Accessibility navigation

Impact of atmospheric forcing on Antarctic continental shelf water masses

Petty, A. A., Feltham, D. L. and Holland, P. R. (2013) Impact of atmospheric forcing on Antarctic continental shelf water masses. Journal of Physical Oceanography, 43 (5). pp. 920-940. ISSN 0022-3670

Text - Published Version
· Please see our End User Agreement before downloading.


To link to this article DOI: 10.1175/JPO-D-12-0172.1


The Antarctic continental shelf seas feature a bimodal distribution of water mass temperature, with the Amundsen and Bellingshausen Seas flooded by Circumpolar Deep Water that is several degrees Celsius warmer than the cold shelf waters prevalent in the Weddell and Ross Seas. This bimodal distribution could be caused by differences in atmospheric forcing, ocean dynamics, ocean and ice feedbacks, or some combination of these factors. In this study, a highly simplified coupled sea ice–mixed layer model is developed to investigate the physical processes controlling this situation. Under regional atmospheric forcings and parameter choices the 10-yr simulations demonstrate a complete destratification of the Weddell Sea water column in winter, forming cold, relatively saline shelf waters, while the Amundsen Sea winter mixed layer remains shallower, allowing a layer of deep warm water to persist. Applying the Weddell atmospheric forcing to the Amundsen Sea model destratifies the water column after two years, and applying the Amundsen forcing to the Weddell Sea model results in a shallower steady-state winter mixed layer that no longer destratifies the water column. This suggests that the regional difference in atmospheric forcings alone is sufficient to account for the bimodal distribution in Antarctic shelf-sea temperatures. The model prediction of mixed layer depth is most sensitive to the air temperature forcing, but a switch in all forcings is required to prevent destratification of the Weddell Sea water column.

Item Type:Article
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:34577
Publisher:American Meteorological Society
Publisher Statement:© Copyright 2009 of the American Meteorological Society. The AMS Copyright Policy is available on the AMS web site at

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation