1:t−1) =
1

N

N∑
i=1

δθi1:t−1
(dθ1:t−1) (14)

is an approximation of p (dθ1:t−1| y1:t−1), where δθ0 (dθ0)
represents the delta Dirac mass function located in θ0. Now
at time t, we wish to produce N particles which will
define an approximation p̂N (dθ1:t| y1:t) of p (dθ1:t| y1:t).
The simplest method to achieve this consists of sampling
θit ∼ f( ·| θit−1). The resulting empirical distribution of the
particles {θi1:t} is an approximation of the joint density
p (dθ1:t−1| y1:t−1) f (θt| θt−1). We correct for the discrep-
ancy between this density and the target p (θ1:t| y1:t) using
importance sampling. This yields the following approxima-
tion of p (dθ1:t| y1:t)

pN (dθ1:t| y1:t) =

N∑
i=1

W i
t δθi1:t (dθ1:t) , (15)

where

W i
t ∝ g(yt|θit, y1:t−1) and

N∑
i=1

W i
t = 1. (16)

To obtain an unweighted approximation of p (dθ1:t| y1:t)
of the form (14), we resample particles {θi1:t} according
to probabilities proportional to their weights {W i

t }. The
underlying idea is to get rid of particles with small weights
and multiply particles which are in the regions with high
probability masses. Many such resampling schemes have
been proposed in the literature; see [31]. The resampling
step is crucial for the method to work in practice.

This brief description only covers the simplest particle
filtering algorithms since we use nothing more complex than
this in our application. For more difficult problems, more
sophisticated algorithms will be required (see [32] for a
recent review).

C. Computation of the likelihood

There are two issues that require resolution in order to im-
plement the particle filter in practice. Firstly, each evaluation
of the likelihood (equation (8)) requires the calculation of an
intractable integral. Thus in practice our choice of likelihood
is analogous to the numerical approximation used in the sta-
tionary case by [24]. In particular, we use a likelihood based
on fixed, evenly spaced grid of M frequencies ωk = πk/M
over [0, π]:

log(ĝ(yt|θt, y1:t−1)) = C − 1

2

M∑
k=1

[log(2πfθt(ωk)) +

Î(t, ωk)/fθt(ωk)] (17)

The grid of frequencies must be chosen such that it is fine
enough to capture the important features of the modelled
and observed spectra. However, M should not be larger
than necessary since the sum in equation (17) dominates the
computation time of our particle filtering algorithm. Moving
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further from the statistical justification for our choice of
likelihood, one can envisage that for some applications it
may be useful to choose the set of frequencies in a different
way. For example, in the analysis of long memory processes
one may follow [33], omitting higher frequency terms.

The second problem we face in the evaluation of the
likelihood is the calculation of the time-frequency estimate
Î(t, ω) at every iteration. For the method to be computation-
ally feasible, it is required to estimate the evolving spectrum
recursively. The method used here is as follows. Consider
the PSD of a stationary process (with {Ȳt = Yt − E(Yt)})

2πf(ω) = E(Ȳ 2
t ) + 2

+∞∑
τ=1

E
[
ȲtȲt−τ

]
exp(−ıωτ) (18)

= E(Ȳ 2
t ) + 2E[Ȳt

+∞∑
τ=1

Ȳt−τ

exp(−ıωτ)], (19)

where E is the expectation with respect to the probability dis-
tribution of the process. The recursive estimation of the first
term from realisations of {Yt} is standard (see the recursion
for {Σt} below), but this is far less standard for the second
term. However one can notice that the second term can be
interpreted as being the product of two random variables,
Ȳt and B =

∑+∞
τ=1 Ȳt−τ exp(−ıωτ) (whose distributions

are by assumption independent of the time index t). One
can generate random variables asymptotically distributed
according to the distribution of B using the following
recursion (assuming here for simplicity that E(Yt) = 0),
initialised with B1 = Y1 exp(−ıω) and defined for t ≥ 1 as

Bt+1 = exp(−ıω)(Bt + Yt+1). (20)

Naturally these random variables are dependent by con-
struction, but under rather mild ergodicity assumptions on
{Yt} one can construct the following estimator for t ≥ 2

At =
1

t

t−1∑
j=1

Yj+1Bj . (21)

This sum can itself be recursively updated as follows

At+1 = (1− 1

t+ 1
)At +

1

t+ 1
Yt+1Bt, (22)

and the PSD easily estimated by combination with an
estimator of the variance.

In the non-stationary case {At} can be thought of as
being “instantaneous” estimates of the cross term in the
expression for the PSD. These estimates are likely to have a
high variance and hence averaging over several neighbouring
time instants might be needed, resulting in the introduction
of the classical bias/variance dilemma. An example of such
a smoothing procedure is described below, where the time
dependent and decreasing stepsize 1/(t + 1) in the recur-
sion above has been replaced with a time invariant factor
ρ ∈ [0, 1], whose role is to discard estimates far in the past.

Parameter ρ will control the bias/variance tradeoff. The re-
cursions are initialised with µ1 = y1, A1 = y2y1 exp(−ıω),
B1 = y1 exp(−ıω) and given for i ≥ 1 by

µt+1 = (1− ρ)µt + ρyt+1 (23)
ȳt+1 = yt+1 − µt+1 (24)
At+1 = (1− ρ)At + ρȳt+1Bt (25)
Bt+1 = exp(−ıω)(Bt + ȳt+1) (26)
Σt+1 = (1− ρ)Σt + ρȳ2t+1, (27)

from which one can evaluate the estimate Î(t, ω):

Î(t, ω) =
1

2π
(Σt + 2At) . (28)

Generalisations to multivariate time series, and a time-
scale variant, are also possible. A common modification is
the introduction of a “lag window” λ into the definition of
B =

∑+∞
τ=1 ȳt−τλ(τ) exp(−ıωτ) to reduce the variance of

the PSD estimator (see [34], for example). In this case, only
equation (26) changes. For example, if λ(τ) = ντ , we have

Bt+1 = ν exp(−ıω)(Bt + ȳt+1). (29)

D. Overall algorithm

An example of the method described in this section is
given in algorithm 1. Here the SIR particle filter [35] is
used, with exponential windows in lag and time for the time-
frequency estimate. Note that this particular algorithm is pre-
sented only for expository purposes - for many applications
more sophisticated algorithms may be used.

E. Discussion of the choice of likelihood

Our favoured model for the data, in equation (17), is
derived through taking several different approximations to
the exact likelihood of a locally stationary Gaussian process.
Specifically, these approximations are:

1) the use of a Whittle/Dahlhaus approximation, as in
equation (6);

2) the use of a numerical approximation to the integral in
equation (6), analagous to the one in 3 in the stationary
case;

3) substituting the pre-periodogram ĨT (t, ω) in equation
(6) for our own recursive estimator in equation (28).

The effect of each of these approximations has been inves-
tigated in previous work, most of which focusses on the use
of the approximations in the maximum likelihood setting,
thus the theoretical results about the approximations only
concern the large data limit. In this limit it has been shown
in [21] that when the first two approximations are used, the
approximate likelihood tends to the exact likelihood. [30]
proves an equivalent result when local periodograms are used
as an alternative to the pre-periodogram, but no equivalent
result yet exists when our recursive estimator is used.

There is a further difference between the approach in [21]
and our chosen likelihood, which is that we use a different
parameterisation of the plane. In [21] the time-frequency
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Algorithm 1 The SIR particle filter applied to sequential
inference of a TFR of a process.
Input: A realisation of a time series, {yt}Tt=1, a set of
frequencies {ωj}Mj=1, a number of particles P , parameters
of the recursive estimator ρ, ν.
Output: A weighted sample (θ

(i)
t+1, w

(i)
t+1)Pi=1 from the

posterior p(θt+1 | y1:t+1) on receipt of each data point.

µ1 = y1;
ȳ1 = 0;
Σ1 = 0;
for j = 1 : M

B
ωj

1 = 0;
A
ωj

1 = 0;
end
for i = 1 : P

Simulate θ(i)1 ∼ p(θ1);
Let w(i)

1 = 1/P ;
end
for t = 1 : T − 1

µt+1 = (1− ρ)yt+1 + ρµt;
ȳt+1 = yt+1 − µt+1;
Σt+1 = (1− ρ)ȳt+1(ȳt+1)T + ρΣt;
for j = 1 : M
A
ωj

t+1 = (1− ρ)ȳt+1(B
ωj

t )T + ρA
ωj

t ;
B
ωj

t+1 = ν exp(−iωj)(ȳt+1 +B
ωj

t );
Î(t+ 1, ωj) = 1

2π (Σt+1 + 2A
ωj

t+1);
end
for i = 1 : P

Simulate θ(i)t+1 ∼ p(. | θ
(i)
1:t, y1:t+1);

Reweight w(i)
t+1 = w

(i)
t exp

(
− 1

2

∑M
j=1

{
log
[
(2π)2d

det f
θ
(i)
t+1

(t+ 1, ωj)
]

+ tr
[
f
θ
(i)
t+1

(t+ 1, ωj)
−1Î(t+ 1, ωj)

]})
;

end
Resample (θ

(i)
t+1, w

(i)
t+1)Pi=1;

end

plane is parameterised by a single parameter θ, whereas in
our work we use a vector of parameters θ1:T , one for each
data point. This is significant since [21] studies the behaviour
of the likelihood in the large data limit, with the dimension
of the parameter unchanged in this limit. In our approach the
size of the parameter increases with the size of the data, thus
the theory of [21] does not directly apply to our likelihood.
The sense in which our chosen model approximates the exact
likelihood of a locally stationary Gaussian process is a topic
for future work that would provide statistical justification for
our approach.

IV. APPLICATION: TRACKING MULTIPLE COMPONENTS

A. Data description and spectrogram

In this section we apply our method to the analysis of two
signals, both over the domain 0 ≤ t ≤ 2: the first (with a
sampling frequency of 103Hz) consists of two chirps, one

linear and one quadratic, and the second (with a sampling
frequency of 104Hz) consists of three components, two of
which exhibit a frequency modulation. In this section we will
apply our methodology to sequentially infer the fundamental
frequency of the two chirps.

Spectrograms of these signals are shown in Fig. 1 (a) and
Fig. 3 (a) respectively. For the first signal, since the chirps
overlap in time-frequency space, separately inferring their
fundamental frequencies is not completely straightforward
directly from the spectrogram (or other traditional TFRs).
However, similar problems to this are often encountered in
target tracking and are routinely solved through the use of
parametric models. The framework developed in this paper
allows us to apply the same approach here. We note that
this problem is relatively simple - our reason for including
these analyses is expository: firstly as a simple example of
the utility of a parametric approach; and secondly since the
existence of a ground truth enables a quantitative analysis
of the effect of different parameters of the algorithm.

B. Bayesian model

To model the components we parameterise the time-
frequency plane so that at each time at which the signal
is observed, frequency space is modelled using a mixture of
K kernels plus a constant. Specifically we use the model:

fθ(ω) =

K∑
k=1

a(k)

1 +
(
ω − µ(k)

)2
/v(k)

+ c (30)

The parameter µ(k) represents the positions of the two com-
ponents. To allow us to distinguish between the components
when they have the same location, we also include the
derivative, µ′(k), of the component position in our model. In
this model θ =

({
µ(1), µ̇(1), v(1), a(1)

}K
k=1

, c
)
∈ Θ, where

µ(k) ∈ [0, π), µ̇(k) ∈ (−∞,+∞), v(k), a(k), c ∈ [0,+∞).
Our a priori model for the evolution of each of these

parameters is a random walk, except for the location param-
eters for which we use a constant velocity (CV) model. We
have

ct+1|θt ∼ N (ct+1; ct, σ
2
cτ)I(ct+1 ≥ 0) (31)

and
v
(k)
t+1|θt ∼ N (v

(k)
t+1; v

(k)
t , σ2

vτ)I(v(k)t+1 ≥ 0) (32)

a
(k)
t+1|θt ∼ N (a

(k)
t+1; a

(k)
t , σ2

aτ)I(a(k)t+1 ≥ 0) (33)(
µ
(k)
t+1

µ̇
(k)
t+1

)
|θt ∼MVN

((
µ
(k)
t+1

µ̇
(k)
t+1

)
;A

(
µ
(k)
t

µ̇
(k)
t

)
, Q

)
,

(34)
where

A =

(
1 τ
0 1

)
(35)

and
Q =

(
τ3/3 τ2/2
τ2/2 τ

)
σ2
µ, (36)

with τ = 0.001 for the first signal and τ = 0.0001 for
the second. We used algorithm 1, and our default parameter
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settings are to use 500 particles, to take ν = 0.97 and
ρ = 0.97, and to use σ2

c = 10−5, σ2
v = 10−3, σ2

a = 10−3

and σ2
µ = 1. These prior parameters are not optimal. They

were determined through a consideration of how much the
parameters might evolve in one time step and tuned through
pilot runs (we note that more accurate results may be
obtained by using more particles and appropriately tuned
priors). Below we examine the sensitivity of our results to
the choice of priors.

C. Results

We first consider the analysis of the first signal. Fig.
1 (b), (c) and (d) display the results of a single run of
the algorithm under the default settings. The TFR obtained
by the recursive non-parametric estimator, Î(t, ω) given by
equation (28) and estimated expected reconstruction from
the particle filter, i.e. Êθt|y1:t [fθt(ω)] for each time t are
shown in Fig. 1 (b) and (c) respectively. The non-parametric
estimator gives comparable results to that of the spectrogram
in Fig. 1 (a), and we observe that the components in the
Bayesian reconstruction of the TFR follow the chirps closely.

However, the strengths of our approach are not fully illus-
trated through simply examining the TFRs that are inferred.
More detailed information about the signal under study can
be obtained through examining the posterior distribution
of θt itself. In particular, the posterior distribution on the
µ(k) allows us to retrieve estimates of the fundamental
frequencies of the chirps over time. Fig. 1 (d) shows the
estimated expected fundamental frequencies, Ê

µ
(k)
t |y1:t

[µ(k)]

of the chirps estimated from the particle filter (compared to
the true values). We observe that the Bayesian approach has
successfully tracked the two overlapping components.

We now explore the dependence of our method on the cho-
sen prior parameters through examining the mean squared er-
ror of the posterior expectation of the fundamental frequency
of each component over multiple runs of the particle filter.
Note that this method is not necessarily the most appropriate
way to evaluate a Bayesian technique since the aim of
such an approach is not usually to obtain estimators with
good frequentist properties, but it does provide a quantitative
approach to describing the sensitivity of our method to the
choice of prior. Fig. 2 shows the log mean squared error over
time of several choices for the different parameters compared
to the default choice. In general we observe some sensitivity
to prior choice: changing the prior standard deviation by
an order of magnitude for any of the parameters can have
a large effect on the results, although finer tuning of the
parameters was not found to be necessary. These observa-
tions are congruent with the situation that is encountered in
many other target tracking problems. The effect of altering
the prior on the σ2

µ parameter is particularly clear. For
very small values of the parameter the prior informs the
posterior more than the likelihood, and thus the posterior
very closely follows the constant velocity model with the
result that it completely loses track of the quadratic chirp
relatively quickly (by 0.3s). Whereas, for large values of the

parameter, large deviations from the constant velocity model
are possible, thus the ability of the algorithm to distinguish
between the two separate components is diminished, also
resulting in a large error.

Finally we consider the analysis of the second signal. Fig.
3 (b) shows the estimated expected fundamental frequencies
of the components from the output of the particle filter. We
observe that the three components are successfully tracked,
along with the frequency modulation that is observed in the
spectrogram for the two lower frequency components.

V. APPLICATION: FLUTE

A. Pitch transcription

TFRs are a natural tool for the analysis of musical data
(for example, [15], [36], [37]). Further, as described in [38],
such data is particularly amenable to a Bayesian analysis:
often accurate physical models for the notes produced by
different instruments are known, thus the use of prior
knowledge in parameterising the time-frequency plane is
natural. In this section we consider the problem of pitch
transcription: estimating the pitch, onset time and duration
of notes in a music signal. In the frequency domain a
note in a music signal consists of a fundamental frequency,
determining the pitch of the note, and partials or harmon-
ics at approximately integer multiples of the fundamental
frequency, whose amplitudes dictate the note’s timbre. In
the polyphonic case, the resultant complex structure in the
time-frequency plane makes pitch transcription challenging
[16]. Here we consider the monophonic case as a simple
illustration of the methodology introduced in the paper. We
use a prior model for the time-frequency plane similar to
that in [39] and the likelihood described in section III.

B. Transcription of monophonic flute data

We use our methodology for the transcription of a
flute playing the opening twelve seconds of Debussy’s
Syrinx, available from the first authors’s webpage at
http://www.personal.reading.ac.uk/
~gt904211/flute.wav. In frequency space, we choose
the following harmonic model for a flute note:

fθ(ω) = c+

K∑
k=1

a(k)/
(

1 + ((ω − (k + δ(k))ω0)2/S)
)
.

(37)
For the data we analyse taking K = 3 (so that two
partials are modelled) is sufficient to account for the most
important parts of the signal (although note that, as expected,
higher partials are observed in the data). In this case,
θ = (ω0, S, a(1), a(2), a(3), δ(1), δ(2), δ(3), c) ∈ Θ, with fun-
damental frequency ω0 ∈ [0, π), peak width S ∈ [0,+∞),
peak amplitudes a(k) ∈ [0,+∞), detuning parameters [38]
δ(k) ∈ (−∞,+∞) and constant c ∈ [0,+∞).

In passing we note that, as in [38], polyphonic data can be
modelled simply by using a sum over several such models
(one term per note). Our a priori model for the evolutionary
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(a) A spectrogram. (b) The TFR inferred by the obtained by the recursive
non-parametric estimator given by equation (28).

(c) The TFR given by the posterior expectation from
the particle filter.

(d) The posterior expectations of µ(1) and µ(2) esti-
mated from the particle filter output (black) and the true
fundamental frequencies (grey).

Fig. 1: Analysis of the first signal.

spectrum of a note is that the parameters in θ each evolve
with random walks (some truncated):

ω0
t+1|θt ∼ N (ω0

t+1;ω0
t , σ

2
ω0)I(0 ≤ ω0

t+1 ≤ π) (38)

St+1|θt ∼ N (St+1;St, σ
2
S)I(St+1 ≥ 0) (39)

a
(k)
t+1|θt ∼ N (a

(k)
t+1; a

(k)
t , σ2

a)I(a(k)t+1 ≥ 0) (40)

δ
(k)
t+1|θt ∼ N (δ

(k)
t+1; δ

(k)
t , σ2

δ ) (41)

ct+1|θt ∼ N (ct+1; ct, σ
2
c ) (42)

The parameters of these priors were chosen in such a way
as to allow the note to change quickly enough to describe
normal musical data, but not so much as to take account
of unrealistic changes (in which case a large number of
particles would be needed to obtain accurate results). Specif-
ically, we chose σ2

ω0 = 10−4, σ2
S = 10−12, σ2

a = 10−8,
σ2
δ = 10−16 and σ2

c = 10−10: these choices are sufficiently
small to impose the desired smoothness on the inferred
time-frequency plane, whilst still large enough to allow the
changes in note that we expect in the flute data. Pilot runs
of the algorithm suggest that the sensitivity of our results
to these priors is not dissimilar from our observations in
section IV, in that intricate tuning is not required in order
to obtain adequate results, but pilot runs to check the order

of magnitude of the initially specified priors was important.
For example, we found that setting σ2

ω0 = 10−2 results in
the filter losing resolution of the finer features (such as the
frequency modulation) of the evolution of the note (although
we observed that a change of a similar magnitude to another
of the parameters does not have such a dramatic effect). We
used algorithm 1 with 100 particles, taking ν = ρ = 0.999.
The data was downsampled to 22050 Hz.

The log of the TFR obtained by the recursive non-
parametric estimator (given by equation (28)) and log of the
reconstruction from the expected parameter values found by
the particle filter are shown in Fig. 5. In both representations
we observe the basic structure of the signal: the rising and
falling notes played by the flute; the “steps” representing
the individual notes that are played; and the decomposition
of the signal into a fundamental frequency and partials (in
the non-parametric estimator the log scale also shows higher
order partials that are not included in the model).

The Bayesian reconstruction of the time-frequency plane
is smoother than the non-parametric version (as is promoted
by our choice of prior), but not so much as to obscure the
discrete changes between the notes. Again, we emphasise
that a more direct use of the posterior distribution of our
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(a) log MSE of the estimate of µ(1)t for
different values of σ2

µ.
(b) log MSE of the estimate of µ(1)t for
different values of σ2

v .
(c) log MSE of the posterior expectation of
µ
(1)
t for different values of σ2

a.
(d) log MSE of the posterior expectation of
µ
(1)
t for different values of σ2

c .

(e) log MSE of the estimate of µ(2)t for
different values of σ2

µ.
(f) log MSE of the estimate of µ(2)t for
different values of σ2

v .
(g) log MSE of the posterior expectation of
µ
(2)
t for different values of σ2

a.
(h) log MSE of the posterior expectation of
µ
(2)
t for different values of σ2

c .

Fig. 2: The log mean-squared error of the posterior expectations of the fundamental frequency of the linear chirp (top) and
the quadratic chirp (bottom) over 50 runs of the particle filter for different prior parameters. In each case the result for the
default parameters uses a solid line.

(a) A spectrogram. (b) The posterior expectations of µ(1), µ(2), µ(3) esti-
mated from the particle filter output (black) and the true
fundamental frequencies (grey).

Fig. 3: Analysis of the second signal.

parametrisation of the time-frequency plane can reveal a
much richer and subtle structure underpinning the signal
being analysed. Examination of the posterior distribution of
our parameterisation of the time-frequency plane can tell
us more about the data. For example, Fig. 6 (a) shows the
estimated expected note played by the flute at each time step,
Êω0

t |y1:t [note(ω0)], found by the sample mean of note(.)
evaluated at the fundamental frequency of each particle,

where

note(ω0) = 69 +
12

log(2)

(
log

(
22050ω0

2π

)
− log(440)

)
(43)

is the function that converts the fundamental frequency of the
note into its MIDI pitch number. We observe that our method
has successfully tracked the short changes in the note played
by the flute, but also see the superimposed modulation that is
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heard in the audio file towards the end of the longer notes;
a feature that is not immediately obvious from the TFRs
themselves. Further, our Bayesian approach also allows us to
assess the uncertainty associated with such summaries of the
data. For example, Fig. 6 (b) shows the posterior uncertainty
over the note played by the flute at each time, as represented
by the transformation of the fundamental frequency of each
particle into its pitch number. Fig. 6 (c) shows the standard
deviation of the expected note estimated from 50 runs of
the particle filter - we see that this error is small compared
to the posterior uncertainty. We find 100 particles to be
sufficient for this application - using 1000 particles does
not dramatically alter the results.

Fig. 4: The standard deviation of the estimated expected note
found from 50 runs of the particle filter.

VI. CONCLUSIONS

This paper presents a new methodology for the sequential
Bayesian estimation of a TFR of a time series, providing a
connection between Bayesian estimation and the literature
on TFRs. The key underpinning ideas in the work are the
use of a likelihood motivated by the extension of the Whittle
approximation in [21] and, within this, the use of a recursive
estimate of a time-frequency estimate. Our approach has the
following features:

1) The Bayesian approach is used, which allows the use
of prior knowledge in the modelling of a TFR.

2) Signals are modelled directly in the time-frequency
domain in a flexible manner.

3) Inference of the evolutionary spectrum is performed
sequentially, which is particularly useful for some
applications.

The work in this paper paves the way for a wider use of
Bayesian methods in time-frequency analysis. Our frame-
work permits the freedom to use the full power of Bayesian
methodology in time-frequency estimation: this should make
a significant impact in applications where advanced mod-
els (for example, trans-dimensional and/or semi-parametric
models) are appropriate.

There are several opportunities for future research arising
from this work. We have already mentioned that the compu-
tational cost of the algorithm is an important consideration,

and we expect parallel implementations to make a significant
contribution here. We note that this paper only considers a
relatively low-dimensional example, but we also expect the
methods introduced here to be of use in high dimensional
settings. In such cases, since particle filters can become
challenging to implement for high-dimensional problems,
the careful design of the particle filtering algorithm becomes
more important, but the basic framework remains the same.
We anticipate that in such cases, the simple SIR filter will not
be appropriate, and the users of the method introduced here
will need to draw on the large literature (e.g. [32]) devoted
to the design of particle filters in such settings. There is also
a clear opportunity for the study of the theoretical properties
of our approach. Whilst our local Whittle likelihood is
inspired by that in [21], our approach contains several
differences and thus the theoretical results in that paper do
not apply. We note that in order to formalise the notion of
our approach being used to infer a TFR, some constraints on
the choice of prior may be necessary; for example, it may
be important to represent the well documented Uncertainty
Principle between time and frequency [40].

APPENDIX

Definition of the evolutionary spectrum
The framework is similar to that for stationary processes.

Suppose that {Xt,N | t = 1, ..., N} is a Dahlhaus locally
stationary process with transfer function matrix Λ0 and mean
function vector µ. That is, directly from Dahlhaus [21], there
exists a representation

Xt,T = µ

(
t

T

)
+

ˆ π

−π
exp{ıωt}Λ0

t,T (ω)dξ(ν) (44)

with the following properties:
1) ξ(ω)is a complex valued Gaussian vector process on

[−π, π] with ξa(ω) = ξa(−ω), E[ξa(ω)] = 0 and

E[dξa(ω1) dξb(ω2)] = δabη(ω1 +ω2) dω1 dω2, (45)

where η(ω) =
∑∞
j=−∞ δ(ω + 2πj) is the period 2π

extension of the Dirac delta function.
2) There exists a constant K and a 2π-periodic matrix

valued function Λ : [0, 1]×R→ Cd×d with Λ(u, ω) =
Λ(u,−ω) and

sup
t,ω

∣∣∣∣Λ0
t,T (ω)ab − Λ

(
t

T
, ω

)∣∣∣∣ ≤ KT−1 (46)

for all a, b = 1, ..., d and T ∈ N. Λ(u, ω) and µ(u)
are assumed to be continuous in u.

We define that f(u, ω) = Λ(u, ω)Λ(u, ω)
T

is the time-
varying spectral density matrix or evolutionary spectrum of
the process.
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