
Rheology of discrete failure regimes of 
anisotropic sea ice 
Article 

Published Version 

Wilchinsky, A. V. and Feltham, D. L. ORCID: 
https://orcid.org/0000-0003-2289-014X (2012) Rheology of 
discrete failure regimes of anisotropic sea ice. Journal of 
Physical Oceanography, 42 (7). pp. 1065-1082. ISSN 1520-
0485 doi: 10.1175/JPO-D-11-0178.1 Available at 
https://centaur.reading.ac.uk/34580/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1175/JPO-D-11-0178.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Rheology of Discrete Failure Regimes of Anisotropic Sea Ice

ALEXANDER V. WILCHINSKY AND DANIEL L. FELTHAM

National Centre for Earth Observation: Centre for Polar Observation and Modelling, University College London,

London, United Kingdom

(Manuscript received 28 September 2011, in final form 19 December 2011)

ABSTRACT

A rheological model of sea ice is presented that incorporates the orientational distribution of ice thickness

in leads embedded in isotropic floe ice. Sea ice internal stress is determined by coulombic, ridging and tensile

failure at orientations where corresponding failure criteria are satisfied at minimum stresses. Because sea ice

traction increases in thinner leads and cohesion is finite, such failure line angles are determined by the ori-

entational distribution of sea ice thickness relative to the imposed stresses. In contrast to the isotropic case,

sea ice thickness anisotropy results in these failure lines becoming dependent on the stress magnitude.

Although generally a given failure criteria type can be satisfied at many directions, only two at most are

considered. The strain rate is determined by shearing along slip lines accompanied by dilatancy and closing or

opening across orientations affected by ridging or tensile failure. The rheology is illustrated by a yield curve

determined by combining coulombic and ridging failure for the case of two pairs of isotropically formed leads

of different thicknesses rotated with regard to each other, which models two events of coulombic failure

followed by dilatancy and refreezing. The yield curve consists of linear segments describing coulombic and

ridging yield as failure switches from one lead to another as the stress grows. Because sliding along slip lines is

accompanied by dilatancy, at typical Arctic sea ice deformation rates a one-day-long deformation event

produces enough open water that these freshly formed slip lines are preferential places of ridging failure.

1. Introduction

Sea ice forms from the freezing of polar waters and

covers a significant fraction, up to almost 10%, of the

earth’s oceans. Sea ice is well recognized as an important

component of the earth’s climate system and, as a result,

sea ice models are routinely incorporated into global

climate models (GCMs). Although sea ice affects polar

and global climate through its impact on the thermo-

haline budget (e.g., through its high albedo compared to

seawater), its insulating effect on polar oceans, and its

contribution to the freshwater balance when it melts or

freezes, the focus of this paper is on sea ice dynamics or,

more particularly, sea ice rheology. Sea ice dynamics is

the catch-all name given to the combination of processes

that move and deform the sea ice cover, which is de-

scribed in GCMs by a combination of a momentum bal-

ance equation, mass balance equation, and a constitutive

law relating internal sea ice stresses to the sea ice state and

deformation (sea ice rheology).

Much of the sea ice cover is comprised of brittle floes

that are of approximately convex, polygonal shape with

lateral dimensions ranging between about 100 m and

5 km and with thicknesses of several meters: in winter,

the floes are typically frozen together to form a more-

or-less continuous, heterogeneous cover of the ocean,

whereas in summer the floes separate and a more dilute

ice cover is typical. The modes of sea ice deformation

that are considered important for geophysical-scale

(e.g., 5 km and greater) sea ice models, which are con-

sidered in this paper, are pressure ridging, coulombic

shear rupture and subsequent sliding, and tensile open-

ing. Pressure ridging occurs when, under sufficient com-

pressive stresses, the ice floes break up and override to

form long piles of rubble above and beneath the ice cover

(the pressure ridges and associated keels). Coulombic

shear rupture occurs when shear stresses, under mod-

erate confinement, cause the ice cover to rupture along

pairs of lines traversing the ice pack. Because shear

rupture is typically followed by frictional sliding along

these lines, the lines are frequently known as slip or
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sliding lines. Tensile opening, as the name suggests, is

caused by tensile (opening) stresses that break the ice in

tension. This paper relates sea ice stresses to the mode

and orientation of sea ice deformation more explicitly

than previous treatments of sea ice rheology.

Since the Arctic Ice Dynamics Joint Experiment

(AIDJEX) (Coon et al. 1974), sea ice rheology has been

described as plastic, often by analogy of sea ice to

granular materials. With few exceptions, these rheology

models have treated the ice cover as isotropic: an as-

sumption that rests upon the premise that the subcon-

tinuum sea ice state (described by, e.g., the number,

orientation, and thicknesses of leads) is isotropically

distributed and/or the underlying material rheology of

sea ice is intrinsically isotropic. Note that in practical

applications the continuum scale is defined by the grid-

cell size used in the numerical sea ice model and the time

step of the numerical model; at the time of the AIDJEX

study, such scales were on the order of 100 km and 1 day.

Another frequently used assumption is that geophysical-

scale sea ice has no tensile strength. The assumption of

isotropy has allowed classical plastic flow theory to be

applied to sea ice, with the main distinguishing feature

between alternate–competing sea ice rheology models

being the shape of the plastic yield curve, the direction

of the plastic flow law, and the nature of the subplastic

yield rheology (viscous or elastic). The developed yield

curve envelopes included the most used elliptic (Hibler

1979), sine-wave (Bratchie 1984), ice cream cone (Shen

et al. 1987; Pritchard 1988; Hopkins 1996; Hibler and

Schulson 2000), and linear coulombic shapes (Marko and

Thomson 1977; Smith 1983; Overland and Pease 1988;

Tremblay and Mysak 1997). See Feltham (2008) for a

review of developments in modeling of sea ice rheology.

Satellite imagery (e.g., Fig. 1) shows that, in the winter

pack, floes are frozen together and the sea ice cover fails

discretely along linear failure lines at acute angles

(Marko and Thomson 1977; Erlingsson 1988; Pritchard

1988), which are observed at a range of scales (e.g., 10–

150 km; Walter et al. 1995). Such imagery has lent

weight to theories of discrete, coulombic fracture of the

ice cover (e.g., Marko and Thomson 1977; Schulson

2001), with the internal friction (shear rupture) co-

efficient being independent of scale (Weiss and Schulson

2009). Moreover, sea ice stress measurements by Richter-

Menge et al. (2002) during the Surface Heat Budget of

the Arctic Ocean (SHEBA) experiment (Perovich et al.

1999) recorded tensile stresses, usually ignored in sea ice

models, as large as compressive stresses, which implies

a significant cohesion if sea ice is assumed to fail cou-

lombically (Weiss et al. 2007). The new data, as well as

understanding of the sea ice processes, has debunked the

earlier AIDJEX assumptions of isotropy and zero tensile

strength (e.g., Coon et al. 2007) in favor of models that

can describe discontinuity of the sea ice deformation

(e.g., Hopkins and Thorndike 2006; Schreyer et al. 2006)

and induced anisotropy due to highly aligned leads that

may extend across large areas of the ice pack.

The effect of anisotropy has been treated either ex-

plicitly through consideration of particular leads (e.g.,

Coon et al. 1998; Hibler and Schulson 2000; Hibler 2001;

FIG. 1. An example of coulombic and ridging failure of sea ice

during the SHEBA experiment in the Beaufort Sea as seen from

synthetic aperture radar (SAR) images. The dates are given on the

black margins. Darker areas show thinner ice. The white broken

line comes from the original image sequence and delineates a re-

gion that was originally a square but has eventually been deformed

into this shape. (top) The white rectangles (17 Apr) show positions

of an existing lead (solid line) and a future lead (dashed line)

probably formed through coulombic failure. (middle) By 21 Apr,

the existing lead shears and opens due to dilatancy, and the new

lead is formed through shear but with no visible dilatancy. (bottom)

By 25 Apr, the old lead ridges as is shown by the appeared white

color, whereas the new lead, shown again by a dashed rectangle,

remains inactive. The images are provided by R. Kwok (2011, Jet

Propulsion Laboratory, personal communication) [Radarsat-1 im-

ages from Canadian Space Agency (CSA)] and are available online

(http://www-radar.jpl.nasa.gov/rgps/image_files/combine_small.gif).
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Schreyer et al. 2006; Wilchinsky and Feltham 2011) or

implicitly through continuum representation of anisot-

ropy using heuristic arguments (Wilchinsky and Feltham

2004, 2006a). Additionally, Wilchinsky and Feltham

(2006b), motivated by satellite imagery, treated the ice

cover as comprising diamond-shaped ice blocks formed

from intersecting slip lines, to develop an anisotropic sea

ice model avoiding detailed modeling of fracture pro-

cesses. Because of its simplicity this latter model allowed

a straightforward incorporation into the sea ice com-

ponent of a climate model (Tsamados et al. 2012, man-

uscript submitted to J. Geophys. Res.). Although the

necessity of representing of the discrete features of sea ice

dynamics is clear, doing this explicitly would require

tracking the history of a large number of leads that ap-

pear, freeze, ridge, and get split apart by consecutive

sliding events along different directions at all points

within the pack ice. In particular, the elastic–decohesive

(Schreyer et al. 2006; Sulsky and Paterson 2011) and the

elasto-brittle (Girard et al. 2011) models focus on the

process of the crack formation and corresponding weak-

ening of the sea ice without explicitly addressing their

postfailure dynamics. In order for an isotropic model to be

able to represent the effect of anisotropically distributed

leads, the model resolution should be much smaller than

the dimensions of the leads, which is generally not the case,

and the rheology of sea ice should be isotropic with known

scale dependence (Feltham 2008, supplemental appendix

C; Taylor et al. 2006).

Here, we develop an intermediate-complexity aniso-

tropic rheology model that allows a physically based

description of discrete processes in the pack ice in such

a way that it can be implemented in large-scale simula-

tions. Our model combines several basic ideas:

(i) a description of sea ice anisotropy through the use

of an orientation-dependent ice thickness distribu-

tion function (cf. Coon et al. 1998);

(ii) the assumption of coulombic shear rupture under

low confinement for sea ice, based on observations

(e.g., Tremblay and Mysak 1997);

(iii) the adoption of a ridging failure law for leads based

on discrete element simulations (Hopkins 1998);

and

(iv) a generalization of the isotropic ice redistribution

model (Thorndike et al. 1975; Hibler 1980) to lead

and floe ice.

Although the coulombic rheology described by a lin-

ear yield curve is simple, the effect of sea ice anisotropy

can change it significantly. In particular, Hibler (2001)

illustrated how the presence of several leads changes the

isotropic yield curve. Furthermore, ridging that can oc-

cur simultaneously will also have an effect on the size of

the yield curve envelope. For example, Tremblay and

Mysak (1997) used a cutoff of the coulombic rheology at

a high pressure to model ridging failure, whereas Hibler

and Schulson (2000) used a more sophisticated elliptic

envelope attached to the Coulomb cone to model ridg-

ing. Such approaches are, however, arbitrary and con-

sidering ridging in leads explicitly could result in a more

realistic description of the yield curve.

Hibler and Schulson (2000) and Hibler (2001) consid-

ered coulombic failure in a number of leads embedded in

thick ice through considering continuous deformation in

both leads and thick ice. As a result, the model allowed

coulombic failure in a lead with slip lines in the lead lying

across the lead itself. However, satellite images usually

imply a discrete failure along a crack rather than contin-

uum failure of the whole lead, leading to the proposition

that a lead can fail only along a slip line directed along

the lead. Given this assumption, Wilchinsky and Feltham

(2011) considered an explicit model of coulombic failure of

two leads originally formed in isotropic ice.

The model we present in this paper allows a more gen-

eral description of failure of anisotropic sea ice through

coulombic shear rupture, ridging, and tensile failure. The

yield curves will be found by combining these failure

modes, with the yield curve segments described by alge-

braic relations between principal stress components,

without the need of some of the ad hoc assumptions about

a fixed yield curve shape and the corresponding flow rule

inherent in some previous approaches. Although we aim

at developing a model of sea ice rheology, incorporation

of it into a numerical model of sea ice dynamics is beyond

the scope of this present work.

The paper is structured as follows: The anisotropic sea

ice failure model is presented in section 2, which comprises

discussion of our thickness distribution assumptions (sec-

tion 2a); coulombic, ridging, and tensile failure modes

(sections 2b–2d); ice thickness redistribution theory (sec-

tion 2e); calculation of total strain rate (section 2f); and

a short discussion of ridging in coulombic leads (section 2g).

The yield stress is presented in section 3, with separate yield

curves presented for anisotropic coulombic failure (section

3a), ridging failure (section 3b), and combined coulombic

and ridging failure (section 3c). In section 4, we discuss how

to address some of the issues involved in a numerical im-

plementation of our rheology model. Finally, in section 5,

present some summary remarks and conclusions.

2. Anisotropic sea ice failure model

a. Sea ice model

We consider a model of sea ice consisting of areas of

isotropic, polygonal ice (floes) delineated by long and
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narrow rectangles, which are the oriented leads. Following

Coon et al. (1998), in order to describe the configuration

of such sea ice at a particular continuum point of the

sea ice cover at a particular time, we introduce two areal

ice thickness distribution functions: one for the isotropic

ice in floes gf(h) and one for the oriented ice in leads

gl(h, c), where h is the ice thickness and c is the orien-

tation of a lead taken positive in clockwise direction

from the x1 axis (Fig. 2). For example, gl(h, c)dhdc is

the areal fraction of sea ice in leads oriented at angles

between c 2 dc/2 and c 1 dc/2 and having ice thick-

ness between h 2 dh/2 and h 1 dh/2. By definition, the

ice thickness distribution function is normalized so thatÐ ‘

0 [g
f
(h) 1

Ð p/2
2p/2g

l
(h, c) dc] dh 5 1. Note that the ice

thickness distribution functions describe the sea ice state

averaged over an area comprising many floes and leads

and do not account for the local spatial distribution of

the isotropic ice thickness and leads within this area.

Although the fractional area of a lead alone does not

provide any information about the lead width versus its

length, we expect the lead length to be much more im-

portant in determining sea ice failure lines because

a secluded short and wide lead surrounded by normally

thicker isotropic ice would be less likely to fail than a

narrow but long lead crossing the whole region through.

In this case, for simplicity we assume that all leads have

the same length and cross the whole region so that the

leads area does not affect which one is going to fail.

A lead can undergo periods of deformation followed

by periods of stagnation. During ridging, a lead ice thick-

ens; during sliding, a lead tends to open due to dilatancy

(Tremblay and Mysak 1997) because the lead edges are

not continuously linear; and of course, during tensile

opening, open water is created in a lead. During stagna-

tion (i.e., when the lead is not actively deforming), the lead

ice thickness is changed thermodynamically. These pro-

cesses involve the appearance of ice of different thick-

nesses in a lead. If the ice of different thicknesses equally

participates in ridging and sliding (parallel connection of

different ice thickness regions across the lead), then lead

failure is determined by the mean over all thicknesses at

a particular orientation. An opposite situation is where

there is a series connection of bands of different ice

thicknesses across the lead and lead failure is deter-

mined by only the thinnest ice. Generally, however, ice

can consist of disconnected, arbitrary regions of different

thicknesses that may never extend along or across the

whole lead as single bands; therefore, in considering the

effect of ice thickness on lead failure, an integral thick-

ness can be generally used weighted by a participation

function for both ridging and sliding.

As the ice in a lead ridges, the newly formed ridge

thickness can exceed that of the floe ice. However, be-

cause the lead is narrow, even if the ridge extends over

the whole width, a failure path could easily circumvent it

over the thinner floe ice. Therefore, we will assume that,

whenever the ice thickness exceeds the typical floe thick-

ness hf, the lead ice is converted into the floe ice. The

typical floe thickness can be defined to be such a thickness

that ensures the same ridging force that would be obtained

if the complete ice thickness distribution in the floe ice

weighted by the ridging participation function was used.

Successive shear faulting and sliding at different ori-

entations acts to make the ice cover more isotropic: for

example, transecting a lead into two or more pieces and

transporting them away from each other. This process

does not affect the ice thickness along this orientation

but makes failure along this direction harder to attain

because the lead no longer extends connectedly through

the whole region. A number of such events can break

a lead into many disconnected pieces effectively con-

verting the lead into the floe ice. The strength of this

effect on a particular lead will be determined by the

sliding rate and orientation of the affected lead relative

to the sliding direction. Here, however, we will ignore

this effect.

Let us define the mean thickness as h 5
Ð ‘

0 [hgf (h) 1Ð p/2

2p/2hgl(h, c) dc] dh and the normalized thickness as

rh 5 h/h. Then, in the stress principal coordinate system

where x1 is the most compressive direction such that

the stress principal components are s1 , s2, coulombic,

ridging, and tensile failures in the floe ice or in the leads

are determined by the clockwise failure angle c and

the shear and normal tractions per unit local thickness

(Fig. 2),

FIG. 2. Tractions on a flaw.
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jstj5
1

rh

t sin2c, sn 5
1

rh

(t cos2c 2 p), (1)

where the stress tensor invariants, pressure, and maxi-

mum shear (per unit thickness of h) are

p 5 2(s1 1 s2)/2, t 5 (s2 2 s1)/2 . 0. (2)

The factors 1/rh appear because of the continuity of the

depth-integrated tractions. For a negative angle c, the

plus sign at sin 2c should be changed to a minus here and

in the subsequent formulas. Although as the reference

axis we choose the most compressive principal axis of

the stress, as is seen from the SHEBA stresses plotted

within a coulombic envelope (Weiss et al. 2007) the

coulombic failure extends into the region of tensile

stresses, so that 0 , s1 , s2 is also considered. There is

also a small cut off of the envelope describing tensile

failure of sea ice.

b. Coulombic failure

Coulombic failure occurs along directions where the

coulombic yield function F expressed through local

tractions attains its maximum value equal to the co-

hesion sc,

F(sn, st) 5 jstj 1 msn 5 sc, (3)

or in terms of the stress invariants of the sea ice,

F(p, t, c, r) 5
1

rh(c)
[t sin2c 1 m(t cos2c 2 p)] 5 sc,

(4)

where m is the coefficient of internal friction. Clearly, the

presence of cohesion is crucial for anisotropic coulombic

failure as without it the effect of oriented thickness rh is

eliminated. Tremblay and Mysak (1997) assumed zero

cohesion but, comparing laboratory data with SHEBA

data, Weiss et al. (2007) showed that sea ice had a non-

zero cohesion that decreases by a factor between 15 and

30 when going from the laboratory scale to the geo-

physical scale, describing the effect of stress concen-

trators on fault initiation. In particular, shear at zero

pressure on the geophysical scale was found to be 40 kPa,

which gives sc 5 48.8 kPa for the internal friction co-

efficient m 5 0.7 used here. Our chosen value of m is

based on the mean value determined by laboratory ob-

servation of fault orientations at terminal failure at 238

and 2108C (Schulson et al. 2006).

Generally speaking, the coulombic failure criterion

cannot be satisfied simultaneously at different thicknesses

of the same orientation. If, however, we assume that in our

simplified lead model different ice thicknesses are dis-

tributed along the lead (parallel connection), then the

width of all thickness categories across the lead is the

same, and their vertical cross-sectional areas are pro-

portional to the product of their areas and their thick-

nesses. If the same force were transmitted into the ice of

different vertical cross-section areas, then the traction

(per unit vertical cross-sectional area) in the ice of the

smaller area would be higher than the traction in the ice

with the larger area by a factor equal to the ratio of their

areas. However, the amount of force transmitted from

the floe to the lead ice is proportional to the contact area,

so that there will be more force transmitted into the ice

of the larger area than that of the smaller area again by

a factor equal to their area ratio. In this case, these two

effects cancel each other and the tractions at different

ice thicknesses will be the same determined by the mean

ice thickness in the lead. If all lead ice thicknesses were

positioned in parallel bands along the lead (series con-

nection), then only the thinnest ice would fail because

this is where the yield function would be the highest.

In a more general case, a more complicated failure pat-

tern could be described by a coulombic failure par-

ticipation function gs(h) describing the fraction of the

ice area that participates in failure. In this case, a more

general normalized lead thickness should be used in the

coulombic failure criterion (4),

r 5

ð‘

0
gs(h)gl(h, c)h dh

h

ð‘

0
gs(h)gl(h, c) dh

. (5)

The coulombic failure participation function could be

taken equal to the ridging participation function dis-

cussed below.

A detailed analysis of coulombic failure of sea ice with

two leads is given in Wilchinsky and Feltham (2011).

Here, we consider a continuum anisotropy with re-

gard to orientation, rather than only two ice thickness

anomalies. The lead that fails through coulombic failure

is found through determining where the yield function

F attains its maximum. At the failure line, (4) is satisfied

and, because c is calculated with regard to the most

compressive stress, the factor multiplying t is positive in

(4). This means that for a fixed pressure the maximum

shear t attains its minimum at the failure line: at all other

orientations a higher t would be required for F to be-

come equal to sc. In finding the failure line, it is more

convenient to determine t from (4) and to find where it

is minimum rather than finding a maximum of the yield
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function because this may exceed the cohesion for ar-

bitrary p and t.

In an isotropic case, there are two equal yield function

maxima directed at the same critical angle,

cc 5
1

2
arctan(1/m), (6)

on either side of the most compressive stress (Jaeger and

Cook 1979; Ashby and Hallam 1986). For m 5 0.7 used

in all our calculations, the critical flaw angle is 27.58. In

an anisotropic case, however, there can be a number of

local yield function maxima of different magnitude. The

highest maximum is where the sea ice is expected to fail

first. Based on satellite images of sea ice deformation, it

is natural to assume that sliding along the first lead will

not be possible without another lead forming as in re-

ality the first lead does not extend through the whole

region. Generally, this second lead will form at a differ-

ent angle to the highest compression axis and with

a different lead traction (Wilchinsky and Feltham 2011).

A skew-symmetric stress component is determined by

the difference in lead tractions and their angles with

regard to the axis of the highest compression. This skew-

symmetric part of the stress, usually called the couple

stress (e.g., Cowin 1974), would, if unopposed, result in

a spin of the floes. The existence of the couple stress is

caused by the simplicity of our failure model, where

a homogeneous stress field is considered and the slip

lines are infinite. In reality, this spin will be suppressed

by the surrounding sea ice field that imposes an addi-

tional stress that counteracts the floe spin. One would

expect this additional stress to be mainly concentrated

at floe vertices. Similar to Wilchinsky and Feltham

(2006b), we assume that the additional stress from the

sea ice field can be taken into account by considering

only the symmetric part of the stress tensor arising from

the tractions at the slip lines. This is analogous to as-

suming that the additional stress arising through floe

spin suppression by the surrounding sea ice field is de-

scribed by a skew-symmetric stress tensor that does not

contribute to work because the plastic deformation spin

tensor is zero. However, although the whole sea ice

stress in this case is symmetric, its constituent that de-

termines tractions in leads is generally nonsymmetric,

which must be taken into account in considering a cou-

pled model of leads.

A nonsymmetric stress tensor can be represented

through a sum of the standard symmetric part s, which is

described by two principal values s1 , s2, where s1 is

associated with the most compressive principal stress

direction, and a skew-symmetric part, whose form does

not depend on the coordinate system and is described

by only one parameter representing the couple-stress

magnitude ts,

sw 5 s 1 ts

0 1

21 0

� �
. (7)

In this case, in its principal axes the stress field is de-

scribed not only by the usual invariants of the symmetric

part of the stress tensor, p and t, but also by the couple

stress ts. Although the tensor is nonsymmetric, we

consider a coordinate system that is aligned with the

principal axes of the symmetric part of the stress tensor.

We consider the pressure as a free parameter, whereas

the shear stress and the couple stress will be determined

by sea ice failure. The presence of the skew-symmetric

stress does not affect normal traction on any surface,

while its shear traction contribution is ts. Because the

first failure occurs before nonsymmetry takes effect, the

first failure line is found assuming zero couple stress:

namely, through finding the maximizing orientation of

the yield function (4). For a fixed pressure, the first

failure uniquely determines the corresponding mini-

mum t. The second failure requires a higher shear stress,

so that, in order for the tractions at the first failure line to

remain at yield (3), the couple-stress magnitude has to

increase to counterbalance the increase of the shear

traction there. After taking into account that shear

traction is taken positive in the yield function, the failure

criterion (4) becomes

F(p, t, ts, c, r) 5

1

r
[t sin2c 2 ts 1 m(t cos2c 2 p)] 5 sc, c . 0

1

r
[ts 2 t sin2c 1 m(t cos2c 2 p)] 5 sc, c , 0

.

8>><
>>:

(8)

Satisfaction of the failure criterion at the first failure line

oriented at angle c1 determines the couple stress as

a function of p and t,

ts 5
t(sin2c1 1 m cos2c1) 2 [mp 1 r(c1)sc], c1 . 0

t(sin2c1 2 m cos2c1) 1 [mp 1 r(c1)sc], c1 , 0
.

�
(9)

Depending on the angle of the first failure, substituting

(9) into (8) one can eliminate ts and solve for t. Mini-

mizing t with regard to orientation will then determine

the second failure line. Similar to Tremblay and Mysak

(1997), we assume no plastic spin, which implies that the

two failure lines lie on opposite sides of the most com-

pressive direction x1.

At fixed orientations, the yield criteria (4) for the first

failure line, as well as (8) and (9) for the second failure
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line, are linear in p and t. Therefore, t is a linear function

of p and is uniquely defined at each orientation. The

sought solution for t is found at orientations where it

attains its minimum. By choosing constant r, one can

find the standard isotropic solution for coulombic failure

from (4) where failure occurs at the critical angle (6).

Fixing these t and p and considering r(c), one can use

the failure criterion (4) as an equation for r(c) so that

the yield criterion is satisfied within a range of orienta-

tions. Therefore, it is clear that multiple solutions can

exist, in which case we will consider only the pair of

failure lines that lie closest to the critical angle either

side of the largest principal stress. Because we consider

a coordinate system aligned with the highest compres-

sion direction, by definition t $ 0, and thus there are no

solutions of (4) if p , 2maxcr(c)sc. Note that, although

for p . 0 a solution will always exist, it may require

higher stresses than those required by ridging. In this

case, the solution will lie outside the combined yield

curve as will be discussed later.

c. Ridging failure

If the force necessary to ridge a 1-m-long ice sheet of

thickness h is Fr(h), then the corresponding normal

traction in a lead or a slip line per unit sea ice thickness h

during ridging will be F
r
(h)/h, which cannot be ex-

ceeded. The form of the function Fr differs in different

models. Rothrock (1975) related ice strength in con-

vergence to the change in potential energy involved in

forming a pressure ridge (and keel) so that Fr(h) is

proportional to an integral over all thicknesses of the

thickness squared weighted by its areal change rate.

Discrete element simulations by Hopkins (1998) carried

out for a particular set of material parameters reveal

that a pressure ridge forms by growth of the sail until

a buckling threshold is reached. The force necessary to

increase sail height is determined by pushing a train of

blocks over the sail surface, which, for the material pa-

rameter values adopted by Hopkins (1998), is equal to

7300h3/2L1/2 N m21, where L is the length of lead ice

pushed into the ridge. The next phase starts when this

force reaches the buckling force, 95 400h3/2 N m21,

which happens always at the same L 5 Lf 5 107.7 m.

Although the ridging force varies depending on the

stage of ridge formation, it is noteworthy that Fr is

proportional to h3/2. In all our calculations below, we will

use Fr(h) 5 90h3/2 kN m21, h 5 3 m, and sc 5 48.8 kPa.

When the ridging ice in a lead consists of a distribution

of thicknesses, then a ridging participation function

gr(h) [where max(gr) 5 gr(0) 5 1] describes the fraction

of ice of thickness h that ridges. Again, if all ice thick-

nesses were distributed along the lead in a parallel con-

nection, then they would ridge equally, and gr(h) 5 1, "h.

If all ice thicknesses were distributed in bands along the

lead as in a series connection, then only the thinnest ice

would ridge, and gr(hmin) 5 1, whereas gr(h) 5 0, "h .

hmin. To account for ridging for a more general spatial ice

thickness distribution, usually a more complicated par-

ticipation function is used. We will adopt a function used

in isotropic models,

gf ,l(h, c) 5 max

"
1 2

Gf ,l(h, c)

C1

( #
, 0

)
and (10)

Gf ,l(h, c) 5

ðh

0
gf ,l(h9, c) dh9ð‘

0
gf ,l(h9, c) dh9

, G , C1 (11)

(Thorndike et al. 1975), where only the thinnest fraction

C1 of the lead ice is ridged (typically C1 is set to 0.15).

For brevity, we use subscripts f and l to point at functions

for the floe ice and the lead ice, respectively, keeping

in mind that the floe ice characteristics are orientation

independent. The proportion of the ice ridged within

the fraction C1 gradually decreases from 1 to 0 as the

thickness approaches the thickest ice available for ridg-

ing. This participation function was introduced for iso-

tropic sea ice as a whole. We will, however, adopt it here

for modeling ridging within a single lead. In this case, the

normal traction (per unit mean ice thickness h) necessary

to ridge the lead ice is the pressure ridging force in-

tegrated over all participating thicknesses and divided by

the mean thickness,

Fr(c) 5

ð‘

0
Fr(h)gl(h, c)gl(h, c) dh

h

ð‘

0
gl(h, c)gl(h, c) dh

. (12)

Therefore, ridging in a lead implies

t cos2c 2 p 5 2Fr(c), (13)

where the right-hand side is the normal traction in the

sea ice given by (1) with rh 5 1, and the minus at Fr

appears because compressive stress is negative. Because

all lead ice thicker than the floe ice thickness hf is re-

distributed into floe ice, if ridging occurs at a particular

orientation, it would occur in a lead, unless there is no

lead at this orientation. The orientation at which ridging

occurs is determined by minimizing (t cos2c 2 p)/Fr(c)

with regard to orientation. Because the factor at the pres-

sure is negative and this expression is higher than 21 along

nonfailure orientation, for a fixed t, p attains its minimum

at failure lines if (13) is assumed to hold at all orientations.
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Because Fr depends on orientation, this minimum

depends on both p and t. Ridging failure requires that at

this minimizing orientation (13) holds, relating p to t.

Ridging can also occur in the floe ice, in which case Fr

should be suitably redefined in (12) replacing all func-

tions relative to the lead to those relative to the floe.

Similarly to the coulombic failure, (13) is linear in both p

and t, so that, at a fixed orientation, p is uniquely defined

for a given t. At the same time, Fr can be chosen in such

a way that (13) is satisfied simultaneously at more than

two orientations, in which case we choose only the two

closest to the stress principal axes. Because t , 0 cannot

be considered, this puts limits on values of p for which

solutions exist.

d. Tensile failure

Experiments have shown the existence of sea ice tensile

strength (Richter-Menge and Jones 1993; Dempsey et al.

1999) as well as a high sensitivity of the ice tensile strength

to its temperature and structure (e.g., crack density). Dur-

ing the Sea Ice Mechanics Initiative study on a 1.42-m-

thick floe, Lewis and Richter-Menge (1998) recorded

tensile stresses up to 80 kPa. The presence of the tensile

strength is reflected as a cutoff of the coulombic yield

curve in the region of negative pressures (Weiss et al.

2007). If we assume that sea ice tensile strength is given

by Fo(h) } h, then, similar to ridging, we can write the

normal traction necessary for tensile failure,

Fo(c) 5

ð‘

0
Fo(h)gl(h, c)gl(h, c) dh

h

ð‘

0
gl(h, c)gl(h, c) dh

. (14)

Therefore, opening of a lead due to tensile failure implies

t cos2c 2 p 5 Fo(c). (15)

The opening lead or direction of new lead formation in

the floe ice is then found by maximizing (t cos2c 2 p)/

Fo(c) with regard to orientation. Similar to ridging, we

consider only two opening leads at most and, if tensile

failure occurs in the floe ice, Fo should be suitably re-

defined with the corresponding functions relative to the

floe ice. Note that the total number of both opening and

ridging leads is limited to two because there cannot be

simultaneous opening and closing of two pairs of leads.

e. Ice thickness redistribution

Ridging makes the ice thicker, whereas sliding along

a failure line creates opening due to dilatancy. Similarly,

tensile failure leads to opening and open water pro-

duction. All these processes change the ice thickness

distribution. The rate of change of ice area of thickness h

per unit convergent deformation in the floe and the lead

is (Thorndike et al. 1975; Hibler 1980)

vf ,l(h, c) 5

2af ,l(h, c) 1

ð‘

0
b(h9, h)af ,l(h9, c) dh9

1 2

ð‘

0

ð‘

0
b(h9, h0)af ,l(h9, c) dh9dh0

,

(16)

where

af ,l(h, c) 5
gf ,l(h, c)gf ,l(h, c)ð‘

0
gf ,l(h9, c)gf ,l(h9, c) dh9

(17)

is the normalized distribution of ridging ice and the trans-

fer function b(h1, h2) defines the area of ice of thickness

h2 produced by ridging of a unit area of ice of uniform

thickness h1. A standard choice of the transfer function

b(h9, h) introduced by Hibler (1980) corresponds to the

buildup of a ridge of triangular shape: uniform ice is re-

distributed between twice the thickness of the ice being

ridged and a maximum ridge thickness of 2
ffiffiffiffiffiffiffiffiffiffi
H*h
p

,

b(h, h9) 5
1

2(H* 2 h)
, 2h # h9 # 2

ffiffiffiffiffiffiffiffiffiffi
H*h
p

. (18)

Note that the ridge width and not its thickness depends

on the area of the ridged ice. Therefore, if a ridge ex-

ceeds the mean floe thickness, then it occurs regardless

of the amount of deformation, so that in this case the

lead ice that is transferred to the floe ice can consist of

a range of thicknesses with the lower boundary being the

characteristic floe thickness hf. Because we assume that

ice in the lead cannot be thicker than the mean floe ice,

we have gl(h, c) 5 al(h) 5 0, "h . hf. By definition,

ð‘

0
af ,l dh 5 10

ð‘

0
vf ,l dh 5 21. (19)

The evolution of the ice thickness distribution is

given by

dgf ,l

dt
5 Vf ,l 1 fh 2 gf ,l

�
div(v) 1

›f
y

›h

�
(20)

(Thorndike et al. 1975), where d/dt is the total time de-

rivative (i.e., it includes rotation as well as advection); v

is the velocity vector; Vf,l are ice thickness redistribution

functions in the floe and leads due to ridging, sliding, and
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opening; fy is the vertical freeze–melt rate, and fh is the

lateral freeze–melt rate (added by Hibler 1980). The

term including the divergence describes the effect of ice

fraction decrease if the region containing it expands.

The sea ice redistribution functions Vf,l account for the

amount of ridging and opening as a function of de-

formation in leads,

Vl 5 xr(c) _jr(c)vl(h, c) 1 xs(h, c) _js(c)d

1 xo(h, c) _jo(c), h # hf and (21)

Vf 5 xr(c) _jr(c)vf (h)

1

ðp/2

2p/2
xr(c) _jr(c)vl(h, c) dc, h . hf , (22)

where _j
r
(c) is the rate of extension perpendicular to

a ridging lead (negative in ridging and zero otherwise),
_js(c) is the rate of shearing along the lead if coulombic

failure occurs, and d is the rate of dilatancy per unit

shearing, so that _jsd is the rate of opening of the shearing

lead. The opening rates _jo(c) under tensile failure

(positive in opening and zero otherwise) are also in-

cluded. The magnitudes of the deformation rate func-

tions _j
r,s,o

do not affect the stresses because the yield is

plastic and are determined from momentum equations.

The functions xr(c) and xs,o(h, c) are the ridging, sliding,

and tensile failure Dirac delta function, so defined that

xr(c) 5 0, "c 6¼ cr, and
Ð cr1dc

cr2dc
xr(c9) dc9 5 1, as well as

similarly xs,o(h, c) 5 0, "c 6¼ cs,o or "h . 0, andÐ dh

0

Ð cs,o1dc

cs,o2dc
x

s,o
(h9, c9) dc9dh9 5 1, where cr, cs, and co

are any angles where ridging, coulombic, and tensile

failure occur, respectively. The Dirac delta functions are

used to incorporate finite opening/closing rates at a sin-

gle orientation into the continuous ice thickness distri-

bution function. The first term in function Vf describes

the effect of possible ridging of the floe ice, whereas the

second term describes the effect of transfer into the floe

ice of the lead ice that during ridging becomes thicker

than the floe ice. Due to normalization (19),

div(v) 5

ð‘

0
Vf 1

ðp/2

2p/2
Vl dc

 !
dh

5 2 _jsd 1 _j
(1)

r,o(c
r,o
1 ) 1 _j

(2)

r,o(c
r,o
2 ), (23)

Where, if failure occurs along fewer directions, the cor-

responding terms should be ignored.

Note that if, at a particular orientation there is no lead

(i.e., its area is zero), ridging of the floe ice perpen-

dicular to this direction redistributes only the floe ice.

However, if coulombic failure and sliding occur along

this direction (or tensile failure and opening), the di-

latancy (or opening) affects the lead ice thickness by in-

creasing its area from zero proportional to the shearing

rate. As a continuum ice thickness distribution function is

used, closing–opening of a single-orientation lead results

in an infinite rate of ice thickness redistribution. In this

case, a ridging lead would immediately thicken and either

another lead will start failing or, if no other lead ready to

fail is present, the original lead will turn into the floe ice.

Similarly, sliding of a lead accompanied by opening will

immediately result in the mean lead thickness becoming

zero if thermodynamic growth is disregarded, which will

make it more susceptible to ridging, which is discussed

later. In numerical treatments that use discrete ice cate-

gories with regard to thickness and orientation, defor-

mation processes in one orientational category will have

a finite rate.

f. Strain rate

To write down the strain rate tensor, we assume that

coulombic failure and the corresponding sliding oc-

curs always along two failure lines. Similar to Tremblay

and Mysak (1997), we assume no spin due to sliding,

which is possible only if the failure lines positioned

are either side of the most compressive axis and their

sliding rates are equal. For certain ice thickness dis-

tributions, the yield criterion (4) can be satisfied at

more than two directions. In this case, for simplicity we

choose only those two directions that lie closest to the

isotropic critical failure angles (6). If we denote the

angles of our two coulombic failure lines as cs
1 and cs

2,

then in coordinate systems aligned with the failure lines

the strain rate tensor contributions at unit shear rate

along them are

_es
1,2 5 2sgn(c s

1,2)
0 1

1 d

� �
, (24)

where d is the dilatancy rate. Rotating these contribu-

tions into the principal stress coordinate system and

adding them together gives the total sliding contribution

to the strain-rate tensor,

_es(c s
1, c s

2) 5

�
22 cos(c s

1 1 c s
2) sinDcs 1 d(sin2c s

1 1 sin2c s
2) (2 sinDc s 1 d cosDc s) sin(c s

1 1 c s
2)

(2 sinDc s 1 d cosDc s) sin(c s
1 1 c s

2) 2 cos(c s
1 1 c s

2) sinDc s 1 d(cos2c s
1 1 cos2c s

2)

�
, (25)
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where Dcs 5 cs
2 2 cs

1 . 0 is the difference between the

failure angles. If we define the strain rate tensor in-

variants as

_eI 5
1

2
_eii, _eII 5

1

2
_eij
* _eij

*
� �1/2

, (26)

where the asterisk denotes a traceless part, then

_es
I 5 d, _es

II 5 jd cosDcs 1 2 sinDcsj. (27)

As is expected half the divergence _es
I due to sliding

along coulombic lines is equal to the dilatancy rate d.

The maximum shear deformation rate _es
II has two com-

ponents. The first one is related to the nonuniformity of

dilatancy with regard to orientation and it disappears if

dilatancy is equal in perpendicular directions (Dcs 5 p/2)

and is maximum when it is unidirectional (Dcs / 0),

leading to a maximum difference in deformation in the

principal directions. The second contribution comes from

sliding along the two failure lines. Because the shear

along the two failure lines is the same in magnitude but

opposite in sign, the closer the failure lines are aligned

with each other, the more shear strain rate from one line

becomes compensated by the other, canceling each other

when the failure lines become parallel and, vice versa,

doubling when they become perpendicular.

Strain rate contributions due to ridging and opening

are quite similar, but with opposite signs; therefore, we

will discuss only ridging. In considering ridging failure,

we assume that it can occur along one or two failure

lines. If there are more possible failure lines where the

ridging yield criterion (13) is satisfied, we disregard them

for simplicity choosing the closest to the stress principal

axes. If the failure occurs along cr, which could be in

either floe ice or in the lead, then it is described by

a uniaxial contractional deformation in the perpendic-

ular direction, which after rotation into the principal

stress coordinate system gives the corresponding strain

rate contribution at unit ridging rate as

_er(cr) 5
sin2cr 1

2
sin2cr

1

2
sin2cr cos2cr

0
B@

1
CA. (28)

If ridging occurs along two lines, then a similar contri-

bution comes from the second ridging line, but with a

different ridging rate _j
r
.

Adding the contributions from all failure regimes

described by different rates, we obtain the cumulative

strain rate in the form

_e 5 _js
_es(cs

1, cs
2) 1 _j

(1)

r,o _er,o(c
r,o
1 ) 1 _j

(2)

r,o _er,o(cr,o
2 ). (29)

A contribution from opening due to tensile failure is

similar to the ridging contribution, but with a positive

rate. In cases when failure occurs along fewer directions,

the corresponding terms should be ignored.

g. Ridging failure of a coulombic lead

As is seen in Fig. 1, frequently a coulombic failure is

followed by a ridging failure of the same lead. Clearly, as

a lead is subject to dilatancy, shearing along a failing

lead results in open water production and reduction of

the mean thickness of the lead. The open water will quickly

freeze over, and thermodynamic processes in winter in-

crease the lead thickness. The lead thickness therefore

evolves by the balance between dilatancy, thermody-

namic, and ridging thickening. The participation function

(10) implies that ridging occurs only in the thinnest 15% of

the lead area. The opening rate for a lead is _j
s
d, where we

take d 5 tan 108 5 0.18 (Tremblay and Mysak 1997). Stern

and Lindsay (2009) analyzed Radarsat data and found that

generally the deformation rate can vary within two orders

of magnitude: from 0.001 to 0.1 day21. The mean de-

formation rate increases with decreasing scale, and attains

its maximum of 0.02 day21 in winter and 0.07 day21 in

summer at a 1-km scale. Therefore if we take the winter

shear rate scale as _js 5 0:01 day21, the opening rate will

be 1.8 3 1023 day21, which is 18% day21 of a lead with

a fractional area of 0.01. In this case, after a deformation

event it is likely that the ridging stress of the lead will be

determined by the opened area of water only, whose

initial freezing could at best produce only light nilas up

to 10-cm-thick in one day. In this case the ridging force

required to ridge the lead will be minimal in compari-

son to other leads, and the new lead will preferentially

fail through ridging.

3. Yield stress

Given a prescribed pressure p, depending on the

maximum shear stress the sea ice can fail coulombically,

through ridging–tensile opening, or two failure modes

can occur simultaneously. For a range of shear stresses,

no failure will occur at all, describing a subyield regime.

At a given pressure, the maximum shear stress cannot lie

outside of the range determined by the different failure

regimes. Similarly, where failure is possible the pressure

cannot lie outside of its own range. Generally speaking,

when occurring simultaneously, coulombic and ridging/

tensile failure can affect different leads. In this case, the

yield curve will be a combination of yield curves de-

termined by coulombic and ridging failures. The tensile

cut off of the coulombic yield curve is relatively small

(Weiss et al. 2007); therefore, below it will be ignored for

simplicity.
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a. Yield stress in coulombic failure

When sea ice is isotropic, coulombic failure occurs at

critical angles cc given by (6) that do not depend on

pressure, and therefore the maximum shear stress t,

determined by (4) with r 5 1, is a linear function of

pressure p. However, when sea ice is anisotropic, the two

failure angles determined by (4) and (9) are dependent

on the anisotropy as well as p and the corresponding

yield curve can have a more complicated shape. To il-

lustrate this, similar to Wilchinsky and Feltham (2011)

let us for a moment neglect the ridging failure and

consider how the yield curve changes when two leads

originally positioned at 6cc are rotated clockwise with

regard to the most compressive direction by an angle u

(see Fig. 3). We set the normalized lead thickness to be

r 5 0.1. Figure 4 shows the yield curves t(p) for different

u and t(u) for different p. It can be seen that, at some

angles of rotation, as p changes, the angle of the yield

curve t(p) also changes. The reason for this is clearer

from inspecting the dependence of t on u, which consists

of several branches. The leftmost branch, which for

small p is bounded by u 5 cc, corresponds to the two

leads failing simultaneously. The angle u 5 cc corre-

sponds the left lead leaving the left quadrant and en-

tering the right quadrant (Fig. 3), so that for small p this

branch is followed by another where the floe ice fails in

the left quadrant (negative c), whereas the leftmost lead

fails in the right quadrant (positive c). This branch has

a local minimum because the shear stress decreases as

the lead angle approaches the critical angle. For higher

pressures, these two branches are separated by a flat line

describing isotropic failure of the floe ice because the

two leads are too far away from the critical angle where

failure is the most likely. This flat segment widens as the

pressure increases because, as can be seen from the yield

criterion (4), an increase in p leads to a larger decrease

of the yield function for smaller ice thicknesses r and to

a smaller decrease for larger ice thicknesses. Therefore,

as the pressure increases, in the vicinity of u 5 cc the

yield function at the critical angle of the floe ice can

exceed the yield function at the lead causing switching of

failure from the lead to the thicker, floe ice. This change

determines the corresponding change of the yield curve

angle for t(p). Similarly, u 5 p/2 2 cc is the angle where

the rightmost lead leaves the right quadrant and enters

the left quadrant, and it can fail there for low pressures

leading to lowering of the shear stress. This branch then

descends as the lead approaches the critical angle. For

higher pressures, however, failure in the left quadrant

remains in the floe ice and, as the remaining (originally

left) lead in the right quadrant rotates farther away from

the critical angle, failure switches to the floe ice again

with the corresponding flat branch widening for the

same reasons as described earlier.

This behavior is also reflected in the direction of the

more convergent principal strain rate axis cs
e. This is

positioned in the center of the two active leads. Initially,

at small rotation angles u, because the failure occurs in

the leads the strain rate direction follows the leads.

Then, however, when the left lead approaches the axis of

the highest compression while the right lead rotates

farther away from the critical angle, for higher pressures

the thick, floe ice will preferentially fail so that the strain

rate direction switches back to x1. After further rotation,

the left lead in the right quadrant approaches the critical

angle and becomes active again, whereas in the left

quadrant the floe ice fails at the critical angle, so that in

this case the strain rate direction, which is in the middle,

switches to the left quadrant and becomes negative. As

rotation progresses, it follows the rotation angle but at

a half rate. At u 5 p/2 2 cc the right lead enters the left

quadrant and at small pressures the two leads become

active, and because the lead in the left quadrant is at

2p/2 while that in the right quadrant is at p/2 2 2cc the

strain rate direction again switches to the left quadrant.

For higher pressures however, the failure lines remain

the same until in the right quadrant they switch from the

lead to the floe ice. The second strain rate invariant is

independent of the lead orientation; rather, it depends

on the angle between the leads with two different con-

tributions as was discussed earlier: from the dilatancy

FIG. 3. Rotation of two leads originally formed at the critical slip

line angles with regard to the direction of the highest compression

by an angle u. Vectors s0
1 show the initial direction of the highest

compression leading to formation of these leads.
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and shear along them. The taken dilatancy angle of 108

determines d 5 tan 108 5 0.18, so that the contribution

from sliding along the lines largely determines the

maximum shear rate. Therefore, the farther away the

two leads are from each other, the higher is the maxi-

mum shear strain rate, which is reflected in Fig. 4 (bot-

tom right).

b. Yield stress in ridging failure

The yield criterion for ridging failure is given by (13),

which determines a t(p) relationship. However, because

it is singular at c 5 p/4, it is more convenient to consider

an inverted relationship p(t),

p 5 t cos2c 1 Fr(c). (30)

Therefore, here, instead of minimizing the maximum

shear, we minimize the pressure with regard to orien-

tation to determine which direction is going to fail by

ridging. If the sea ice is isotropic [Fr(c) 5 const] and t 6¼
0, then the ridging failure angle does not depend on t

and is perpendicular to the most compressive direction,

c 5 p/2. If t 5 0, then ice can fail equally at any di-

rection. For anisotropic sea ice, however, the minimum

of the right-hand side is t dependent, so that the ridging

failure angle depends on the maximum shear stress. If

the minimizing angle cr(t) is found, then, if it does not

change for a range of t, within this range the yield curve

is a straight line intersecting the p axis at p 5 Fr(cr) and

making an angle with this axis of arctan(1/cos 2cr). This

(anticlockwise) angle of the yield line from the p axis

gradually varies from p/4 at cr 5 0 through p/2 at cr 5

p/4 up to 3p/4 at cr 5 p/2.

To illustrate this, let us consider an idealized scenario

with only two leads present, which are aligned with the

principal axes (Fig. 5). We consider leads of uniform

thickness, so that the thicker lead (higher r) is harder to

ridge than the thinner lead (lower r). The same can be

achieved if for this ridging failure we redefine r 5 Fr as

a measure of the strength of the lead opposition to

ridging. For compression under confinement, the leads

do not fall into the lead failure range and therefore will

not fail coulombically (Wilchinsky and Feltham 2011),

so that the coulombic yield curve is determined by

standard isotropic failure in the floe ice. Let us consider

this coulombic failure at the state where the most com-

pressive stress s1 is such that lead 2 (lying perpendicu-

lar) fails. This stress cannot have a higher magnitude

because of this ridging failure. Because in this state

the sea ice also fails coulombically, this stress state is

FIG. 4. Yield curves in the principal stress coordinates for coulombic failure with r 5 0.1 and d 5 tan108. (top left)

Maximum shear stress t as a function of pressure p for different angles of rotation u of two leads with regard to the

largest compression direction. (top right) Maximum shear stress t as a function of the rotation angle u for different

pressures p. (bottom left) The angle of the more convergent principal direction of the strain rate tensor vs u. (bottom

right) Second strain rate invariant _es
II vs u.
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described by point A on the plots in Fig. 5. If the least

compressive stress s2 decreases (becomes more com-

pressive), the maximum shear stress is reduced while

the pressure is increased by the same amount, de-

scribing a southeast (2458) trajectory in (p, t) co-

ordinates. Along this branch, the sea ice cannot fail

coulombically anymore, but, since s1 remains the same,

lead 2 is still in ridging failure, so that the stress remains

on the yield curve now determined only by ridging

failure of lead 2.

If lead 2 is thicker than lead 1 (r2 . r1), then de-

creasing s2 further eventually leads to this stress

reaching the ridging stress of lead 1 described by point B

on the top plot. At this state s1 , s2 and the thinner is

lead 1 relative to lead 2, the shorter will be the [A, B]

branch. No principal stress can be decreased any further

because they are bounded by the ridging stresses.

However, if now the most compressive stress s1 is in-

creased (becomes less compressive), then the pressure

and the maximum shear stress will decrease by the same

amount, describing a southwest (21358) trajectory in the

(p, t) coordinates, whereas lead 1 will remain in ridging

failure. Therefore, the stress remains on the yield curve,

now determined by ridging of lead 1, whereas point B

describes switching from ridging of lead 2 to lead 1.

Here, s1 can increase even further until it reaches s2

describing uniform compression (s1 5 s2; point C). If

the leads are of equal thickness, r1 5 r2, then point B

coincides with point C.

If lead 1 is thicker than lead 2 (r1 . r2), then, starting

again from point A describing simultaneous coulombic

and ridging failure of lead 2, s2 can be decreased until

uniform compression (s1 5 s2; point D). Simultaneous

ridging failure of both leads cannot, however, be ach-

ieved because this would require s1 . s2, which would

violate the choice of our coordinate system (because it

would make x2 the most compressive direction).

Changing the angles of the leads would change the

angles of the yield lines, whereas changing the lead thick-

nesses will change the position of intersection points.

Because we choose x1 to be the most compressive di-

rection, we always have t $ 0, so that the yield curve is

plotted only in the upper semiplane. If one wanted to

extend the yield curve into the lower semiplane, then for

r2 . r1 the top plot in Fig. 5 should be appended by the

bottom plot (r2 , r1) reflected with regard to the p axis

because, as t turns negative, x2 becomes the most com-

pressive direction and the leads exchange positions rela-

tive to the most compressive direction. Similarly, if r1 , r2

one would append the top plot, reflected about the p axis,

to the bottom plot.

c. Combined yield curves

In analyzing coulombic and ridging failure separately,

we have considered only two leads. Considering an ar-

bitrary lead thickness distribution makes interpretation

of the result difficult because of a high degree of freedom.

Therefore, here we consider an intermediate-complexity

FIG. 5. (left) Two leads aligned with the stress principal axes. (right) The schematic representation of the yield curves

corresponding to the two cases of relative lead thickness.
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scenario of two pairs of leads separated by an angle

of 2cc and having different, uniform thicknesses r1 and

r2 (Fig. 6). This models the result of two incidents of

lead formation in the floe ice where the time difference

had led to a difference in their thickness because of

freezing. Even when a pair of leads is present, under

special conditions a new pair can still form in the floe

ice as is seen from Fig. 4. The pairs are rotated clockwise

by u1 , u2 with regard to the most compressive axis,

respectively. This situation allows four degrees of free-

dom (u1, u2, r1, and r2), and we restrict ourselves by

fixing the second pair around the least compressive di-

rection (u2 5 p/2) while considering its thickness to be

half of the floe ice thickness (r2 5 0.5) where the floe ice

thickness is h 5 3m. Figure 7 shows the combined yield

curves when the first pair is positioned around the most

compressive direction (u1 5 0) and its thickness varies

and when its thickness is fixed to r1 5 0.3 and its angle u1

varies. It can be seen that, as the thickness of the first

pair increases while its position is fixed at u1 5 0, the

maximum shear stress at coulombic failure naturally

grows. This is because these leads are positioned at the

critical angles 6cc so that they will fail coulombically

and making them thicker increases the required stress.

Considering the ridging branch of the yield curve, then

at small r1 the first pair is easy to ridge and since its angle

is less than p/4 the yield curve angle is negative. As r1

increases, the first pair becomes harder to ridge and,

because the second pair is positioned closer to the least

compressive direction (the preferential direction for

ridging failure), ridging failure at the second pair be-

comes predominant.

Similarly, because r1 5 0.3 is fixed, as the first pair of

leads rotates closer to the least compressive direction,

the first pair becomes easier to ridge compared to the

second pair so that the yield line becomes directed more

anticlockwise relative to the p axis. Moreover, because

the yield curve angle is determined by the ridging lead

angle the ridging branch rotates anticlockwise as the

right lead approaches x2 (u1 / p/2 2 cc 5 62.58). It can

be seen that at u1 5 758 the branch rotates back as the

ridging lead deviates from the direction of preferential

ridging x2. Furthermore, as the first pair rotates away

from the critical angles 6cc, which are the preferential

directions of coulombic failure, the floe ice starts failing,

leading to formation of steep-angle segments on the yield

curve. It is interesting to note that the plotted yield curves

are characterized by tensile and compressive stresses

of a similar magnitude, which concurs with a coulombic

envelope around the SHEBA data (Weiss et al. 2007).

FIG. 6. Two pairs of leads formed in floe ice under different

conditions at different times so that their angles with respect to the

most compressive principal stress and thicknesses differ.

FIG. 7. Combined yield curves for coulombic and ridging failure. (left) For fixed positions of the two lead pairs at

u1 5 0, u2 5 p/2 and variation of the thickness of the first pair r1 while r2 5 0.5. (right) For fixed thickness r1 5 0.3,

r2 5 0.5 and variation of the position of the first pair u1 while u2 5 p/2. Mean floe thickness is h 5 3m.
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4. Discussion

The main advantages of the anisotropic sea ice rhe-

ology presented here over standard, isotropic models

are (i) our model takes account of observations implying

that failure in the pack ice occurs along anisotropically

distributed discrete lines and (ii) our rheology is explicitly

calculated from failure at these lines, at which coulombic,

ridging, and tensile failure models, which are simpler and

better understood than the complete sea ice deformation

model, can be employed. In this case, the sea ice rheology

is built up naturally from these elemental failure regimes,

depending on sea ice state and stress.

The adopted coulombic failure is based on laboratory

experiments (Schulson 2001) and is less mathematically

sophisticated than the elastic–decohesive model that not

only treats discrete failure but also incorporates brittle

and ductile regimes (Schreyer et al. 2006; Sulsky and

Paterson 2011). However, there is no evidence to sug-

gest that the elastic–decohesive model describes sea ice

rheology better than a simpler, coulombic model. One

disadvantage of our model is that coulombic failure is

also associated with the corresponding shear along the

slip line, although generally speaking the friction co-

efficient during kinetic sliding is smaller than the in-

ternal friction coefficient (Schulson et al. 2006). The

situation is similar in the elastic–decohesive model that

reduces to a coulombic sliding law after the crack has

become open and the decohesive resistance has dis-

appeared. In contrast, the discrete element ice model

developed by Hopkins (1996) used for basin-scale cal-

culations (Hopkins et al. 2004; Hopkins and Thorndike

2006) can be easily modified to include different internal

and kinetic friction coefficients (Wilchinsky et al. 2010).

On the other hand, in this model, crack healing through

refreezing is difficult to model unless relaxation to the

initial state is adopted for healing (Wilchinsky et al.

2011). The elastic–decohesive model has yet to include

crack healing. Our model, however, directly relates the

plastic strength of sea ice to its thickness distribution

whose evolution is described explicitly and healing oc-

curs through closing and thermodynamic growth.

The coulombic failure mechanism adopted here is

similar to that used in numerical modeling by Tremblay

and Mysak (1997). The Tremblay and Mysak model,

however, takes no account of existing flaws in the de-

termination of new coulombic failure lines. Observa-

tions and discrete numerical modeling (Wilchinsky et al.

2011) demonstrate the importance of existing flaws to

rheology, which is why we account for them in the

present model. Furthermore, the effect of ridging is

modeled by Tremblay and Mysak (1997) through a cut-

off of the coulombic cone at a constant pressure where

the sea ice was assumed to start failing out of plane

through ridging. In our model, ridging failure is de-

scribed through a derived law (Hopkins 1998) and the

transition from coulombic to ridging failure occurs nat-

urally, determined by the failure stresses required by

these elemental processes. The assumption of discrete

failure also allowed us to use the simple, one-dimensional

model of ridging perpendicular to the lead as a basic

structural element of our sea ice model. This is in contrast

to Hibler and Schulson (2000), who assume an elliptic-

shape attachment to a coulombic cone in order to model

the effect of ridging on the sublead scale. Similarly, full

isotropic rheologies on the sublead scale were used by

Wilchinsky and Feltham (2004, 2006a) in their aniso-

tropic models. This implies a possibility of ridging at any

direction in the lead, including along the lead, which is

counterintuitive. Depending on the evolution of the sea

ice thickness distribution and changes in sea ice stresses,

our yield curve changes dynamically.

Our model describes the dominant and complex

plastic regime of sea ice failure and should be com-

plemented by the adoption of a subyield rheology. The

subyield regime determines how failure and therefore

deformation propagates over a sea ice cover. Although

a viscous subyield rheology (Hibler 1979; Tremblay and

Mysak 1997) is typically used, an elastic subyield rhe-

ology will likely ensure a more realistic scaling law of ice

deformation (Hopkins and Thorndike 2006; Wilchinsky

et al. 2010; Girard et al. 2011).

Here, we present a short discussion of some of the is-

sues involved in implementing our rheology model into

a sea ice dynamics model. Such an implementation is

beyond the scope of the present work and would involve

numerical issues not discussed here. The procedure we

describe below for relating stress to strain rate for the

given sea ice state (the rheology model) provides a map-

ping from stress to strain rate. Because it is usual in nu-

merical sea ice dynamics models to determine stress from

strain rate (and the sea ice state), the procedure we de-

scribe may in this case be implemented iteratively.

In the case of discrete orientational ice categories, the

minima of stress invariants necessary to determine fail-

ure lines can be found by comparing them for all ori-

entations, which is a straightforward procedure if the

stress principal axes are known. In these axes during

coulombic failure at a given pressure p, the first failure

line is determined by finding the orientation where t in

(4) attains its minimum with the relative lead thickness

given by (5). The second failure line is then again de-

termined by where the maximum shear stress t attains

its minimum, but now it is expressed through (8) given

the presence of the couple stress (9). The found t is the

maximum shear stress determined by the given pressure
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p during coulombic failure. The ridging branch of the

yield curve is determined by fixing t and finding such

orientation where the pressure reaches its minimum in

(13) or as is explicitly expressed in (30). The involved

pressure ridging force Fr is given by (12), which employs

the participation functions (10) and (11). The tensile

failure branch of the yield curve is found similarly to

the pressure ridging one: through minimization of the

pressure p at a fixed maximum shear stress t in (15) that

employs the tensile failure force function (14). The

found modes of failure determine their corresponding

normalized strain rate contributions in the stress prin-

cipal axes (25) and (28) for coulombic and ridging/

tensile failures to the whole strain rate (29) that involves

unknown rates of shear along coulombic lines and

closing and opening across ridging and tensile failure

lines. The shear, closing, and opening rates (which are,

together with the stress principal direction, to be found

from the sea ice mass and momentum conservation equa-

tions) then determine the ice thickness redistribution rates

at failure lines (21) and (22) that enter the ice thickness

evolution Eq. (20).

As can be seen from the yield curves–envelopes

plotted earlier, the yield curve is determined by various

failure modes and it is necessary to determine, for a

given pressure p, which failure modes define the yield

curve. For example, if the ridging branch, represented

by only one lead, has a slope of a different sign to the

coulombic branch (Fig. 8a), then the found coulombic

stresses at a given pressure p will be outside of the failure

envelope if, for the chosen pressure, ts found from

coulombic failure is larger than tr found from ridging

failure. On the other hand, if the ridging branch has the

same sign slope as the coulombic branch (Fig. 8b), then

both maximum shear stresses, ts and tr, determined by

coulombic and ridging failure, respectively, are possible

because they both lie on the combined yield curve.

In a practical application, the yield curve is not known

beforehand and so an algorithm for its determination is

required. When the whole yield curve is not known, one

begins with a prescribed pressure p and determines the

maximum shear stress ts determined by the coulombic

model (Fig. 8). The found ts can then be used to find psr

determined by ridging failure. If psr . p, then (p, ts) lies

on the yield curve; otherwise, coulombic failure does not

occur at this pressure; that is, (p, ts) does not lie on the

yield curve (e.g., Fig. 8a). At this same pressure p, we can

consider a lower shear stress tl , ts: lowering t below tr

can lead to the stress state (p, tl) exiting the yield en-

velope (e.g., Fig. 8b). If tr is not known, then it is again

necessary to check if this lower tl determines such plr

found through ridging failure that it is larger than the

initially considered pressure p: if plr , p, then this stress

state is outside of the yield envelope and cannot exist

and vice versa. Similarly, in order to find a stress for

ridging failure, one can begin with a prescribed shear

stress t and find pr from the ridging model: if the cou-

lombic shear stress trs corresponding to pr is larger than

the prescribed shear stress t, (i.e., trs , t), then this

ridging branch is on the yield curve; otherwise, it is not.

Apart from sea ice rheology, standard sea dynamics

ice models contain two momentum equations (resolved

along the chosen coordinate axes) and one mass balance

equation. If failure occurs either as coulombic only

(which we have taken to be in two leads simultaneously)

or ridging–tensile failure in one lead only, then there is

only one unknown failure deformation rate, _js or _jr,o.

For these failure modes, the prescribed pressure p de-

termines the maximum shear t (or vice versa) as well

as rate-independent strain rate constituents _es or _er,o.

Together with the unknown direction of the highest

compression (s1) axis, (e.g., u, p, and one deformation

rate), there are three unknowns that can be determined

by the two momentum equations and the mass balance

equation.

If combined failure occurs, either as coulombic failure

and ridging/tensile failure in one lead simultaneously or

as ridging–tensile failure in two leads simultaneously,

FIG. 8. Two yield curve cases where the coulombic stress lies (a) outside the yield envelope and (b) on the envelope.

The ridging branches are produced by ridging of only one lead lying (a) closer to the most compressive axis and

(b) closer to the least compressive axis.
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then we have two equations for p and t, and they are

uniquely determined. In this case, there are two un-

known lead deformation rates: _j
s

and _j
r,o

or _j
(1)

r,o and _j
(2)

r,o .

Together with the most compressive direction u, there

are again three unknowns for the two momentum equa-

tions and the mass balance equation.

5. Concluding remarks

An anisotropic sea ice model has been proposed that

explicitly accounts for coulombic, ridging, and tensile

failure. The sea ice state is described by areal thickness

distribution functions for isotropic floe ice and orientation-

dependent lead ice. Ridging of ice in leads and floes

redistributes ice thickness in them and transfers ice

from leads to floes when ridges become thicker than

floes. Opening due to tensile failure and dilatancy dur-

ing sliding in coulombic failure produces open water

and decreases the mean thickness of the leads. The

coulombic yield function decreases as lead orientation

deviates from the standard critical angles and, due to

the presence of cohesion, is larger in thinner leads.

Coulombic failure determines formation of new slip

lines that are dependent on the orientation and thick-

ness of existing leads. Given discrete orientational ice

categories, the minimum of the maximum shear stress

that determines the failure line orientation can be found

by comparing the maximum shear stress in each cate-

gory. Similarly, ridging or tensile failure orientations

can be found. The direct determination of ridging failure

orientations relieves us from adopting an ad hoc ex-

tension of the coulombic yield curve for higher pres-

sures (see, e.g., Hibler and Schulson 2000). Depending

on the failure regimes, the strain rate consists of the rel-

ative contributions from shear and dilatancy along two

coulombic slip lines and contraction–extension perpen-

dicular to up to two ridging–tensile failure lines. For

typical deformation rates in the Arctic, dilatancy dur-

ing sliding along coulombic lines results in these lines

becoming more prone to ridging failure, which is fre-

quently observed.

The sea ice yield curve is a combination of segments

describing the different failure modes (coulombic, ridg-

ing, and tensile), merging at points of combined fail-

ure modes. The orientation of the segments due to

ridging failure depends on the angle of the ridging leads.

Considering a scenario of two pairs of leads of different

thickness formed at critical angles with regard to dif-

ferent maximum compressive axes, we illustrated the

complexity of shapes that a combined yield curve can

take. This is due to switching of ridging and coulombic

failure between different leads depending on their ori-

entation and thickness at different stresses.

Implementation of our rheology into a numerical sea

ice dynamics model will require splitting the usual ice

thickness categories into orientation-dependent sub-

categories in order to model the state of the leads. The

floe ice thickness distribution is described by the stan-

dard (and separate) isotropic ice thickness categories.

The rheology model involves three unknowns including

the stress orientation, one or two deformation rates at

the failure lines, and one of the stress invariants if there

is only one failure mode acting; these three unknowns

can be determined using the two momentum and one

mass conservation equations. Because the rheology

model is written is terms of a relationship where the

stress determines the strain rate, an iterative procedure

will likely be required for its adoption in standard sea

ice models. Although using orientational ice thickness

subcategories will require more calculations, because

failure occurs only along four directions at most, failure

will redistribute the ice thickness only along these di-

rections: the majority of the orientational ice categories

will not be affected apart from their consequent renorm-

alization. Similarly, thermodynamic growth affects the

same ice thicknesses at all orientations equally and re-

quires only a single calculation. Therefore, the increased

level of complexity of the model because of a better rep-

resentation of sea ice anisotropy should not lead to a sig-

nificant increase of computational time.
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