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ABSTRACT

A drag law accounting for Ekman rotation adjacent to a flat, horizontal boundary is proposed for use in
a plume model that is written in terms of the depth-mean velocity. The drag law contains a variable turning
angle between the mean velocity and the drag imposed by the turbulent boundary layer. The effect of the
variable turning angle in the drag law is studied for a plume of ice shelf water (ISW) ascending and turning
beneath an Antarctic ice shelf with draft decreasing away from the grounding line. As the ISW plume
ascends the sloping ice shelf–ocean boundary, it can melt the ice shelf, which alters the buoyancy forcing
driving the plume motion. Under these conditions, the typical turning angle is of order �10° over most of
the plume area for a range of drag coefficients (the minus sign arises for the Southern Hemisphere). The
rotation of the drag with respect to the mean velocity is found to be significant if the drag coefficient exceeds
0.003; in this case the plume body propagates farther along and across the base of the ice shelf than a plume
with the standard quadratic drag law with no turning angle.

1. Introduction

Floating ice shelves form the interface between
grounded ice sheets and the ocean. Melting and freez-
ing at the base of Antarctic ice shelves modifies several
Antarctic water masses (Rivaro et al. 2003; Foldvik et
al. 2004) that are precursors to Antarctic Bottom Wa-
ter, the most prevalent water mass in the world. In
regions of sea ice formation adjacent to ice shelves,
such as polynyas, salty water at the surface freezing
temperature is formed that is dense enough to sink and
flow down the continental shelf slope toward the ice

shelf grounding line; this water is known as high-salinity
shelf water (HSSW; see Fig. 1). As seawater’s freezing
temperature decreases with increasing pressure and
therefore depth, the HSSW is warm enough to melt the
ice shelf base near the grounding line. The meltwater
released cools and freshens the ambient seawater to
form buoyant ice shelf water (ISW). ISW subsequently
flows along the base of the ice shelf, melting and freez-
ing at the shelf base and thus redistributing ice mass.
ISW plumes are believed to be particularly important in
redistributing mass under the Filchner–Ronne Ice Shelf
(Antarctica), the most voluminous ice shelf on earth.
The path of ISW plumes is affected by topography,
buoyancy forces, Coriolis force, and basal drag, as was
demonstrated by Holland and Feltham (2006) who used
an ISW model with plume dynamics based on the ear-
lier work of Jungclaus and Backhaus (1994).

The typical approach to modeling plume drag at the
shelf–ocean boundary is to treat the magnitude of the
drag as proportional to the square of the depth-
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averaged plume speed, with the drag aligned with the
mean plume velocity. Since the angle between the clas-
sical solution for Ekman drag and the geostrophic ve-
locity is �45°, one would clearly expect the role of
rotation to be important when the thickness of the
plume is only moderately larger than the Ekman layer
thickness, and its mean velocity deviates significantly
from the geostrophic velocity.

Brown (1974) considered drag in an atmospheric
boundary layer by equating the velocity and vertical
velocity gradient in the Ekman layer and turbulent
boundary layer solutions at some undetermined refer-
ence height above the boundary. In this case, the drag
depends upon the reference height, which was sup-
posed to be determined experimentally. We also con-
sider solutions within the Ekman and turbulent bound-
ary layers: however, our approach differs from Brown’s
in that we formally asymptotically match the Ekman
and turbulent boundary layer solutions. This approach
is both more mathematically rigorous and, importantly,
removes the need for the introduction of an ad hoc
reference height, which would be extremely difficult to
measure beneath an ice shelf.

We determine a new drag law that takes account of
the change in direction and magnitude of the drag rela-
tive to the depth-mean velocity in a plume. Although
we focus on the impact of this new drag law on the
dynamics of an ISW plume, the new drag law clearly
has much wider applicability to solid–fluid boundaries,
such as the land/ice–air boundary, the sea ice–ocean
boundary, and bottom boundary currents in the ocean.

In the next section, we consider the effect of Ekman
rotation in the drag law. The result of our analysis is a
new drag law relating the drag magnitude and direction
to the mean plume velocity and depth. In section 3, we
briefly describe the parts of an existing ISW plume
model that are affected by the drag law and present
calculations of plume paths and thickness that demon-
strate the significant effect that our drag law has on the

plume dynamics. In section 4, we summarize and
present our concluding remarks.

2. Drag law accounting for Ekman rotation

We consider the idealized case of a fluid (ocean) flow
parallel to a flat, horizontal bottom in a rotating refer-
ence frame. The aim is to relate the mean velocity of a
fluid layer (plume) of an arbitrary thickness H above
the bottom to the fluid traction (drag) at the bottom.
We consider the flow to be steady and horizontally ho-
mogeneous.

Far away from the bottom the flow is geostrophic
with the constant geostrophic velocity U determined by
the balance between the Coriolis force and horizontal
pressure gradient force: f k � U � �(1/�)�p, where k is
the vertical unit vector pointing up and away from the
bottom, � � [�/�x, �/�y], where x and y are the hori-
zontal coordinates, p is pressure, � is the fluid (ocean)
density, and f is the Coriolis parameter, positive in the
Northern Hemisphere and negative in the Southern
Hemisphere. The pressure gradient does not depend on
the vertical coordinate z, and we set the bottom to be at
z � 0 with z increasing with distance above the bottom.
For convenience, we align the x axis with the geo-
strophic velocity so that U � [U, 0].

We denote the departure of the velocity u from the
geostrophic velocity U by tildes, so that ũ � [u � U, �].
The departure velocity is significant only in the Ekman
layer and is known as the Ekman velocity. The Ekman
layer has thickness �E � (2Am / | f |)1/2, where Am is the
maximum value of the vertical eddy viscosity A�. Scal-
ing the vertical coordinate with the Ekman layer depth
	 � z/�E, the Ekman velocity satisfies


ũ, ��̃ � �
sf

2
d

d� �a�

dũ
d��, �1

where a� � A� /Am and sf � sgn( f ) returns the sign of f.
Since the turbulent boundary layer is much shallower

FIG. 1. Schematic diagram showing processes involved in ice shelf–ocean interaction.
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than the Ekman layer, a� � 1, and (1) yields the stan-
dard Ekman layer solution (e.g., Pedlosky 1979)


ũ, �̃ � � Ue�� 
�u0 cos� � sf�0 sin�,

���0 cos� � sf u0 sin��, �2

where u0 � ũ(0)/U and �0 � �̃(0)/U are the normalized
bottom Ekman velocity components.

The Ekman solution (2) is not valid close to the bot-
tom because the eddy diffusivity a� rapidly drops to
zero as the bottom is approached. The reduction in a� as
the bottom is approached gives rise to the turbulent
boundary layer. Although the turbulent boundary layer
is much thinner than the Ekman layer, its presence sig-
nificantly alters the standard Ekman solution. The stan-
dard Ekman solution with a no-slip bottom boundary
condition gives rise to a �45° turning angle between the
geostrophic velocity and the bottom shear, which is not
observed. The presence of the turbulent boundary layer
is normally accounted for by imposing a drag law as the
bottom boundary condition in the Ekman solution. In
mathematical terms, such a procedure is rigorous only
if it allows matching of the turbulent layer solution with
the Ekman solution. The possibility of such matching
was questioned by Brown (1974), who found that these
solutions do not match if one used a constant eddy
diffusivity in the Ekman layer and an eddy diffusivity
that varies linearly with distance from the bottom in the
turbulent boundary layer. In appendix A we show that
rigorous matching is possible when the turbulent eddy
diffusivity determining the Ekman layer and turbulent
boundary layer is a smooth function of distance from
the bottom. Moreover, such a matching naturally leads
to imposing a drag condition at the bottom of the of
Ekman solution:

�Am

dũ
dz |

z�0
�

�AmU

�E

sf �0 � u0, ��sf u0 � �0� � �,

�3

where � is the constant shear stress in the turbulent
boundary layer.

The appearance of the unknown bottom shear stress
in the boundary condition for the Ekman layer flow
requires us to consider a drag law. As the Coriolis force
is not important in the turbulent boundary layer, there
is no rotation of the velocity with regard to the bottom
stress within the layer, and we assume that the velocity
in the layer intermediate to it and the Ekman layer is
aligned with the bottom shear stress (cf. Taylor 1915;
Brown 1974). The flow external to the turbulent bound-
ary layer is u � [U � ũ, �̃], which we use at the bottom
in a drag law with the form

� � �r�bu�0, �4

where b � [u(0)2 � �(0)2]1/2 is the bottom speed. The
standard quadratic drag law assumes r � Cqb, where Cq

is the drag coefficient.
Consider a plume flowing over the bottom with

thickness H. Since the Ekman velocity decays rapidly
with distance from the bottom, it is reasonable to as-
sume that the Ekman mass flux lies entirely within the
thickness of the plume, which includes both the Ekman
layer and geostrophic flow. The total Ekman mass flux
[given by integration of the departure velocity (2) be-
tween z � 0 and z � �] is

ME �
U�E

2

u0 � sf �0, �0 � sf u0�. �5

We denote the mean velocity over the plume as V,
which is

V � 
1, 0�U �
1
H

ME �
U�E

2H

2H��E � u0 � sf �0, �0 � sf u0�.

�6

The counterclockwise rotation angle from the geo-
strophic velocity directed along the x axis to the mean
velocity V (Fig. 2) is given by (6) to be

�V � arctan� �0 � sf u0

2H��E � u0 � sf �0
�, �7

while the counterclockwise rotation angle from the geo-
strophic velocity to the bottom shear traction � is given
by (3) to be

�� � arctan���0 � sf u0

sf �0 � u0
�. �8

FIG. 2. The angles between the geostrophic velocity, mean
velocity, and the shear traction.
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The counterclockwise angle between the shear traction
and the mean velocity, hereinafter referred to as the
turning angle, is therefore given by

� � �� � �V. �9

The shear traction magnitude is given by (3) to be

� �
�AmU

�E

2�u0

2 � �0
2�1�2, �10

where the geostrophic speed U is related to the mean
plume speed V � | |V| | by

U �
2HV

�E

�2H��E � u0 � sf �02 � ��0 � sf u02��1�2

�11

[from (6)].
Combining the turning angle (9) and shear traction

magnitude (10) allows us to write the drag law (4) in the
form

� � rEQ�� · V, �12

where

rE �
2�AmH

�E
2 � 2�u0

2 � � 0
2

�2H��E � u0 � sf �02 � ��0 � sf u02�1�2

,

�13

and the matrix Q(�) rotates the drag direction counter-
clockwise from the direction of V by the turning angle
�. In appendix B, we present the special cases of our
drag law when the turbulent boundary drag (4) adopts
a linear form and show that for an Antarctic ISW plume
the typical turning angle is �10°.

3. The role of Ekman rotation in an ISW
plume model

a. The mathematical model of an ISW plume

The ISW plume model is described fully by Holland
and Feltham (2006), and the reader is referred to that
paper for further details. The plume model consists of a
parameterization of ice shelf basal melting and freezing
and a frazil ice model, which are coupled to an un-
steady, reduced-gravity plume model developed by
Jungclaus and Backhaus (1994). In the model, active
regions of ISW evolve above and within an expanse of
stagnant ambient fluid with a fixed, statically stable ver-
tical stratification. The horizontal extent of the plume is
determined by a wetting and drying scheme, whereby
the boundary of the active plume area, in which the
governing equations are solved, evolves according to
simple rules (Jungclaus and Backhaus 1994).

Here we focus on the role of the drag experienced by
the plume as it flows over the ice shelf base in deter-
mining the plume path and depth. Since we consider
the case in which the plume does not freeze, frazil ice
does not form and, hence, plays no role in the plume
dynamics. Integrating over the plume depth, we obtain
a volume conservation equation for the plume that de-
termines its depth:

�H

�t
� � · �HV � e	 � m	, �14

where V � [Vx, Vy] is the depth-averaged plume veloc-
ity, e� is the rate at which ambient water is entrained
into the moving plume, and m� is the melting (or freez-
ing) rate at the ice shelf base (defined to be positive for
melting).

The plume momentum balance in an arbitrary hori-
zontal Cartesian coordinate system (x, y) is given by

��HVx

�t
� � · �HVVx � � · �AhH�Vx �

gH2

2�0

��

�x

� g	H
�B

�x
� �x � fHVy and

�15

��HVy

�t
� � · �HVVy � � · �AhH�Vy �

gH2

2�0

��

�y

� g	H
�B

�y
� �y � fHVx,

�16

where g is gravitational acceleration, Ah � 100 m2 s�1

is the horizontal eddy viscosity, and B is the plume
ambient water depth. The seawater density � is de-
termined using a linear equation of state � � �0[1 �
�s(S � S0) � �T(T � T0)], where T is temperature, S is
salinity, �0 � 1030 kg m�3, T0 � �2.0°C, S0 � 34.5 psu,
�s � 7.86 � 10�4 psu�1, and �T � 3.87 � 10�5 °C�1.
The reduced gravity is g� � (� � �a)g/�0, where �a is the
ambient seawater density. Our new drag law (12) enters
the momentum balance through the drag components
[�x, �y].

The scalar transport equations describing the verti-
cally integrated balances of heat and salt are

��HT 

�t
� � · �HVT � � · �KhH�T � e	Ta � m	Tb

� 
TV�T � Tb �17

and

��HS

�t
� � · �HVS � � · �KhH�S � e	Sa �18
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(the salinity of the ice shelf ice is negligible). Here Ta

and Sa are the temperature and salinity of the ambient
fluid at the plume–ambient interface, Tb is the tempera-
ture at the interface between the ice shelf and ocean,
and �T is a coefficient representing the transfer of heat
in the adjacent boundary layer. We assume that the
eddy diffusivity of heat and salt Kh is equal to the eddy
viscosity for momentum Ah.

The new drag law does not enter the entrainment
rate e�, to which we refer the reader to Holland and
Feltham (2006), but does enter the melt rate and heat
transport equation through the transport coefficients
for heat (�T) and salt (�S), which are functions of the
friction velocity at the ice shelf base. The basal melt
rate m� is determined from the balances of heat and salt
at the ice shelf plume boundary:

c0
TV�T � Tb � m	L � m	cI�Tb � TI �19

and


SV�S � Sb � m	Sb, �20

where L � 3.35 � 105 J kg�1 is the latent heat of ice
fusion, c0 � 3974 J kg�1 °C�1 is the specific heat ca-
pacity of seawater, cI � 2009 J kg�1 °C�1 is the specific
heat capacity of ice, TI � �25°C is the core tempera-
ture of the ice shelf, a value appropriate to the Filch-
ner–Ronne Ice Shelf, Sb is the plume ambient interface
salinity, and �S is the salt transfer coefficient in the
boundary layer. The third term in (19) is an approxi-
mation of heat conduction within the ice shelf; we as-
sume that salt does not leach through the ice. The in-
terface quantities Tb and Sb are constrained by a lin-
earized pressure freezing temperature relation:

Tb � aSb � b � cB, �21

where a � �0.0573°C psu�1, b � 0.0832°C, and c �
�7.61 � 10�4 °C m�1. Equations (19)–(21) are com-
bined to solve for m� and, thus, Tb. The dimensionless
transfer coefficients are given by


T �
u* �V

2.12 ln�u*H�� � 12.5 Pr2�3 � 9
�22

and


S �
u* �V

2.12 ln�u*H�� � 12.5Sc2�3 � 9
, �23

respectively, where the friction velocity u* � (�/�)1/2

contains the new drag magnitude given by (10). The
other parameters are the molecular viscosity � � 1.95 �
10�6 m2 s�1, the molecular Prandtl number Pr � 13.8,
and the molecular Schmidt number of seawater Sc �
2432.

In the Holland and Feltham (2006) ISW plume

model, and all preceding plume models, the drag at the
ice shelf base, hereafter referred to as the “conven-
tional drag law,” is given by

� � Cq||V||V. �24

The new drag law, hereinafter referred to as the
“proposed drag law,” is given by (12), and we take a
quadratic dependence of drag on speed so that [u0, �0]
are determined by the quadratic equations

u0 � sf �0 � �
�1 � u0 and u0 � sf �0 � �
sf �0,

�25

where


 �
�ECqU

Am

�1 � u02 � �0

2�1�2, �26

with the mean plume speed V determining the geo-
strophic speed U using (11). The proposed drag law
differs from the conventional drag law both in that the
drag is rotated with respect to the mean velocity by the
angle � given by (9) and the drag magnitude is differ-
ent, determined by rE in (12).

b. Model setup

Since we are interested in exploring the role of the
new drag law, we restrict ourselves to an idealized ice
shelf base topography with depth D given by the ana-
lytical solution for an unconfined ice shelf with constant
mass flux (Morland 1987; MacAyeal and Barcilon
1988):

D �

1

�
2 � y1�2 , �27

where the axes x and y are directed eastward (along
slope) and northward (upslope), respectively, and the
constants �1 and �2 are determined by the grounding
line thickness and the mass flux. There is no variation in
ice shelf draft in the x direction. The constants �1 and �2

were chosen to provide a draft distribution representa-
tive of Filchner–Ronne Ice Shelf, decreasing from
around 1400 m at the grounding line to 400 m at the ice
front (Sandhäger et al. 2004) over a span of 600 km
(Fig. 3). This gives the shelf base angle of slope to be
about 0.75° at the grounding line.

We present model calculations using both conven-
tional and proposed drag laws to determine the role of
the modified drag law in determining the dynamics of
the ISW plume. Both drag laws depend upon the value
of the drag coefficient Cq. A commonly adopted value
for the drag coefficient is 0.0025 (MacAyeal 1984; Mak-
inson 2002), while Döös et al. (2004) found 0.008 in the
Baltic Sea, and Holland and Jenkins (1999) and Hol-
land and Feltham (2006) used 0.0015 for an ice shelf
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base. The latter value was justified by the presumed
smoothness of the ice shelf base, but recent observa-
tions of significant roughness of the Fimbul Ice Shelf
base (Nicholls et al. 2006), obtained using an autono-
mous submarine, suggest that larger values of the drag
coefficient may be appropriate.

The proposed drag law depends upon the maximum
vertical eddy viscosity Am, which also appears in the
Ekman layer thickness �E. To estimate Am, we consider
a vertical eddy viscosity approximation suitable for tur-
bulence caused by bottom friction in neutrally or stably
stratified flows (Ezer and Weatherly 1990):

A� � ku*z�1 �
�z � Zmax2

�Hm � Zmax2�e�z�Zmax, �28

where Hm is the mixed layer thickness and for neutral
stratification Zmax � 0.16u*/| f |. The eddy viscosity
reaches its maximum at z � Zmax determining Am �
0.16ku*

2/(| f |e) � 0.0235Cqb2/| f |, where we have used
u* � Cq

1/2b. For the bottom speed estimated through the
mean plume speed (see appendix B) b � 0.03 m s�1,
Cq � 3 � 10�3, and | f | � 10�4 s�1, we estimate the
maximum vertical eddy viscosity in our analysis Am to
be approximately 5 � 10�4 m2 s�1.

c. Numerical simulations

The plume momentum, mass, and scalar transport
equations were solved using standard finite differences
on a Cartesian grid. We used a spatial step of �x �
�y � 1 km, a time step of 450 s, and latitude 78°S. All
results were found to display grid independence. To
initiate an ISW plume, we assume that the intrusion of
dense HSSW to the grounding line causes melting of
the ice shelf base. The ISW plume inflow next to the
grounding line (y � 0) is arbitrarily set to be an area 10
km wide containing a fixed plume depth of 5 m. Since
the computational domain is solely determined by the
plume extent and the shelf base depth is independent of
x, the x coordinates of the inflow are arbitrary. We
investigated the effect of varying the initial plume

thickness by a factor of 4 and found it to have no sig-
nificant impact on our results. The properties of the
plume at the inflow are given by an equal mixture of
ambient water and meltwater according to Gade (1979)
and described in Holland and Feltham (2006). The am-
bient fluid has properties appropriate for the ocean cav-
ity under the Filchner–Ronne Ice Shelf: a salinity pro-
file which decreases linearly from 34.71 psu at the
grounding line depth to 34.5 psu at the surface, and a
temperature rising linearly from �2.18°C at the
grounding line to �1.9°C at the surface (Jenkins and
Bombosch 1995). The relatively fresh ISW is less dense
than the ambient fluid and flows up the underside of
the ice shelf. Unless otherwise stated, the model calcu-
lations were terminated after 100 days, which was suf-
ficient time for the differences between simulations
with and without the new drag law to become apparent.

The modeled ISW plume thicknesses for the conven-
tional drag law and the proposed drag law are pre-
sented in Fig. 4 for Cq � 0.001, 0.003, and 0.005. The
horizontal lines are isobaths of the ice shelf draft with a
100-m contour interval. The ISW plume initially flows
upslope but is diverted leftward by the Coriolis force,
with subsequent upslope transport caused by Ekman
draining. For Cq � 0.001 the plume thickness and front
position given by the different drag models are very
similar. As the drag coefficient increases to 0.005, the
along-slope front of the conventional model retreats by
about 100 km (20%), while that of the proposed model
advances by about 10 km (2%). At the same time the
upslope front of the conventional model advances
slightly, by around 8 km (6%), while that of the pro-
posed model advances more significantly, by around 25
km (20%).

To investigate the different plume behavior with the
proposed drag law, we calculated the areally averaged
values of the plume velocity and thickness, turning
angle, and the significant terms appearing in the x com-
ponent of the momentum balance for simulations using
the conventional drag law, the proposed drag law with
artificially imposed zero turning angle, and the full pro-
posed drag law (Tables 1–3). As the ice shelf profile
does not vary in the x direction, the pressure terms in
the x direction cancel each other in calculating the
mean, and the nonlinear advective terms are negligible.
For the same drag coefficient Cq, the drag magnitude �x

is usually larger for the conventional model because the
proposed drag law uses the velocity in the lower Ekman
layer, which is lower than the mean velocity.

In Fig. 5, we compare the results of the conventional
and proposed drag models with Cq � 0.005 (Figs. 5a,b)
with results produced by the conventional drag model
with artificially imposed varying turning angle given by

FIG. 3. The adopted ice shelf profile extending northward.
There is no shelf variation in ice shelf draft in the x direction.
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FIG. 4. The ISW plume thickness contours for (left) the conventional drag model and (right) the proposed
drag model for three drag coefficient values: 0.001, 0.003, and 0.005. The horizontal lines are the ice shelf
isobaths and are shown every 100 m; contour lines in the plume are shown every 5 m.
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angle (9) (Fig. 5c) and the proposed drag model with
zero turning angle, hereinafter called the “aligned pro-
posed drag model” (Fig. 5d). It can be seen that the
upslope advance of the proposed model is mainly de-
termined by the negative mean turning angle that, if
geostrophic balance is assumed, requires an additional
velocity contribution directed eastward that rotates the
velocity vector closer to the y axis and allows the plume
to propagate farther upslope.

Although the areally averaged turning angle in the
proposed drag law is only of the order of several de-
grees, the typical turning angle values are much higher
and correspond to the estimate of �10° found in ap-
pendix B, as plotted in Fig. 6 for the proposed drag
model with Cq � 0.005. The mean turning angle is lower
because thin areas of the plume are characterized by a
positive turning angle. In the Southern Hemisphere, the
bottom drag lies in the fourth quadrant, as determined
by (B3), while the Ekman mass flux vector given by
(B2) lies in the third quadrant (Fig. 2). For thick plumes
the Ekman mass flux contribution to the cumulative
mass flux is small, the mean velocity direction is close to
that of the geostrophic velocity, and the turning angle is
negative. As the plume thickness decreases, however,
the Ekman mass flux contribution increases, which
leads to rotation of the mean velocity vector clockwise
from the geostrophic velocity direction. At a particular
plume thickness the mean velocity vector aligns with
the bottom drag and, if the plume thickness decreases
further, the turning angle becomes positive. The frac-
tion of the plume volume with positive turning angle is,
however, less than 5% of the whole plume volume.

If we choose the drag coefficient in the aligned pro-
posed drag model to be 0.011, then this provides the
same spatially averaged drag along the x axis as for the
conventional drag model with Cq � 0.005 at the end of
the simulation at 100 days. Similarly, if the drag coef-

ficient in the aligned proposed drag model is set to
0.03, then this provides the same temporally and spa-
tially averaged drag along the x axis as for the conven-
tional drag model with Cq � 0.005 over the 100 days of
simulation (being ��x� � 7.18 � 10�6 m2 s�2). The plume
thickness distributions determined by these drag coef-
ficients used in the aligned proposed and proposed
drag models are compared with the conventional drag
model with Cq � 0.005 in Fig. 7. For Cq � 0.011, the
plume thickness given by the proposed and aligned pro-
posed drag models (Figs. 7c,d) deviates substantially
from the conventional model with the same bottom
drag at 100 days (Fig. 7a). It is clear that the equality of
the drag magnitudes at the compared time does not
result in a similarity of the along-x plume fronts. Al-
though adopting Cq � 0.03 in the aligned proposed drag
model (Fig. 7e) reduces the difference from the con-
ventional model with Cq � 0.005 (Fig. 7a) in the along-
slope front position to 50 km (12.5%), the difference in
the thickness distribution is still significant. The differ-
ence in the upslope front propagation between the pro-
posed model with Cq � 0.03 (Fig. 7f) and the conven-
tional drag model with Cq � 0.005 (Fig. 7a) is even
more pronounced. The reason that such a behavior is
possible is clear from Tables 1 and 2: the along-slope
mass flux change rate is an order of magnitude smaller
than the other terms in the momentum balance, so that
a 10% difference in the balance of the other terms can
lead to a much larger change in the mass flux change
rate.

Interestingly, the differences described above be-
tween the propagation of the plumes using the conven-
tional and proposed drag laws are significant only when
melting is included in the ISW plume model. When no
melting is present, the plume size is very small and its
dynamics are identical to those of a dense, sinking grav-
ity current. To investigate the role of melting, we simu-

TABLE 1. Conventional drag model.

Cq (10�3) d(HVx)/dt (10�6 m2 s�2) � · (AhH�Vx) ��x fHVy � (°) Vx (cm s�1) Vy H (m)

1 �0.15 1.41 1.65 �3.18 0 �3.64 0.266 9.34
3 �0.076 1.04 4.0 �5.09 0 �3.26 0.496 8.44
5 �0.039 0.75 4.58 �5.36 0 �2.7 0.636 6.96

TABLE 2. Proposed drag model with zero turning angle.

Cq (10�3) d(HVx)/dt (10�6 m2 s�2) � · (AhH�Vx) ��x fHVy � (°) Vx (cm s�1) Vy H (m)

1 �0.132 1.46 1.29 �2.85 0 �3.63 0.241 9.27
3 �0.111 1.3 2.74 �4.13 0 �3.57 0.38 9.15
5 �0.102 1.2 3.49 �4.77 0 �3.46 0.457 8.91
11 �0.074 1.05 4.53 �5.64 0 �3.25 0.575 8.46
30 �0.064 0.92 5.59 �6.56 0 �3 0.1 7.99
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lated a gravity current flowing over a bed slope with the
same geometry as the ice shelf base (effectively, we
turned the ice shelf base upside down), used a homo-
geneous ambient, and imposed an influx density differ-
ence of 0.5 kg m�3 to drive the gravity current. We
present results after a longer period of 200 days (in-
stead of 100 days) in order to make the size of the
gravity currents comparable to the ISW plumes consid-
ered above. As in the case of the ISW plumes, the

conventional and proposed drag law models produced
very similar results for a small drag coefficient of Cq �
0.001. In Figs. 8a and 8b, we show the gravity current
thickness for Cq � 0.005 determined by the conven-
tional and proposed drag laws. As can be seen in Figs.
8a and 8b, the difference in the along-slope front propa-
gation between the different drag models is not signifi-
cant. However, the gravity currents produced using the
proposed and aligned proposed drag models are sig-

FIG. 5. The effect of the turning angle on the ISW plume thickness with a drag coefficient of 0.005.

TABLE 3. Proposed model.

Cq (10�3) d(HVx)/dt (10�6 m2 s�2) � · (AhH�Vx) ��x fHVy � (°) Vx (cm s�1) Vy H (m)

1 �0.105 1.43 1.26 �2.76 �1.5 �3.59 0.238 9.18
3 �0.106 1.22 2.53 �3.83 �3.13 �3.43 0.37 8.7
5 �0.081 1.07 3.07 �4.21 �3.84 �3.25 0.441 8.21

11 �0.058 0.91 3.76 �4.72 �4.78 �2.94 0.553 7.44
30 �0.045 0.75 4.32 �5.11 �5.54 �2.58 0.672 6.61
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nificantly thicker than the current using the conven-
tional drag model. Furthermore, the downslope (along
y) propagation for the conventional model is slightly
greater than the proposed model. The latter effect,
however, is not due to the turning angle, but due to the
higher bottom drag determined by the conventional
model (for the same value of the drag coefficient).
When the mean drag determined by the proposed
model (when Cq � 0.02) is similar to that of the con-
ventional model with Cq � 0.005 at 200 days, the mean
gravity current thicknesses are also more similar, as
well as their shape (Figs. 8c,d compared with Fig. 8a).
Use of Cq � 0.036 in the aligned proposed model
equates its time-averaged shear stress (being ��x� �
3.86 � 10�6 m2 s�2) to that of the conventional model
with Cq � 0.005, and this drag coefficient produces a
better correspondence in the thickness distribution be-
tween the aligned proposed model and the conven-
tional model (Figs. 8e,f compared with Fig. 8a), al-
though some difference remains. The corresponding
momentum balance terms are given in Table 4, where
“Yes” or “No” in the column headed “Ekm” denote
the proposed and conventional drag model, respec-
tively. If the Proposed drag model is used, but the ro-
tation angle is zero in the table, then the turning angle
was set to zero (i.e., the aligned proposed drag model
was used).

To investigate the difference in the behavior of a
buoyancy-driven flow with melting (the ISW plume)
and a buoyancy-driven flow without melting (the grav-
ity current), we show in Fig. 9 the along-slope and up-

slope velocities Vx (first row) and Vy (second row) and
the bottom drag �x (third row) for the ISW plume (left
column) and the gravity current (right column). The
proposed drag law with Cq � 0.005 is used in all calcu-
lations. It can be seen that the gravity current is char-
acterized by high velocity gradients only near its inflow
and low velocity gradients elsewhere. In contrast, be-
cause melting adds buoyancy as the ISW plume propa-
gates, the along-slope velocity of the plume decreases
less rapidly as it flows up the slope. This difference in
the velocity pattern produces the difference in the shear
traction distribution �x along x. Such significant differ-
ences in the velocity and the drag distribution caused by
the inclusion of melting determine the difference be-
tween the ISW plume and gravity current sensitivity to
the drag law, as this is determined by the delicate bal-
ance between the momentum equation terms.

4. Summary and concluding remarks

We have considered the shear traction (drag) on a
fluid as it flows past a solid boundary in the presence of
rotation. We were able to show that the solution in the
Ekman layer can be asymptotically matched to the so-
lution in the turbulent layer adjacent to the boundary.
This allowed us to write the drag at the boundary in
terms of the velocity in the lower Ekman layer. We
formulated a new drag law that relates the drag mag-
nitude and (variable) direction to the depth-integrated
mean velocity in a fluid layer and the depth of the layer.
This drag law differs from more typical approaches in
which the drag is collinear with the mean velocity, in
both the drag magnitude and direction.

We investigated the effect of our new drag law in
determining the dynamics of an ice shelf water plume
beneath an idealized ice shelf using an ISW plume
model developed previously (Holland and Feltham
2006). As the drag coefficient is increased, in line with
recent observations of rough ice shelf basal topography
(Nicholls et al. 2006), the differences in the ISW model
predictions of plume path and depth using the new and
old drag laws become more significant. The presence of
the turning angle in the new drag law causes the plume
to propagate farther upslope, while the changed drag
magnitude leads to rather different along-slope dynam-
ics. The latter effect was not present when we switched
off melting at the ice shelf base, which acts to continu-
ally supply buoyancy to the plume. The role of drag in
isolation from shelf melting was investigated through
the simulation of (dense) gravity currents flowing over
an upside-down shelf base. In these cases, the old and
new drag laws can determine similar gravity current
dynamics provided the drags are tuned so that they are
of similar magnitude.

FIG. 6. The turning angle � in the proposed drag model with a
drag coefficient of 0.005.
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FIG. 7. (a)–(f) A comparison of the effect of the drag laws on the ISW model with similar x component
of basal drag (�x) values. Panels (c) and (d) show the proposed model results when the proposed model
mean bottom drag �x is close to that of the conventional model 100 days after the plume initiation. Panels
(e) and (f) show the proposed model results when the aligned proposed model mean bottom drag �x,
averaged in time, is close to that of the conventional model averaged in time.
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FIG. 8. The gravity current thickness contours for (a), (b) the conventional drag model and the proposed
drag model for Cq � 0.05, (c), (d) the aligned proposed drag model and proposed drag model for Cq � 0.02,
and (e), (f) the aligned proposed drag model and proposed drag model for Cq � 0.036 at 200 days after its
initiation. With the latter two values of drag coefficient, the values of the mean bottom drag along the x axis
at 200 days and the mean bottom drag averaged over 200 days of the aligned proposed model are similar
to the drag values determined by the conventional model. The contour lines in the gravity current are shown
every 10 m.
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The momentum balance of an ISW plume is deter-
mined by a delicate balance between the approximately
equal forces due to buoyancy, rotation, turbulent dif-
fusion, and drag, as was systematically demonstrated in
Holland and Feltham (2006). Our new drag law, by
incorporating the physical process of variable drag di-
rection depending upon plume depth, is more realistic
than previous drag-law formulations. Further, we have
shown that our drag law has a significant impact in
determining ISW plume dynamics. The effect of our
new drag law on the redistribution of mass beneath an
ice shelf is difficult to predict without including frazil in
the plume but, since the plume path is altered with the
new drag law, one might expect modified regions of
frazil ice deposition. Unfortunately, shortcomings in
the ice shelf draft and marine ice thickness datasets at
the high resolutions used in this plume modeling make
it currently difficult to assess the likely impact of our
new drag law on regions of frazil ice deposition (Hol-
land and Feltham 2006).

Although we have focused on ISW plumes, the new
drag law could easily be incorporated into other models
that treat depth-averaged fluid layers adjacent to solid
boundaries, such as plume models and isopycnic ocean
models. In addition, the discretization spacing of most
3D ocean circulation models is such that the drag is
related to the velocity averaged over some distance
from the boundary. Our new drag law can be applied to
any fluid–solid boundary, such as land/ice–air bound-
aries, sea ice–ocean boundaries, and bottom boundary
currents in the ocean; however, the significance of the
new drag law would need to be assessed for each of
these cases since the dominant terms in the momentum
balance will vary.

APPENDIX A

Matching the Ekman Layer Solution to the
Turbulent Boundary Layer Solution

The constants u0 and �0 in the Ekman layer solution
(2) are determined by matching the Ekman layer solu-

tion to the solution in the turbulent boundary layer. We
focus on the solution in the turbulent boundary layer by
introducing the vertical coordinate � � 	 /�t, where �t �
�T /�E K 1, and denote the solution with overbars. In
the turbulent boundary layer coordinates the problem
(1) takes the form

O��t
2 �

d

d�
�a�

du
d�
�,

with solution

u�� � u��0 �
�T

�Am
��

�0

� d�

a�

,

where �0 is of arbitrary value and, to O(� t
2), the con-

stant Reynolds shear stress in the turbulent boundary
layer is � � (�Ama� /�T)du/d�. As we are trying to de-
termine the bottom condition in the Ekman layer, the
particular form of a� is not important.

To match the Ekman and turbulent layer solutions,
we first consider the latter as � → �,

u��→ � u��0 �
�T

�Am
� lim

�→
�

�0

� 1 � a� � a�

a�

d�

� u��0 �
�T

�Am
�� � �0 � �

�0

 1 � a�

a�

d���.

�A1

As 	 → 0, the Ekman layer solution (2) gives

ũ � U 
u0 � ��sf �0 � u0, �0 � ��sf u0 � �0�. �A2

Matching (A1) and (A2) requires

u��0 � ũ�0 �
�T

�Am
��0 � �

�0

 1 � a�

a�

d���

�A3

and

d

d�

ũ, �̃�|��0 � U 
sf �0 � u0, ��sf u0 � �0� �

�E

�Am
�.

�A4

TABLE 4. Gravity current. See text for explanation of Ekm.

Cq (10�3) Ekm d(HVx)/dt (10�6 m2 s�2) � · (AhH�Vx) ��x fHVy � (deg) Vx (cm s�1) Vy H (m)

1 No �0.104 1.08 0.4 �1.5 0 �1.34 0.127 17.56
1 Yes �0.107 1.15 0.29 �1.45 �0.335 �1.33 0.116 17.71
5 No �0.04 0.65 1.49 �2.15 0 �1.28 0.234 11.56
5 Yes �0.099 0.92 0.85 �1.84 �1.1 �1.32 0.174 14.27

20 Yes �0.053 0.79 1.74 �2.54 0 �1.33 0.259 12.51
20 Yes �0.048 0.76 1.56 �2.33 �2.58 �1.28 0.26 11.61
36 Yes �0.049 0.74 2.13 �2.89 0 �1.33 0.3 11.81
36 Yes �0.041 0.69 1.83 �2.54 �3.39 �1.25 0.3 10.79
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FIG. 9. The velocity and x component of shear basal drag distribution for the (left) ISW plume and
(right) gravity current at 100 and 200 days, respectively, for the proposed drag with Cq � 0.005.
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The matching condition (A4) for the Ekman layer so-
lution can be rewritten as

�Am

dũ
dz

|z�0 �
�AmU

�E

sf �0 � u0, ��sf u0 � �0� � �

[Eq. (3) in the main text]. The bottom condition for the
Ekman layer solution requires that the shear stress de-
termined by this solution is equal to the constant shear
stress in the turbulent boundary layer.

As the fluid flow in the turbulent boundary layer is
complex, in order to determine the bottom shear an
experimentally validated drag law should be used. If,
however, the precise form of a� is known and integrable
at � � 0, then we can set �0 � 0 and the no-slip condi-
tion at the bottom (A3) will determine the bottom drag
law

� �
�AmU

�T
��

0

 1 � a�

a�

d���1


u0 � 1, �0�,

which, together with (A4), will constitute a closed set of
equations for the normalized Ekman bottom velocities
u0 and �0.

APPENDIX B

Special Case of a Linear Drag Law

In the special case of a linear turbulent boundary
layer drag law given by (4) with r constant, our new
drag law takes a particularly simple form. In this case,

u0 �
���1 � �

�1 � �2 � 1
, �0 �

sf�

�1 � �2 � 1
, �B1

ME � �
U�E�

2
�1 � �2 � 1�

�, sf �2 � ��, �B2

and

� �
�rU

�1 � �2 � 1

2 � �, sf��, �B3

where � � �Er/Am. We estimate � as being �ECqb/Am,
with Cq � 3 � 10�3 and Am � 5 � 10�4 m2 s�1 (section
3b). We estimate a typical mean plume speed to be 0.03
m s�1 and set the bottom speed in the Ekman layer to
be of this magnitude, that is, b � 0.03 m s�1. With these
estimates, � � 0.57 so that from (B1) the bottom speed
is of the same magnitude as the mean plume speed, and
our estimates are consistent. With � � 0.57 we use (B3)

to estimate the angle between the shear traction direc-
tion and the geostrophic velocity as about �10°.
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