
Weighing brain activity with the balance: a
contemporary replication of Angelo 
Mosso’s historical experiment 
Article 

Accepted Version 

Field, D. T. ORCID: https://orcid.org/0000-0003-4041-8404 
and Inman, L. A. (2014) Weighing brain activity with the 
balance: a contemporary replication of Angelo Mosso’s 
historical experiment. Brain: a journal of neurology, 137 (2). 
pp. 634-639. ISSN 1460-2156 doi: 10.1093/brain/awt352 
Available at https://centaur.reading.ac.uk/35544/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1093/brain/awt352 

Publisher: Oxford Journals 

Publisher statement: This is a pre-copyedited, author-produced PDF of an article 
accepted for publication in Brain following peer review. The definitive publisher-
authenticated version: Field, D. T. and Inman, L. A. (2013) Weighing brain activity
with the balance: a contemporary replication of Angelo Mosso’s historical 
experiment. Brain: a journal of neurology. ISSN 1460-2156 is available online at: 
http://doi.dx.org.10.1093/brain/awt352. 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


1 

 

Weighing brain activity with the balance: a contemporary replication 

of Angelo Mosso’s historical experiment 
Sir, Sandrone et al. (2012, 2013) rediscovered, translated, and commented on the 

manuscripts of Angelo Mosso (1882, 1884), in which Mosso described his ‘human circulation 

balance’; James (1890) described this as a ‘delicately balanced table which could tip 

downwards either at the head or the foot if the weight of either end were increased’. Mosso 

claimed that the balance allowed him to observe changes in cerebral blood volume (CBV) 

associated with mental effort and emotional responses, and consequently the balance is 

regarded as the direct forerunner of modern non-invasive functional neuroimaging 

techniques. However, Sandrone et al. stated that ‘we have no direct evidence that the 

balance was really able, as stated, to measure changes in cerebral blood flow during acts of 

cognition … despite its proven ability to measure blood volume changes in various organs 

(e.g. lungs, feet, hands)’. 

 In our laboratory, we recently constructed a balance similar to Mosso’s, and using 

modern data collection and analysis methods that were unavailable to Mosso, we 

investigated whether the balance was sensitive to changes in CBV produced by modulating 

the level of mental activity. The construction and mechanism of our balance is depicted and 

explained in Fig. 1, and may be compared to Figs. 3 and 8 in Sandrone et al., which show 

Mosso’s apparatus. The balance is a class 1 lever, in which the moment of a force measured 

at the fulcrum is proportional to the magnitude of the force and its distance from the 

fulcrum. With a participant lying on the balance across the fulcrum, if mental activity 

produces a net shift of blood towards or away from the head then this will produce a slight 

change in the centre of mass of the participant relative to the fulcrum of the lever, 

consequently changing the force exerted at the end of the lever. 

Mosso went to great lengths to keep his balance in equilibrium, i.e. able to tip back 

and forth rather than coming to rest on one end, and employed a counterweighting system 

to dampen the respiratory fluctuations, which have a large effect on the location of the 

centre of mass. Instead of mechanically dampening the respiratory fluctuations, our 

approach was to allow one end of the balance to rest stationary on a set of electronic scales 

and measure the variation in force exerted over time. Like Mosso, we additionally observed 

a slow increase in force exerted beneath the head as blood redistributed from the legs to 

the upper body when supine. Mosso removed this factor from his data by asking subjects to 

rest on the balance for one hour prior to the experiment so that the redistribution of blood 

was completed. Our alternative approach was to model the linear increase in force 

produced by this factor over time using regression, which allowed us to remove it from the 

data.  

Initial recordings made with our apparatus of a participant at rest revealed an 

additional high frequency signal that Mosso’s apparatus was not sensitive to - probably due 



2 

 

to the mechanical damping he applied. We assume that this signal arises from the heartbeat, 

and we largely removed its influence on our time-course data by temporal smoothing.  The 

heartbeat and respiration signals present in the data are shown in Fig. 2a and 2c. Comparing 

these with panel A of Fig. 5 in Sandrone et al. illustrates that Mosso’s balance was sensitive 

to respiration but not heartbeat. 

Proof that the balance is sensitive to changes in CBV was provided by asking 

participants to hold their breath while lying on the balance. Breath-holding produces an 

increase in the level of C02 in the bloodstream (hypercapnia), which induces vasodilation 

and increases CBV (Kastrup et al., 1999, Ito et al., 2003). Conveniently, movement of the 

diaphragm ceases during breath holding. This allowed us to observe using the balance the 

well-established effect of hypercapnia on CBV, in the absence of the large oscillations 

produced by breathing. For the large majority of trials, breath-holding resulted in an 

increase in force exerted on the scales that was an approximately linear function of time (Fig. 

2b and 2d). The size of the effect differed between individuals, and for a minority of 

individuals tested the effect was sometimes non-linear. Breath-holding tasks have been 

used in fMRI studies to try to isolate and control for variation in the fMRI BOLD response 

that is vascular rather than neural in origin (e.g. Handwerker et al., 2007). The possibility of 

individual differences in CBV response to this task revealed by our initial exploration with 

the balance suggests that balance-based measurements could prove useful for refining 

breath-hold based methods of calibrating the fMRI BOLD signal. 

Changes in CBV associated with mental activity would be much smaller than those 

induced by hypercapnia, and Mosso claimed that his apparatus was able to detect these 

small changes. To investigate whether our apparatus was sensitive to these smaller changes 

in CBV, we planned to use a periodic, sparse, event related experimental design. In a sparse 

design the interval between stimuli is of sufficient duration for haemodynamic responses 

caused by the stimuli to return to baseline. We refer to our design as periodic because the 

inter-stimulus interval was of fixed rather than variable duration. However, such designs are 

vulnerable to confounding by other periodic signals of similar frequency, and so we needed 

to confirm that the periodic frequency of our experiment differed from the frequencies of 

physiological processes in the body that might themselves cause shifts in the centre of mass.  

Visual inspection had already revealed the obvious periodic signals related to respiration 

and the cardiac cycle, but other lower frequency signals that could potentially confound our 

design could not be easily ruled out. To assess these directly we performed a ‘resting state’ 

study on 6 participants (5 female, age range 18-35) lasting 7.5 minutes; although chosen 

arbitrarily, this duration would allow us to detect potential confounding cycles of quite a low 

frequency using a Fast Fourier Transform. Slow linear drifts were removed from the data 

prior to the Fast Fourier Transform, but the data were not smoothed. The results (Fig. 3) 

confirmed the presence of periodic signals in the data at lower frequencies than respiration 

and suggested that the region of the power spectrum around 0.05 Hz was ‘quiet’, i.e. the 

resting state data did not naturally contain this temporal frequency. We chose 0.04 Hz as 
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the temporal frequency of stimulation for the final experiment. This frequency would not be 

confounded with the frequencies of physiological signals, and furthermore we were 

confident that the resulting 25 second cycle time would allow haemodynamic responses to 

return to baseline between stimulus presentations.  

We conducted an investigation using 14 participants (13 female, age range 18-30) 

aimed at detecting changes in CBV induced by mental activity using the balance.  Two of the 

participants had also taken part in the ‘resting state’ study. The experimental paradigm 

consisted of 22 trials, where each trial started with a 2 s stimulus, followed by 23 s of rest.  

In other words the period of the design was 25 s, the frequency was 0.04 Hz, and the duty 

cycle was 8.7%.  It was reported by Mosso’s daughter (1935) that he utilised what is now 

referred to in fMRI literature as a ‘parametric modulation’ of cognitive load. In contrast to 

this, our strategy was to manipulate the volume of sensory cortex activated by our 2 s 

stimulus. To this end we compared no stimulation, auditory stimulation, and combined 

auditory and visual stimulation. Each auditory stimulus was an excerpt from a different 

piece of music, presented through headphones at a comfortable level of intensity. During 

this condition participants had their eyes closed to prevent visual stimulation. For 

consistency, headphones were also worn in the no-stimulation condition, and eyes 

remained closed. In the combined auditory and visual condition the visualiser built into 

Windows Media Player was used to generate a visual display for each sound file, producing 

colourful geometric shapes that moved in synchronisation with the music. The order of the 

three experimental conditions was counterbalanced across participants. Data for each 

participant in each of the three conditions were averaged across the 22 repetitions of the 25 

s experimental cycle, and the resulting plots were themselves averaged. As in 

electrophysiology, this form of trial averaging suppresses fluctuations that are not time 

locked to the stimulus, allowing induced signal components to be identified clearly.  In our 

case, these fluctuations include the respiratory and cardiovascular signals that – by 

experimental design – were largely uncoupled from the neuronal stimulations. Results (Fig.4) 

showed a clear effect of cognitive load on the force exerted, which was larger for the 

condition targeting visual and auditory cortices in the brain than the one targeting only 

auditory cortex. The force exerted falls below the average value in the period immediately 

following stimulation, and then rises above the average value before falling again. The initial 

fall might be due to an increase in the volume of blood leaving the brain via the jugular vein, 

caused by an increase in the concentration of by-products of neural metabolism in the 

blood. The delayed rise might be caused by an increase in flow rate in the carotid artery, 

which replenishes supplies of glucose and oxygen. 

To establish the statistical significance (and sensitivity) of our paradigm, we 

compared the three conditions (no stimulation, auditory stimulation and auditory-visual 

stimulation) using analysis of variance (ANOVA). Crucially, testing force levels as a function 

of time, i.e. as they are presented in Fig. 4, is a difficult problem in our setting – and in the 

analysis of hemodynamic and metabolic time-series in general.  This is because there are 
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profound serial correlations and low-frequency fluctuations that render classical 

independence assumptions – about the residuals – invalid. We therefore summarized the 

magnitude of condition-specific responses using the relative spectral power at the 

frequency of our stimulation (0.04 Hz). This was defined as the absolute value of the Fourier 

transform at 0.04 Hz squared, expressed as a percentage of the total power in each time-

series. The ensuing measures were subjected to analysis of variance (after applying a log 

transform to render them more normally distributed). This enabled us to test for significant 

differences between the conditions in terms of the frequency specific fluctuations induced 

by our paradigm. As predicted the relative power at 0.04 Hz was highest in the audio-visual 

condition (1.37 % (SD 2.17)), and lower for auditory (0.49 %(SD 1.40)). However, the relative 

power in the ‘no stimulation’ condition, which was predicted to be the lowest, was similar 

to that in auditory (0.51 %(SD 0.52)). The overall ANOVA established a significant difference 

in power among the three conditions (F(2,26) = 6.2; p = 0.006, and a post-hoc t-test showed 

that audio-visual stimulation induced greater power than auditory alone (t(13) = 3.9; p 

= .002). The unpredicted similarity between relative power at 0.04 Hz in the ‘no stimulation’ 

and auditory conditions can be explained by the fluctuations in force over peristimulus time 

present in the ‘no stimulation’ condition (Fig. 4). The cause of these fluctuations is discussed 

further below, but it is important to note that, in the average peristimulus time plot, the 

fluctuations present in the ‘no stimulation’ condition are out of phase with those in the 

other two conditions. This is something that power spectra, and therefore the statistical 

tests that we report above, are insensitive to. It also suggests that the ‘no stimulation’ 

fluctuations in force differ in origin from those in the auditory and auditory-visual conditions. 

Finally, to provide a robust quantitative measure of the condition-specific effects, we 

repeated the relative power analysis on the grand average of the time-series over subjects.  

Note that the power of the average is not the average of the power - and therefore this 

quantitative assessment is relatively immune to inter-subject variations in power. The 

results of this analysis correspond closely to what is suggested by inspection of Fig. 4, i.e. 

the least relative power at the experimental frequency is present in ‘no stimulation’ (0.23 %), 

the power is greater than this in auditory (0.84 %), and highest in auditory-visual (1.44 %).   

There are several explanations of the fluctuations in force over peristimulus time in 

the ‘no stimulation’ condition (Fig. 4).  First, our averaging procedure may not have fully 

suppressed slow frequency fluctuations in the time-series.  Alternatively, the subject may be 

expressing omission related responses or may also have entrained their breathing or heart-

rate variability to the duty cycle of our experimental paradigm.  This is an interesting 

observation that has also been observed in non-human primate neurophysiology (Cardoso 

et al, 2012.). These slow fluctuations maybe related to heart rate variability signals or Mayer 

waves that attend peripheral autonomic control (see also Zheng et al., 2001). However, 

inspection of individual participant peristimulus time plots revealed that only four 

participants showed fluctuations without stimulation, and these may have 
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disproportionately influenced the ANOVA reported above that compared power at 0.04 Hz 

between experimental conditions.  

Overall, this initial exploration provides proof that Mosso’s balance is capable of 

detecting small changes in CBV associated with variation in the amount of neural activity 

taking place in the brain. This historic forefather of modern neuroimaging may yet find a 

place in the repertoire of modern techniques for assessing cerebral haemodynamics. In 

particular, if appropriately calibrated the balance might yield a useful measure of global 

cerebral blood flow change. Such a measure would be a useful complement to assessment 

of changes in regional blood flow using BOLD fMRI. For example, the balance could indicate 

which of two cognitive tasks produced the greatest overall change in CBV. 
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Figure 1. The balance consisted of a wooden board, reinforced longitudinally with 2 lengths 

of angle iron. A low friction pivot point (A) was created in the middle of the board by cutting 

an inverted ‘V’ into the 2 lengths of angle iron. This allowed the board to be mounted on a 

third perpendicular piece of angle iron with a ground upper edge, the whole system 

comprising a ‘knife edge’ bearing.  To stop the board from tipping excessively, a stop (B) was 

positioned at one end of the board, which was always the end where the participants’ legs 

and feet were located. When a participant was first placed on the balance it was ensured by 

the use of weights that the barycentre was to the foot end of the fulcrum so that the 

balance rested on the stop. Electronic scales (C) with 0.001 newtons resolution, and a 

sample rate of 10 Hz were then positioned underneath the head. The head was positioned 

at the far end of the balance regardless of the height of the participant. Weight was then 

removed from above (B) until the scales registered approximately 2 newtons, indicating that 

the barycentre was now towards the head end of the fulcrum. To allow presentation of 

visual stimuli a mirror (D) was positioned above the participant that allowed the participant 

to view a computer screen (E). Participant comfort was enhanced by provision of a pillow 

and 2 layers of foam mats. The left-hand photo shows the whole apparatus. Note that 

during data collection the pillow was positioned at the end of the balance, so that the head 

was above the scales. The right-hand image shows the fulcrum mechanism (A). 
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Figure 2. The force exerted on the scales positioned beneath the head as a function of time 

while a participant was at rest (A). A large oscillation produced by motion of the diaphragm 

relative to the fulcrum is clearly visible. Smoothing the data with a 3 s Hanning window 

reduces high frequency oscillations that we attribute to components of the cardiac cycle. 

During a 20 s breath hold after exhalation (B) the diaphragm oscillation ceases and a steady 

increase in force exerted is observable as blood was redistributed away from the fulcrum 

towards the head. In (C) and (D), comparable observations are presented for a second 

participant. Change in newtons is relative to the mean of the data series. 
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Figure 3. Representative power spectrums from Fast Fourier Transform of 3 participants’ 

data who took part in the resting state experiment. Panels (A), (C), and (E) show frequencies 

up to 5 Hz. Spikes in the power spectrum at around 2-4 Hz are probably caused by 

components of the cardiac cycle. A large peak at around 0.15-0.30 Hz is caused by the 

periodic motion of the diaphragm during respiration. Panels (B), (D), and (F) zoom in on the 

lower temporal frequencies revealing a concentration of power around at 0.01-0.02 Hz. 

Based on analysis of 6 participants we concluded that the balance would be suitable to 

detect an uncontaminated experimental signal with a frequency of 0.04 Hz (Fig. 4). 
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Figure 4. Peristimulus time plots averaged across 14 participants from the functional 

experiment. Stimulation occurred between 0 and 2 s for the auditory (red) and combined 

visual and auditory (green) conditions. In the baseline condition (blue) there was no 

stimulation. The end of the stimulation period is indicated by the dashed line.  Raw data for 

each participant was preprocessed by removing the linear drift and demeaning, followed by 

smoothing out the respiration and cardiac signals using a 12 s Hanning window. Event 

related averages were created for each condition for each individual to feed forward to the 

group average. For each data series change in force exerted is relative to the mean of that 

data series. Error bars represent +/- 1 SE based on between participant variation.  
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