CORRIGENDUM: Flow-induced morphological instability of a mushy layer

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.
Published version at: http://dx.doi.org/10.1017/S002211200500813X
To link to this article DOI: http://dx.doi.org/10.1017/S002211200500813X

Publisher: Cambridge University Press

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.
www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
CORRIGENDUM

Flow-induced morphological instability of a mushy layer

By J. A. Neufeld, J. S. Wettlaufer, D. L. Feltham and M. G. Worster

Recent investigations by J. A. Neufeld and J. S. Wettlaufer have brought to light certain errors in the paper by Feltham & Worster (1999), which are corrected below. While these corrections do not alter the fundamental instability mechanisms introduced in that paper, they make significant quantitative changes to the stability criteria. Equation and figure numbers preceded by the letter C denote corrected versions of the original items.

Equation (5.8a) on page 349 can be conveniently written as

\[[(D^2 - \alpha^2)^2 - (D^2 - \alpha^2)D - i\alpha\mathcal{U}_\infty (1 - s)(D^2 - \alpha^2) - i\alpha\mathcal{U}_\infty s]w_1 = 0, \]

where \(D \equiv s(d/ds) \) and \(\alpha = kPr \), from which the general recurrence relation

\[
[j + r] \left[(j + r)^2 - \alpha^2 \right] [j + r]^2 - (j + r) - \alpha^2 - i\alpha\mathcal{U}_\infty a_j = i\alpha\mathcal{U}_\infty [\alpha^2 + 1 - (j + r - 1)^2]a_{j-1} \quad (C5.15)
\]

can be readily obtained for solutions of the form

\[w_1 = s' \sum_{j=0}^{\infty} a_j s^j. \quad (C5.9) \]

The corrected recurrence relation can be used to determine that the pressure perturbation at the mush–liquid interface is as represented in figure C5. At large \(j \) the coefficients behave as \(a_{j+1}/a_j \sim -i\alpha\mathcal{U}_\infty /j^2 \) and hence the series is strongly convergent. In detail we find rather different characteristics from those shown in the original paper, having the properties that \(\text{Re} [\hat{p}_1] \sim -k\mathcal{U}_\infty^2 \) as \(k \to 0 \), which corresponds to the inviscid result, and \(\text{Re} [\hat{p}_1] \to 0 \) as \(k \to \infty \). These results have been confirmed independently by direct numerical evaluation of equation (5.3).

Overall, although the physical mechanism that underlies the instability is identical to that described in the original paper, the pressure perturbation is much smaller than previously calculated, which means that the mushy layer is much less prone to instability, as shown in figure C6.
FIGURE C5. The real part of the pressure at the mush–liquid interface $\text{Re}[\hat{p}_1(\mathcal{U}_\infty, Pr, k)]$ versus wavenumber k for $\mathcal{U}_\infty = 100$ and $Pr = 10$. The inset shows the decay at large wavenumber.

FIGURE C6. Neutral curve for a viscous melt, for $\mathcal{U}_\infty = 100$, $Pr = 10$ and $\tilde{\theta}_\infty = 1$. The solid curve results from the corrected theory and the dashed curve is the result presented in the original paper.