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Maximal order of a class of multiplicative functions

Titus W. Hilberdink

Abstract

In this paper we obtain the maximal order of the multiplicative function given at the prime powers
by f(pk) = exp{h(k)l(p)} where h(·) and l(·) are increasing and decreasing functions respectively
with l(p) regularly varying of index −α (0 ≤ α < 1). For example, we show that under appropriate
conditions

max
n≤N

log f(n) ∼
( ∞∑

n=1

∆h(n)1/α

)α

L(log N)

where L(x) =
∑

p≤x l(p) and ∆h(n) = h(n)− h(n− 1).

2010 AMS Mathematics Subject Classification: 11N37, 11N56.
Keywords: Arithmetical functions, maximal order.

Introduction
We consider a class of multiplicative functions f(n) which at the prime powers are given by

f(pk) = eh(k)l(p) p ∈ P, k ∈ N0. (0.1)

In particular, we are interested in the maximal order of such functions1. If l(p) is constant, then f is a
prime-independent multiplicative function and the maximal order has been discussed by various authors
(see for example, [7], [8], [9] and references therein). Thus, for example, Shui [8] has proven that (using
our notation) if f(pk) = eh(k) where 0 ≤ h(k) ≤ Akβ with 0 < β < 1 and some A, then

lim sup
n→∞

log f(n) log log n

log n
= max

k≥1

h(k)
k

.

In this case, the maximal order occurs for n of the form (
∏

p≤P p)m where m maximises h(k)/k. Results
such as the above were then applied to find the maximal order of divisor-like functions.

For non prime-independent multiplicative functions not much work appears to have been done. In
[10], Tóth and Wirsing consider a class of multiplicative functions which are at most of order log log n
including n

ϕ(n) , but their results do not overlap with ours.
For the function σ−α(n) =

∑
d|n d−α, Gronwall [3] showed 100 years ago that for 0 < α < 1, the

maximal order is given by

exp
{

1 + o(1)
1− α

· (log n)1−α

log log n

}
.

Notice that in this case

σ−α(pk) = 1 +
1
pα

+ . . . +
1

pkα
= exp

{1 + o(1)
pα

}

which is of the form (0.1) in an asymptotic sense, with h(k) constant and l(p) = p−α. In fact, the
maximum order occurs for n of the form

∏
p≤P p, and to find this maximum is then relatively easy, using

the prime number theorem. More generally, if f is multiplicative and given by (0.1) and both h and l are
decreasing (and non-negative), then the maximum order of f(n) again occurs for n of the form

∏
p≤P p,

since f(pk) ≤ f(p) and f(q) ≤ f(p) for primes p, q with p < q. As such, log n = θ(P ) ∼ P by the prime
number theorem and multiplicativity of f(n) gives

log f(n) = h(1)
∑

p≤P

l(p) = h(1)L(P ),

1More accurately, the maximal order of log f ; here the maximal order of F is loosely defined to be any real positive

function G such that lim supn→∞
F (n)
G(n)

= 1. In practise, one chooses the simplest possible G.
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where L(x) =
∑

p≤x l(p). If now we assume that L(y) ∼ L(x) whenever y ∼ x, then log f(n) ∼
h(1)L(log n) (for such n) and this represents the maximal order.

In this article, we consider the less trivial (and perhaps more interesting) case is where h is increasing,
while keeping l decreasing. As such we shall see that the maximal order occurs for n =

∏
p≤P pap with

ap decreasing. The problem then reduces to finding the optimal ap which maximises f(n). A simple
lower bound for the maximal order can be found by taking ap = 1 for all p ≤ P , giving (under some mild
conditions on L)

lim sup
n→∞

log f(n)
L(log n)

≥ h(1).

With some extra conditions, we also have log f(n) ¿ L(log n) and the question reduces to finding this
limsup. First, we require some bound on the growth of h with respect to L if we want log f(n) ¿ L(log n).
For if n = 2k, then

log f(n) = log f(2k) = l(2)h(k) = l(2)h
( log n

log 2

)
,

so h(k) = o(L(k)) is necessary. A futher natural condition is that L should be regularly varying (see §1.
for the definition). In fact, for our main results we shall assume that L is regularly varying of index 1−α
for some α ∈ [0, 1), while

h(k) ¿ kβ for some β < 1− α.

As such, L(y) ∼ L(x) whenever y ∼ x and L(x) = x1−α+o(1).
Finally, we prove a slightly stronger result in that we find an asymptotic formula for maxn≤N log f(n).

Let ∆h(n) = h(n)−h(n− 1) for n ∈ N. Note that h(0) = 0 (by definition) and so ∆h(1) = h(1). Our
main result is:

Theorem 1
Let f be multiplicative and given at the prime powers by (0.1), where we assume that h is increasing
and l is decreasing. Further suppose that L(x) =

∑
p≤x l(p) is regularly varying of index 1 − α, where

0 ≤ α < 1, and h(n) ¿ nβ for some β < 1− α. Then

max
n≤N

log f(n) ∼ RαL(log N)

where

Rα = sup
an↘0

∑∞
n=1 ∆h(n)a1−α

n

(
∑∞

n=1 an)1−α
= sup

an ↘ 0∑∞
n=1 an = 1

∞∑
n=1

∆h(n)a1−α
n . (0.2)

The supremum here is over all decreasing sequences an, not identically zero, for which
∑∞

1 an converges.
In various cases we can evaluate Rα more explicitly. In particular we note that by Hölder’s inequality

∞∑
n=1

∆h(n)a1−α
n ≤

( ∞∑
n=1

∆h(n)1/α

)α( ∞∑
n=1

an

)1−α

(0.3)

and Rα ≤ (
∑∞

n=1 ∆h(n)1/α)α always. The case of equality leads to:

Theorem 2
Let f be as in Theorem 1 and suppose further that ∆h(n) decreases with n. Then

max
n≤N

log f(n) ∼
( ∞∑

n=1

∆h(n)1/α

)α

L(log N).

Note that the series
∑∞

n=1 ∆h(n)1/α converges if ∆h(n) decreases as ∆h(n) ≤ h(n)
n , so ∆h(n)1/α ¿ n−γ

where γ = 1−β
α > 1.
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In the case α = 0, Rα can be evaluated and gives:

Theorem 3
Let f be multiplicative and given at the prime powers by (0.1), where h is increasing and l is decreasing
and L is regularly varying of index 1. Suppose that h(n) ¿ nβ for some β < 1. Then

max
n≤N

log f(n) ∼
(

max
n∈N

h(n)
n

)
L(log N).

The form (0.1) (with h increasing and l decreasing) may seem restrictive, but actually the results apply to
cases where (0.1) holds in an asymptotic sense. We illustrate this in example 5(b). Indeed, the example

f(n) =
1

d(n)

∑

d|n
σ−α(d)2

for which log f(pk) = 2k
(k+1)pα (1 + O( 1

pα )), motivated the present results.
The rest of the paper is organised as follows. First we recall the notion of regular variation, then in

section 2 we find lower bounds for log f(n), to be followed in section 3 by upper bounds and the proofs
of the results.

In section 4, we show how to evaluate Rα in case ∆h(n) is not decreasing and α 6= 0. Finally, we
present some examples.

1. Some preliminaries
Notation We write f ¿ g to mean f = O(g); i.e. |f(x)| ≤ Ag(x) for some constant A and all x
sufficiently large. We write f . g to mean f(x) ≤ (1 + o(1))g(x), and similarly for f & g. Finally, f ≺ g
means f(x) = o(g(x)), while f Â g is the same as g ≺ f .

Regular Variation
A function ` : [A,∞) → R is regularly varying of index ρ if it is measurable, eventually positive, and

`(λx) ∼ λρ`(x) as x →∞ for every λ > 0 (1.1)

(see [2] for a detailed treatise on the subject). We shall sometimes denote this by ` ∈ Rρ. If ρ = 0, then
` is said to be slowly varying. For example, xρ(log x)τ is regularly varying of index ρ for any τ . Trivially,
if `1 ∈ Rρ and `2 ∈ Rσ, then `1`2 ∈ Rρ+σ, while `λ

1 ∈ Rρλ.
The Uniform Convergence Theorem says that (1.1) is automatically uniform for λ in compact subsets

of (0,∞). In particular, `(x) ∼ `(y) whenever x ∼ y. We shall make use of Karamata’s Theorem: for `
regularly varying of index ρ,

∫ x

A

` ∼ x`(x)
ρ + 1

if ρ > −1,
∫ ∞

x

` ∼ −x`(x)
ρ + 1

if ρ < −1,

while if ρ = −1,
∫ x

` is slowly varying and
∫ x

` Â x`(x).

We shall also make use of Potter’s bounds (see [2], p.25): if ` is regularly varying of index ρ then for
any chosen A > 1 and δ > 0, there exists X = X(A, δ) such that

`(y)
`(x)

≤ A max
{(y

x

)ρ+δ

,
(y

x

)ρ+δ}
for x, y ≥ X.

The notion of regular variation extends to sequences ([2], p.52). For l defined on P — the set of primes,
we say l is regularly varying of index ρ if there exists a l̃ ∈ Rρ, defined on [2,∞) such that l̃(p) = l(p).
As such, we can always take l̃ to be the step function defined by l̃(x) = l(p) for p ≤ x < p′ where p and
p′ are consecutive primes, which we shall do from now on, and we denote this extension by l.
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We note that if l is decreasing, regular variation of l (of index > −1) is equivalent to regular variation
of L, where L(x) =

∑
p≤x l(p). Indeed, by the Prime Number Theorem and Karamata’s Theorem, if l is

regularly varying of index −α > −1, then

L(x) =
∫ x

2−
l(t) dπ(t) ∼

∫ x

2

l(t)
log t

dt ∼ xl(x)
(1− α) log x

(1.2)

which is regularly varying of index 1 − α. Conversely, if L ∈ R1−α for some α < 1 and l is decreasing,
then for every λ > 1

l(λx)(π(λx)− π(x)) ≤ L(λx)− L(x) =
∑

x<p≤λx

l(p) ≤ l(x)(π(λx)− π(x)).

Using L ∈ R1−α and π ∈ R1 and dividing by L(x) gives

λ1−α − 1
λ− 1

. l(x)π(x)
L(x)

. λ1−α − 1
λ− 1

λα,

and on letting λ → 1, (1.2) follows again, so that l ∈ R−α.

2. Lower bounds for log f(n)

Proposition 2.1
Let f be multiplicative with f(pk) = exp{h(k)l(p)}. Put n =

∏
p≤P p[g(P/p)], where g : [1,∞) → R is

continuous, strictly increasing without bound, and g(1) = 1. Then

log n =
∑

r≥1

θ
( P

g−1(r)

)
(2.1)

log f(n) =
∑

r≥1

∆h(r)L
( P

g−1(r)

)
(2.2)

where θ(x) =
∑

p≤x log p and L(x) =
∑

p≤x l(p).

Of course the series are finite, ending when g−1(r) > P/2.

Proof. We have

log n =
∑

p≤P

[
g
(P

p

)]
log p =

∑

r≥1

r
∑

p ≤ P
st [g(P/p)] = r

log p.

But [g(P/p)] = r ⇐⇒ P
g−1(r+1) < p ≤ P

g−1(r) , so

log n =
∑

r≥1

r

(
θ
( P

g−1(r)

)
− θ

( P

g−1(r + 1)

))
=

∑

r≥1

θ
( P

g−1(r)

)
.

For (2.2), we have

log f(n) =
∑

p≤P

h
([

g
(P

p

)])
l(p) =

∑

r≥1

h(r)
∑

p ≤ P
st [g(P/p)] = r

l(p)

=
∑

r≥1

h(r)
(

L
( P

g−1(r)

)
− L

( P

g−1(r + 1)

))
=

∑

r≥1

(h(r)− h(r − 1))L
( P

g−1(r)

)
,

as required.
¤
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Proposition 2.2
Let g : [1,∞) → R be continuous, strictly increasing without bound, and g(1) = 1. Suppose further that∑∞

1 1/g−1(n) converges. Let l be regularly varying of index −α, with α ∈ (0, 1), and h increasing such
that h(k) = O(kβ) for some β < 1− α. Then

(1)
∑

p≤x

[
g
(x

p

)]
log p ∼

( ∞∑
n=1

1
g−1(n)

)
x

(2)
∑

p≤x

h
([

g
(x

p

)])
l(p) ∼

( ∞∑
n=1

∆h(n)
g−1(n)1−α

)
L(x),

where L(x) =
∑

p≤x l(p).

Proof. (1) Let G(x) denote the sum on the left in (1). Then from the proof of (2.1), we see that

G(x) =
∑

n≤g(x)

θ
( x

g−1(n)

)
.

By the Prime Number Theorem, we can write θ(x) = x+η(x) where η(x) = o(x). Let λ =
∑∞

1 1/g−1(n).
The term involving x is

x
∑

n≤g(x)

1
g−1(n)

∼ λx.

Now, given ε > 0, there exists x0 such that |η(x)| ≤ εx for x ≥ x0. Note that x/g−1(n) ≥ x0 for
n ≤ g(x/x0). Hence ∣∣∣∣

∑

n≤g(x/x0)

η
( x

g−1(n)

)∣∣∣∣ ≤ ε
∑

n≤g(x/x0)

x

g−1(n)
< ελx.

For the remaining range g(x/x0) < n ≤ g(x), the terms are O(1) and so the sum is O(g(x)). But
g−1(n) Â n (since n/2

g−1(n) ≤
∑n

n/2
1

g−1(n) → 0) so that g(x) = o(x). Thus G(x) ∼ λx follows.

(2) Let H(x) denote the LHS of (2). From the proof of (2.2) we see that

H(x) =
∑

n≤g(x)

h(n)
{

L
( x

g−1(n)

)
− L

( x

g−1(n + 1)

)}
=

∑

n≤g(x)

∆h(n)L
( x

g−1(n)

)
. (2.3)

Since h is increasing,

H(x) ≥
∑

n≤N

∆h(n)L
( x

g−1(n)

)
∼

∑

n≤N

∆h(n)
g−1(n)1−α

L(x).

for every N ∈ N, by regular variation of L. Note that by Hölder’s inequality

∑

n≤N

∆h(n)
g−1(n)1−α

≤ A

( ∑

n≤N

1

n
1−β

α

)α( ∑

n≤N

1
g−1(n)

)1−α

< ∞.

Hence2
∑

n≥1
∆h(n)

g−1(n)1−α < ∞ and H(x)/L(x) &
∑∞

n=1
∆h(n)

g−1(n)1−α .
For the range n > N , we use the bound h(n) ≤ Anβ in the middle expression of (2.3) and Potter’s

bounds on L
L( x

g−1(n) )

L(x)
≤ A1

g−1(n)1−α−δ

for every δ > 0 (some A1). But with δ sufficiently small,

∑

n>N

1
n1−βg−1(n)1−α−δ

≤
( ∑

n>N

1

n
1−β
α+δ

)α+δ( ∑

n>N

1
g−1(n)

)1−α−δ

.

2This incidentally shows that Rα is finite.
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Both sums converge, and so tend to zero as N →∞. Thus the result follows.
¤

Proposition 2.3
Let f be multiplicative and given at the prime powers by (0.1), and assume that h and l satisfy the
conditions of Proposition 2.2. Then, with Rα given by (0.2),

max
n≤N

log f(n) & RαL(log N).

Proof. It is clear that in the definition of Rα we may range over strictly decreasing an rather than just
decreasing. Thus, given ε > 0, there exists a strictly decreasing an for which

∑
an < ∞ and

∑∞
n=1 ∆h(n)a1−α

n

(
∑∞

n=1 an)1−α
> Rα − ε.

Without loss of generality we may assume a1 = 1, as we may replace an by an/a1. Let g be an increasing
bijection on [1,∞) such that g(1/an) = n. Then an = 1/g−1(n) so that

∑
1

g−1(n) < ∞. Take n of the
form

n =
∏

p≤P

p[g(P/p)] (2.4)

As such, Proposition 2.2 implies

log n ∼
( ∞∑

r=1

ar

)
P and log f(n) ∼

( ∞∑
r=1

∆h(r)a1−α
r

)
L(P )

as P →∞ through the primes. Using the fact that L is regularly varying of index 1− α,

log f(n)
L(log n)

∼
∑∞

r=1 ∆h(r)a1−α
r

(
∑∞

r=1 ar)1−α
> Rα − ε. (2.5)

Now note that if n and n′ are consecutive numbers of the form (2.4) (i.e. n′ =
∏

p≤P ′ p
[g(P ′/p)] where P ′

is the prime after P ) then, with λ =
∑

n≥1 an,

log n′ ∼ λP ′ ∼ λP ∼ log n.

Hence, with Ñ denoting the largest number of the form (2.4) below N ,

max
n≤N

log f(n) ≥ log f(Ñ) & (Rα − ε)L(log Ñ) ∼ (Rα − ε)L(log N).

This holds for every ε > 0, hence it must also hold for ε = 0.
¤

3. Upper bounds and proofs of Theorems 1-3
The lower bound obtained in Proposition 2.3 already gives the maximum order of log f(n) for n of the
form

∏
p≤P p[g(P/p)] with g an increasing bijection on [1,∞) such that

∑
g−1(n)−1 converges. We have

to show that no other n gives still larger values of log f(n).

Lemma 3.1
Let f be multiplicative with f(pk) = eh(k)l(p) for p ∈ P, k ∈ N0, where h is increasing and l is decreasing.
Then the maximal size of f(n) occurs when n is of the form

n =
∏

p≤P

pap (3.1)

with ap decreasing with p. More precisely, if n is as in (3.1) and api < apj for some i < j (where pi is
the ith-prime) then there exists n′ < n such that f(n′) ≥ f(n).

6



Proof. Let n be as in (3.1) with api < apj for some i < j and put n′ =
∏

p≤P pa′p where

a′p = ap if p 6= pi, pj , and a′pi
= apj

, a′pj
= api

.

Then n′/n = (pi/pj)
apj

−api < 1, while

log
f(n′)
f(n)

=
(
h(apj

)− h(api
)
)(

l(pi)− l(pj)
)
≥ 0.

¤

Proof of Theorem 1. By Lemma 3.1, we need only consider n of the form (3.1) with ap decreasing.
Suppose, without loss of generality, that aP ≥ 1. Then

log n =
∑

p≤P

ap log p ≥
∑

p≤P

log p = θ(P ),

while log f(n) =
∑

p≤P h(ap)l(p). Consider
∑

p≤δ log n h(ap)l(p) for δ > 0 (small). Using h(k) ¿ kβ , we
have

∑

p≤δ log n

h(ap)l(p) ¿
∑

p≤δ log n

aβ
p l(p) =

∑

p≤δ log n

(ap log p)β
( l(p)

1
1−β

(log p)
β

1−β

)1−β

≤ (log n)β

( ∑

p≤δ log n

l(p)
1

1−β

(log p)
β

1−β

)1−β

, (3.2)

by Hölder’s inequality. Now l(p)
1

1−β

(log p)
β

1−β

is regularly varying of index − α
1−β , which is greater than −1. Thus

by Karamata’s Theorem and the prime number theorem,

∑

p≤x

l(p)
1

1−β

(log p)
β

1−β

=
∫ x

2−

l(t)
1

1−β

(log t)
β

1−β

dπ(t) ∼ xl(x)
1

1−β

(1− α
1−β )(log x)

1
1−β

. (3.3)

Hence (3.2) gives

∑

p≤δ log n

h(ap)l(p) ¿ (log n)β (δ log n)1−βl(δ log n)
(1− α

1−β )1−β log log n
∼ δη(1− α)L(log n)

(1− α
1−β )1−β

where η = 1− (α+β) > 0. Let ε > 0. Thus we can find δ > 0 such that
∑

p≤δ log n h(ap)l(p) < εL(log n).
As such

log f(n) <
∑

δ log n<p≤P

h(ap)l(p) + εL(log n). (3.4)

From (3.4) and the fact that log f(n) is sometimes as large as cL(log n), it follows that for the maximal
order we must have P > δ log n for δ sufficiently small. Now for every prime p,

log n ≥ ap

∑

q≤p

log q = apθ(p)

(here q runs over the primes ≤ p). So, for the range of p under consideration (i.e. δ log n < p ≤ P ) and
using θ(x) ≥ a0x for some absolute constant a0,

ap ≤ log n

θ(p)
≤ 1

a0δ
. (3.5)
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The bound is independent of n, only depending on α, β and ε, and so ap takes only finitely many values,
say ap ∈ {1, . . . , M}. Let

Tr =
∑

δ log n < p ≤ P
ap ≥ r

l(p).

Then

∑

δ log n<p≤P

h(ap)l(p) =
M∑

r=1

h(r)
∑

δ log n < p ≤ P
ap = r

l(p) =
M∑

r=1

h(r)(Tr − Tr+1) =
M∑

r=1

∆h(r)Tr (3.6)

Since ap decreases with p, we have ap ≥ r ⇔ p ≤ qr, for some qr (depending on r and P ), decreasing with
r. Thus qr ≤ q1 = P . For a non-zero contribution, we require qr > δ log n ≥ δθ(P ), so that a0δ < qr

P ≤ 1.
By the uniform convergence theorem for regular variation, L(qr) = L( qr

P · P ) ∼ ( qr

P )1−αL(P ) and

∑

δ log n<p≤P

h(ap)l(p) ≤
M∑

r=1

∆h(r)L(qr) ∼
( M∑

r=1

∆h(r)
(qr

P

)1−α
)

L(P ) (3.7)

Also

log n =
∑

p≤P

ap log p ≥
M∑

r=1

r
∑

p ≤ P
ap = r

log p ≥
M∑

r=1

∑
p ≤ P
ap ≥ r

log p =
M∑

r=1

θ(qr) ∼
( M∑

r=1

qr

P

)
P

by the Prime Number Theorem, so

L(log n) &
( M∑

r=1

qr

P

)1−α

L(P ). (3.8)

Finally (3.4), (3.7) and (3.8) give

lim sup
n→∞

log f(n)
L(log n)

≤
∑M

r=1 ∆h(r)( qr

P )1−α

(
∑M

r=1
qr

P )1−α
+ ε ≤ Rα + ε.

This holds for all ε > 0, so the above holds with ε = 0. Combining with Proposition 2.3 concludes the
proof of Theorem 1.

¤

Proof of Theorem 2. We already noted in the introduction that Rα ≤ Sα where

Sα =
( ∞∑

n=1

∆h(n)1/α

)α

.

But equality holds in (0.3) if an = c∆h(n)1/α for some constant c. So we choose an as such (with c > 0)
which is valid as ∆h(n)1/α is decreasing and summable. Thus Rα = Sα in this case.

¤

Proof of Theorem 3. Consider α = 0. For M ∈ N, let

R0(M) = sup
0≤aM≤...≤a1

∑M
n=1 ∆h(n)an∑M

n=1 an

,

the supremum being over all a1, . . . , aM satisfying a1 ≥ . . . ≥ aM ≥ 0. It is clear that R0(M) → R0 as
M →∞. We show that

R0(M) = max
n≤M

h(n)
n

. (3.9)
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Let a1 ≥ . . . aM ≥ 0 and put bn = an − an+1 (n = 1, . . . ,M) with aM+1 = 0. So an =
∑M

r=n br. Then

M∑
n=1

∆h(n)an =
M∑

n=1

∆h(n)
M∑

r=n

br =
M∑

r=1

br

r∑
n=1

∆h(n) =
M∑

r=1

brh(r),

while
∑M

n=1 an =
∑M

r=1 rbr. Thus

R0(M) = sup
b1,...,bM≥0

∑M
n=1 h(n)bn∑M

n=1 nbn

= sup
c1,...,cM≥0

∑M
n=1

h(n)
n cn∑M

n=1 cn

on putting nbn = cn. The expression on the right is ≤ maxn≤M
h(n)

n while, choosing ck = 1 and cn = 0
for n 6= k (k any fixed integer from 1, . . . , M), we find R0(M) ≥ h(k)

k . Thus (3.9), and hence, Theorem 3
follows. Note that the supremum is a maximum since h(n)/n → 0.

¤

§4. On the value of Rα

The evaluation of Rα is an intriguing optimization problem in its own right. In the case α = 0 and the
case where ∆h(n) is decreasing one obtains simple explicit formulas for Rα. In general, one can still
evaluate Rα but there does not appear to be an elegant formula.

We can turn it into a finite-dimensional problem by defining, for M ∈ N,

Rα(M) = sup
a1 ≥ . . . ≥ aM ≥ 0∑M

n=1 an = 1

M∑
n=1

∆h(n)a1−α
n .

We first prove that where ∆h(n) is increasing, we must take an constant. In fact, we prove this for a
slightly more general problem:

Lemma 4.1
Let α ∈ (0, 1), ` = (l1, . . . , lM ) ∈ NM and Λ = (λ1, . . . , λM ) ∈ RM with each λi ≥ 0 and consider

Rα(Λ, `; M) = max
a1 ≥ . . . ≥ aM ≥ 0∑M

r=1 lrar = 1

M∑
m=1

λmlma1−α
m .

(i) Suppose that λk < λk+1 for some k ∈ {1, . . . , M − 1}. Then for the above maximum, we must take
ak = ak+1.

(ii) If λk ≥ λk+1 for every k, then Rα(Λ, `;M) = (
∑M

m=1 λ
1/α
m lm)α.

Proof. (i) In any case ak ≥ ak+1, so it suffices to show that if ak > ak+1 then there exists a′ =
(a′1, . . . , a

′
M ) with a′1 ≥ . . . ≥ a′M ≥ 0 and

∑M
m=1 lma′m = 1 for which

M∑
m=1

λmlma′m
1−α

>

M∑
m=1

λmlma1−α
m . (4.1)

So, suppose ak > ak+1. Let a′n = an for n 6= k, k + 1 and put

a′k = a′k+1 =
lkak + lk+1ak+1

lk + lk+1
.

As such, a′1 ≥ . . . ≥ a′M ≥ 0 (since ak+1 < a′k < ak) and
∑M

m=1 lma′m = 1 (since lka′k + lk+1a
′
k+1 =

lkak + lk+1ak+1) while

M∑
m=1

λmlma′m
1−α−

M∑
m=1

λmlma1−α
m = (λklk + λk+1lk+1)(a′k)1−α − (λklka1−α

k + λk+1lk+1a
1−α
k+1 )

= λk+1a
1−α
k

{
(lks + lk+1)

(lk + lk+1)1−α
(lk + lk+1t)1−α − (lks + lk+1t

1−α)
}

(4.2)
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where s = λk

λk+1
and t = ak+1

ak
. Note that 0 ≤ s, t < 1. Now put

F (x, y) = Fm,n(x, y) =
(mx + n)(m + ny)1−α

(m + n)1−α
− (mx + ny1−α) (m,n ∈ N).

So the RHS of (4.2) is λk+1a
1−α
k Flk,lk+1(s, t). We claim that for any x, y ∈ [0, 1], F (x, y) ≥ 0 with equality

if and only if x = y = 1. For

F (x, y) ≥ 0 ∀x, y ∈ [0, 1] ⇐⇒ (mx + n)(m + ny)1−α

(m + n)1−α
≥ mx + ny1−α ∀x, y ∈ [0, 1]

⇐⇒ mx

{
1−

(m + ny

m + n

)1−α
}
≤ n

{(m + ny

m + n

)1−α

− y1−α

}
∀x, y ∈ [0, 1]

⇐⇒ m

{
1−

(m + ny

m + n

)1−α
}
≤ n

{(m + ny

m + n

)1−α

− y1−α

}
∀y ∈ [0, 1]

since the LHS is largest when x = 1. Rearranging, we see that this holds if and only if G(y) ≥ 0 for
0 ≤ y ≤ 1 where

G(y) = (m + n)α(m + ny)1−α −m− ny1−α.

But G′(y) = (1− α)ny−α((my+ny
m+ny )α − 1) < 0 for 0 < y < 1. Thus G is strictly decreasing in [0, 1]. Since

G(1) = 0 the result follows.
For the second part, note that by Hölder’s inequality

M∑
m=1

λmlma1−α
m =

M∑
m=1

λmlαm(lmam)1−α ≤
( M∑

m=1

λ1/α
m lm

)α

.

Equality holds if λ
1/α
m = cam for some constant c, which is feasible if λm is decreasing.

¤

Determining Rα.
Thus, in the evaluation of Rα(Λ, `;M), for the optimal solution we need to take an constant on intervals
where λk is strictly increasing. Partition {1, . . . , M} into consecutive intervals3 L1, . . . ,LM ′ and λn is
strictly increasing on each Lr. Thus we can write Lr = {Lr−1 + 1, . . . , Lr} for r = 1, . . . ,M ′ where Lr is
a strictly increasing sequence of integers with L0 = 0 and LM ′ = M , and λn+1 > λn for Lr−1 < n < Lr,
while λn+1 ≤ λn for n = Lr (1 ≤ r < M ′). (If λk is decreasing, we must take Lr = {r}.) As such, we
take an constant on each Lr. Writing

l′r =
∑

n∈Lr

ln and br = aLr ,

gives
∑M

n=1 lnan =
∑M ′

r=1(
∑

n∈Lr
ln)aLr =

∑M ′

r=1 l′rbr = 1, while

M∑
n=1

λnlna1−α
n =

M ′∑
r=1

( ∑

n∈Lr

λnln

)
b1−α
r =

M ′∑
r=1

λ′rl
′
rb

1−α
r

where λ′r = 1
l′r

∑
n∈Lr

λnln. Thus

Rα(Λ, `; M) = max
b1 ≥ . . . ≥ b

M′ ≥ 0
∑M′

r=1 l′rbr = 1

M ′∑
m=1

λ′ml′mb1−α
m = Rα(Λ′, `′; M ′)

where Λ′ = (λ′1, . . . , λ
′
M ′) and `′ = (l′1, . . . , l

′
M ′). Note that M ′ < M , unless λn is decreasing, in which

case Rα(M) can be evaluated. Now apply Lemma 4.1 to this optimization problem and continue the
process repeatedly. Thus

Rα(Λ, `; M) = Rα(Λ′, `′;M ′) = · · · = Rα(Λ∗, `∗; M∗)
3That is; sets of the form {k, k + 1, k + 2, . . . , l} where k, l ∈ N.
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where the process stops when Λ∗ is a decreasing set. This is guaranteed to happen when M∗ = 1, but
could happen earlier. Notice that at each stage, the forms for Λ and l are the same. Consider for example
the second stage, where we have partitioned {1, . . . , M ′} into consecutive intervals L′1, . . . ,L′M ′′ with
corresponding `′′ and Λ′′. Then

l′′k =
∑

n∈L′k
l′n =

∑

n∈L′k

∑

m∈Lk

lm =
∑

n∈L
ln

for some consecutive set L (dependent on k). Likewise

λ′′kl′′k =
∑

n∈L′k
λ′nl′n =

∑

n∈L′k

∑

m∈Lk

λmlm =
∑

n∈L
λnln

In particular, this holds for `∗ and Λ∗. Rewriting, the above shows that the optimal solution always has
the form4

Rα(Λ, `; M) =
( K∑

k=1

(q(mk)− q(mk−1))
(s(mk)− s(mk−1)

q(mk)− q(mk−1)

)1/α
)α

where q(r) = l1 + · · · + lr and s(r) = λ1l1 + · · · + λrlr, for some sequence of integers mk satisfying
0 = m0 < m1 < · · · < mK = M . Being optimal, this requires that

s(mk)− s(mk−1)
q(mk)− q(mk−1)

is decreasing.
For the special case lk ≡ 1 and λk = ∆h(k), q(r) = r and s(r) = h(r). Thus

Rα(M) =
( K∑

k=1

(mk −mk−1)
(h(mk)− h(mk−1)

mk −mk−1

)1/α
)α

for some such sequence mk for which h(mk)−h(mk−1)
mk−mk−1

decreases.

5. Examples and final comments
Now we illustrate our results with a few examples.

(a) Let f be multiplicative with f(pk) = exp{kβp−α} where 0 < α < 1 and 0 < β < 1 − α for prime
powers pk. Thus h(k) = kβ , which is increasing and ∆h(k) is stricly decreasing as can be readily
verified. In this case L(x) ∼ x1−α

(1−α) log x . Thus, by Theorem 2,

max
n≤N

log f(n) ∼
( ∞∑

n=1

(nβ − (n− 1)β)1/α

)α (log N)1−α

(1− α) log log N
.

(For α = 0 the RHS is log N
log log N .) In some cases the constant can be evaluated in terms of ζ-values.

For example, taking β = 1
2 and α = 1

3 ,

N∑
n=1

(
√

n−√n− 1)3 = 4N3/2 + 3
√

N − 6
N∑

n=1

√
n → −6ζ

(
−1

2

)
,

after suitable manipulations. By the functional equation for ζ(s) this equals 3
2π ζ( 3

2 ). That is, the
maximal order of the multiplicative function with f(pk) = exp{

√
k/ 3
√

p} is

exp

{(
3
2

3

√
3
2π

ζ
(3

2

)
+ o(1)

)
(log N)2/3

log log N

}
.

4Another way to see this is to realise that at each stage more consecutive ans are equated until the corresponding λ′ns
(or λ′′ns etc.) are decreasing.
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(b) Theorem 2 can also be used in cases where log f(pk) is not the form h(k)l(p), but only asymptotically
of this form. In [5], the maximal order of the function

ηα,γ(n) =
1

d(n)

∑

d|n
σ−α(d)γ

was required, where σ−α(n) =
∑

d|n d−α and d(n) = σ0(n). It was shown that for α ∈ (0, 1) and
any γ > 0

max
n≤N

log ηα,γ(n) ³ (log N)1−α

(1− α) log log N

but the true maximal order was left open. With Theorem 2, this can now be established.

Note that ηα,γ(n) is multiplicative with

ηα,γ(pk) =
1

k + 1

k∑
r=0

σ−α(pr)γ =
1

k + 1

(
1 +

k∑
r=1

(
1 +

1
pα

+ O
( 1

p2α

))γ
)

= 1 +
γk

(k + 1)pα
+ O

( 1
p2α

)
= exp

{ γk

(k + 1)pα
+ O

( 1
p2α

)}
,

the implied constants being independent of k (and p). Let s(n) denote the multiplicative function
with s(pk) = exp{ γk

(k+1)pα }. Then ηα,γ(n) = s(n)t(n) and from the above, σ−2α(n)−κ ≤ t(n) ≤
σ−2α(n)κ for some κ > 0. It follows that log t(n) ¿ (log n)1−2α+ε for every ε > 0. Thus the
maximal order of log ηα,γ(n) is the same as for log s(n), which can be found from Theorem 2. In
this case h(k) = γk

k+1 which is increasing and ∆h(k) = γ
k(k+1) which is decreasing, while l(p) = p−α.

Theorem 2 now gives

max
n≤N

log ηα,γ(n) ∼ max
n≤N

log s(n) ∼ γ

( ∞∑
n=1

( 1
n(n + 1)

)1/α
)α (log N)1−α

(1− α) log log N
.

For particular values of α the constant may be evaluated. Take, say, α = 1
2 . Then the sum above

becomes ∞∑
n=1

( 1
n
− 1

n + 1

)2

=
∞∑

n=1

( 1
n2

+
1

(n + 1)2
− 2

n(n + 1)

)
= 2ζ(2)− 3.

Hence, with say γ = 2,

max
n≤N

log η 1
2 ,2(n) ∼ 4

√
π2

3
− 3

√
log N

log log N
.

(c) Let f be multiplicative with log f(pk) = h(k)l(p) where h(k) = [
√

k]. This time h(k) is increasing
but ∆h(k) is not, as ∆h(k) = 1 for k a square and zero otherwise. Note that to apply Theorem 1,
we require α < 1

2 . To calculate Rα we use the method in §4. Thus

Rα = sup
an ↘ 0∑∞

n=1 an = 1

∞∑
n=1

∆h(n)a1−α
n = sup

an ↘ 0∑∞
n=1 an = 1

∞∑
m=1

a1−α
m2 .

Putting b1 = a1, b2 = a2 = a3 = a4, b3 = a5 = · · · = a9 etc. for the optimal solution gives

Rα = sup
bn ↘ 0∑∞

n=1(2n − 1)bn = 1

∞∑
n=1

b1−α
n =

( ∞∑
n=1

1

(2n− 1)
1−α

α

)α

,

by taking the optimal choice bn = c(2n − 1)−1/α for some c > 0. Thus, if l is decreasing and
regularly varying of index −α with 0 < α < 1

2 then

max
n≤N

log f(n) ∼ (1− 21− 1
α )αζ

( 1
α
− 1

)α ∑

p≤log N

l(p).
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Final comments
The constant appearing in the asymptotic formula in the theorems has the form of an lp-norm. For
a = (an) the lp- norm is defined for 1 ≤ p < ∞ and p = ∞ respectively by

‖a‖p =
( ∞∑

n=1

|an|p
)1/p

, ‖a‖∞ = sup
n∈N

|an|.

Writing α = 1/p (p > 1) we therefore see that, given the conditions of Theorem 2,

max
n≤N

log f(n) ∼ ‖∆h‖pL(log N),

while for Theorem 3, with α = 0 corresponding to p = ∞

max
n≤N

log f(n) ∼ ‖h1‖∞L(log N),

where h1(n) = h(n)/n.
This type of formula is strangely similar to an asymptotic formula found for the following ‘quasi’-norm

of an arithmetical operator (see [6]). Let

Mf (T ) = sup
g ∈ M2

‖g‖2 = T

‖f ∗ g‖2
‖g‖2

where M2 is the set of square-summable multiplicative functions and ∗ is Dirichlet convolution. Taking
f ∈M2 to be completely multiplicative such that f(p) is regularly varying with index −α, it was proven
in [6] that for 1

2 < α < 1

log Mf (T ) ∼
(

1
2B( 1

α , 1− 1
2α )

)α

F (log T log log T )

where F (x) =
∑

p≤x f(p). Here B(x, y) is the beta-function. Writing p = 1/α, the constant can be
rewritten as ‖h′‖p where h(x) =

√
1− e−2x. With some heurstic reasoning, it was further suggested in

the case where f(n) = n−α that Mf (T ) represents the maximal order of ζ(α + it) up to height T ; i.e.

max
|t|≤T

log |ζ(α + it)| ∼ ‖h′‖p
(log T )1−α

(1− α)(log log T )α

where ‖h′‖p = (
∫∞
0
|h′|p)1/p is now the Lp-norm. The similarity of form between these ‘discrete’ and

‘continuous’ cases is rather striking, and suggests that there might be a more general framework which
combines these formulae.
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APPENDIX

To put the results into a broader context, we consider a few classes of multiplicative functions of the form
(0.1) where h and l satisfy slightly altered assumptions.

(a) Case where h is increasing, l decreasing and such that
∑

p l(p) < ∞. In this case we find
the maximal order of log f(n) is of size h([ log n

log 2 ]). More precisely, with λ =
∑

p l(p)

l(2)h
([ log n

log 2

])
≤ log f(n) ≤ λh

([ log n

log 2

])
,

where the RHS inequality holds for all n and the LHS for infinitely many n, namely, n = 2k.

Proof. Let n =
∏

p≤P pap where ap can be taken to be decreasing after Lemma 3.1. Thus log n =∑
p≤P ap log p ≥ a2 log 2 and

log f(n) =
∑

p≤P

h(ap)l(p) ≤ h(a2)
∑

p

l(p) = λh(a2) ≤ λh
([ log n

log 2

])
.

On the other hand, with n = 2k, log f(n) = l(2)h(k) = l(2)h( log n
log 2 ).

(b) Case where h and ∆h are increasing, and l decreasing. Now the maximum for f occurs
when n = 2k and

max
n≤N

f(n) = exp
{

l(2)h
([ log n

log 2

])}
.

To see this, suppose p|n where p is an odd prime, so n = 2k . . . pl for some k, l ∈ N. After Lemma
3.1 we can take k ≥ l. Then, with n′ = 2

pn,

f(n′)
f(n)

=
f(2k+1)f(pl−1)

f(2k)f(pl)
= exp{l(2)∆h(k + 1)− l(p)∆h(l)} ≥ 1.

Thus, with K such that 2K ≤ N < 2K+1

max
n≤N

f(n) = f(2K) = el(2)h(K) = exp
{

l(2)h
([ log n

log 2

])}
.
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