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Efficient fully nonlinear data assimilation for1

geophysical fluid dynamics2

Peter Jan van Leeuwen and Melanie Ades3

Data Assimilation Research Centre, Department of Meteorology, University of Reading, PO4
Box 243, Reading, RG6 6BB, United Kingdom5

Abstract6

A potential problem with Ensemble Kalman Filter is the implicit Gaussian as-7

sumption at analysis times. Here we explore the performance of a recently pro-8

posed fully nonlinear particle filter on a high-dimensional but simplified ocean9

model, in which the Gaussian assumption is not made. The model simulates10

the evolution of the vorticity field in time, described by the barotropic vorticity11

equation, in a highly nonlinear flow regime. While common knowledge is that12

particle filters are inefficient and need large numbers of model runs to avoid13

degeneracy, the newly developed particle filter needs only of the order of 10-10014

particles on large scale problems. The crucial new ingredient is that the proposal15

density cannot only be used to ensure all particles end up in high-probability16

regions of state space as defined by the observations, but also to ensure that17

most of the particles have similar weights. Using identical twin experiments18

we found that the ensemble mean follows the truth reliably, and the difference19

from the truth is captured by the ensemble spread. A rank histogram is used to20

show that the truth run is indistinguishable from any of the particles, showing21

statistical consistency of the method.22
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1. Introduction25

Numerical models for simulation and prediction of the evolution of systems in26

the geosciences are becoming ever more complex. While relatively simple linear27

balances tend to dominate the systems at large scales, with increasing resolution28

more and more nonlinear processes are involved. Furthermore, with the coupling29

of many physical, chemical and biological systems extremely complex behaviour30

with highly nonlinear feebacks has to be simulated.31

To the extent that these flows are initial value problems our incomplete32

knowledge of the exact initial conditions leads to incomplete knowledge of the33

evolution of the system. This forces us to think in terms of uncertainty, which34

can be described in probabilistic terms. The evolution equations for the related35

probability densities have been known for decades (see e.g. Jazwinski, 1970).36

If the system is Markovian, our present knowledge of the system in the form of37

a probability density function evolves according to the Kolmogorov or Fokker-38

Plank equation. This theory can be applied for small dimensional systems, but39

the systems we study in the geosciences are not so.40

When observations of the system are available, their information on the sys-41

tem can be incorporated using Bayes Theorem, in which the prior probability42

density function (pdf from now on), representing our prior knowledge, is mul-43

tiplied by the likelihood, i.e. the probability density of the observations given44

a specific model state. This then leads to the so-called posterior pdf, that de-45

scribes our updated knowledge of the system. This process of updating the prior46

pdf with observations is called data assimilation, and its goal is to determine47

properties of this posterior pdf. It should be realised that this posterior pdf is48

unlikely to be ever at our disposal in full because the size of the state space is49

huge, typically 100 million for numerical weather prediction. We can only infer50

statistical moments like mean, covariance, percentiles, and modes.51

It is stressed here that the data-assimilation problem as specified above is a52

multiplication problem and not an inverse problem: Bayes Theorem (see equa-53

tion (1)) shows that one has to multiply the prior pdf with the likelihood to54
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obtain the posterior pdf. There is no inversion needed to obtain the poste-55

rior. Also parameter estimation falls in this framework: the prior pdf of the56

parameters is updated through multiplication with the likelihood to obtain the57

posterior pdf of the parameters. Obviously, one needs the relation between the58

parameters and the observations in the likelihood, and that typically involves59

integrating a full numerical model, but that doesn’t make the problem an in-60

verse problem. The emphasis of this paper is on estimation of the pdf of the61

model variables represented by a state vector, and not on that of parameters.62

When the posterior pdf is unimodal or the majority of the posterior proba-63

bility mass is concentrated around a mode of the posterior pdf it makes sense64

to concentrate on the mode of the posterior pdf. The problem of finding the65

mode is usually formulated as an inverse problem, i.e. a problem in which a66

matrix has to be inverted, although there is no necessity to do so. Examples are67

variational algorithms that try to find the mode by exploring the gradient of68

the log of the posterior pdf. In the geosciences these methods are known as e.g.69

gradient methods, 3DVar, 4DVar (Talagrand and Courtier, 1987), representer70

method (Bennett, 1992), PSAS (Courtier, 1997), depending on details of the71

solution method. The Ensemble Kalman filter (Evensen, 1994, Burgers et al.,72

1998) is slightly different in that it tries to find the posterior mean (the least-73

squares estimate, which is the mean by definition), but because of the linearity74

assumptions in the Kalman filterit is assumed implicitly that the mean is close75

to the mode. This has led to confusion that data assimilation is all about find-76

ing this mode in the geophysical and the so-called inverse-problem communities,77

and in some cases hampered progress to more nonlinear multimodal problems.78

In this paper we propose solutions to highly nonlinear high-dimensional data-79

assimilation problems. Our stating point is the particle filter (e.g. Gordon et al.,80

1993), in which an ensemble of model runs is performed, representing our prior81

knowledge of the system. Each ensemble member, or particle, is weighted with82

its distance to observations when these become available. The distance norm83

is determined by the value of the pdf of the observations given this particle,84

so the likelihood of the observations given this particle. The weights are the85
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relative probabilistic weights of the particles, so e.g. the mean of the ensemble86

now becomes a weighted mean in the posterior pdf.87

It is well known that in systems with moderate dimensions, say of order88

10 and higher, particle filters tend to be degenerate, meaning that the weights89

vary too much. Typically after one or a few updates with observations the90

relative weight of one particle is close to one, while that of all others is very91

close to zero. This means that e.g. a weighted mean is in fact based on only one92

particle, so all statistical information in the ensemble is lost. To prevent this93

from happening several methods have been proposed, starting from resampling94

(Gordon et al., 1993) to more complicated or approximating solutions (see e.g.95

Doucet et al., 2001, and Van Leeuwen, 2009, for a review of applications in96

the geosciences). None of the proposed methods is applicable to systems with97

dimensions larger than say of order 100, without having to need millions of98

particles, so millions of model integrations. As mentioned, our goal is perhaps99

100 million dimensional systems, and this number keeps on increasing with the100

size and speed of supercomputers.101

In this paper we discuss a new particle filter methodology that is applicable102

to systems of much higher dimension, and which up to the dimensions we tested103

it on has perfect scaling, i.e. the number of particles is independent of the104

dimension of the state vector. The secret is a proper use of the proposal den-105

sity, that allows much more freedom than perhaps anticipated in earlier work.106

Typically, the proposal density has been used to steer the particles to high-107

probability areas as defined by the observations in state space, but when the108

number of independent observations is large, the relative weights of the particles109

will vary enormously, leading to degeneracy. Here we exploit the fact that the110

proposal density can in addition be used to obtain similar relative weights for the111

particles, thus avoiding degeneracy. The method is introduced in Van Leeuwen112

(2010), and Van Leeuwen (2011) discussed applications to systems of up to 1000113

dimensions using only about 20 particles. In this paper, the method is outlined114

and its performance on a geophysical system with about 65,000 dimensions is115

demonstrated.116
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The paper is organised as follows. The next section discusses Particle Fil-117

tering in general, followed by a section on the new method. It is highlighted118

why other particle filter formulations fail, and how the new method can be suc-119

cessful. Then the numerical model simulating the barotropic vorticity equation120

is described, followed by initial results when applying the new particle filter to121

that system. A concluding chapter closes the paper.122

2. Particle filtering123

The probability density function (pdf) of the state vector is represented, and

approximated, by a discrete set of delta functions centred around a set of model

states, called the particles. Using this representation of the prior pdf of the

model in Bayes theorem

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x) dx

(1)

where x is the state vector, and y is the observation vector, one finds:

p(x|y) =
N∑

i=1

wiδ(x− xi) (2)

in which the weights wi are related to how close each particle is to the observa-

tions:

wi =
p(y|xi)∑N

j=1 p(y|xj)
(3)

The density p(y|xi) is the likelihood, i.e. the probability density of the ob-

servations given the model state xi. It is related to the fact that we cannot

make perfect observations, any observation comes with a measurement error,

and hence this density is the pdf of the errors in the observations due to the

measurement process. In the data-assimilation problem it is given, and often

assumed to be Gaussian:

p(y|xi) = A exp
[
−1

2
(y −H(xi))TR−1(y −H(xi))

]
(4)

in which H(xi) is the measurement operator, which projects the model state124

onto the observation space, R is the observation error covariance matrix, and A125

is a normalisation constant.126
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Unfortunately, weights vary wildly, and even when resampling is applied,127

only a few particles will have relatively high weight, so will have any statistical128

significance. This as called filter degeneracy and is a very serious problem in129

standard particle filtering (Snyder et al, 2008). Several methods have been130

proposed to solve this problem (see review for the geosciences by Van Leeuwen,131

2009), but none of these is directly applicable to large-dimensional geophysical132

problems.133

To understand why this is the case, consider the following. Since the particles134

xi are not the evolution of the true system, the distance in observation space135

between the observation yj and the particle equivalent Hj(xi) will on average be136

similar to or larger than a typical observation error (from the Cauchy-Swartz137

inequality), so it can be expected that (yj − Hj(xi))TR−1
jj (yj − Hj(xi)) will138

typically be similar to or larger than 1 for each observation yj . Assuming M139

independent observations, (y − H(xi))TR−1(y − H(xi)) is expected to be of140

order M or larger. So, to start with, the likelihood for each particle will be141

fairly small.142

However, the particle filters works with relative weights, so we need to ad-143

dress the variation of the likelihood with the particles. Let us assume that the144

particles are drawn from a Gaussian with covariance B centred around the true145

state. Clearly, the larger B, the larger the variation in the weights of the par-146

ticles. Let us now assume, to illustrate the argument, that HBHT is of similar147

magnitude as R. In that case, the argument of the exponent in the likelihood148

is a χ-squared variable with M degrees of freedom. Such a variable has mean149

M , and standard deviation
√

2M . This means that the relative weights of the150

particles differ by a factor exp
√

2M . Assuming a moderate 50 independent ob-151

servations, the weights will vary by a factor exp(50) ≈ 5.0 1021, so the particle152

filter will be degenerate when the number of independent observations grows,153

and serious improvement is needed.154
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3. The new method155

The new method that will be explored consists of two ingredients. The first

ingredient is that the particles are steered towards the future observations by

choosing a specific form of model forcing that tends to pull the model towards

the observations. This is an old idea in particle filtering, and has been explored

in the Lorenz 1963 and 1996 models in Van Leeuwen (2010, 2011). Assume the

model equation to be written as

xn = f(xn−1) + βn (5)

in which f(..) denotes the deterministic part of the model and βn is the stochas-

tic part, and n is the time index. Instead of using this, the model equation is

modified to:

xn = f(xn−1) + β̂n +K(ym −H(xn−1)) (6)

in which β̂n is random forcing which might have different characteristics from156

the original random forcing, and ym denotes future observations at time m > n.157

The main difference with the original model equation is the relaxation term that158

tends to pull the particle to the future observations ym with a strength given159

by matrix K. This relaxation matrix will depend on the application, and an160

example is given below. This looks like cheating in the sense that the model161

forcing is not chosen from the probability density of the model error, but as162

something that we like better. Also, the different particles will have different163

strength of the ’pulling’ term dependent on how far they are from the future164

observations, so we seem to loose control over the statistical meaning of each165

particle. However, this different forcing can be compensated for exactly by166

changing the relative weights of the particles.167

In particle filter jargon, we have implemented a proposal transition density

instead of using the original transition density. The original transition density

is denoted as p(xn|xn−1) specifying how probable state xn is given state xn−1

at the previous time step. For the original model equation (5) this density is
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given by the pdf of βn. If the βn are Gaussian distributed as N(0, Q), we find:

p(xn|xn−1) = N(f(xn−1), Q) (7)

The proposal transition density can be written as, assuming a Gaussian distri-

bution for the β̂n with covariance Q̂:

q(xn|xn−1, ym) = N(f(xn−1) +K(ym −H(xn−1)), Q̂) (8)

Also Q̂ can be problem dependent. In the example discussed below we choose it168

equal to Q. Note that the proposal transition density does depend on the future169

observations. Furthermore, the relaxation term is part of the deterministic170

proposal model, since the observations are given.171

The question now is how the weights are affected when we arrive at the

observations at time m. To this end, let us write the prior pdf at time m as:

p(xm) =
∫
p(xm, xm−1, ..., x0) dxm−1...dx0

=
∫
p(xm|xm−1)...p(x1|x0)p(x0) dx0:m−1 (9)

in which we exploited the Markovian property of the model, and introduced

the shorthand notation dxn−1...dx0 = dx0:n−1. Furthermore, the previous set

of observations was present at time 0 in this notation. The integrand can be

multiplied and divided by the proposal transition densities to find:

p(xm) =
∫

p(xm|xm−1)
q(xm|xm−1, ym)

...
p(x1|x0)

q(x1|x0, ym)
q(xm|xm−1, ym)...q(x1|x0, ym)p(x0) dx0:n−1

(10)

In the original model we draw random samples from p(x0) and from each of

the p(xi|xi−1) as indicated above. Using the proposed model we draw samples

from p(x0) and from the proposal transition densities q(xi|xi−1, ym). Doing the

latter, realising that this creates delta functions for times 0 to n − 1, we can

perform the integrations and find for the prior at time m:

p(xm) =
N∑

i=1

ŵiδ(x− xi) (11)
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in which the weights are given as:

ŵi =
p(xm

i |x
m−1
i )

q(xm
i |x

m−1
i , ym)

...
p(x1

i |x0
i )

q(x1
i |x0

i , y
m)

(12)

So where we had equally weighted particles in the standard particle filter for172

the prior, we now have weighted particles. These weights are related to the fact173

that we changed the model equations. They specify how probable the move174

from xn to xn−1 is in the original model, normalised by that probability in the175

modified model.176

Finally, to find the full posterior weights we use Bayes theorem to include

the likelihood, leading to

wi ∝ p(ym|xm
i )

p(xm
i |x

m−1
i )

q(xm
i |x

m−1
i , ym)

...
p(x1

i |x0
i )

q(x1
i |x0

i , y
m)

(13)

Making sure that all particles end up relatively close to the observations still177

does not avoid wildly varying weights in large-dimensional systems. Clearly,178

ending up close to the observations reduces the variance in the likelihood weights,179

but the variance in the weights related to the proposal density are nonzero, and180

can be substantial.181

The second new ingredient is that we ensure that all posterior weights are of182

equivalent size. This is achieved in two stages: first, use the scheme mentioned183

above for all time steps up to time n− 1 and perform a deterministic time step184

with each particle that ensures that most of the particles have equal weight; and185

secondly, add a very small random perturbation to ensure that Bayes theorem186

is satisfied. There are many ways to accomplish both stages.187

Let us assume that the observation errors and the errors in the model equa-

tions are Gaussian distributed. The weights can be written as:

wi ∝ p(ym|xm)
p(xm|xm−1

i )
q(xm|xm−1

i , ym)
wrest

i (14)

leaving the last time step open. wrest
i contains the weights from all time steps

up to time n− 1, which are now given (we have done all these steps). Ignoring

the proposal transition density part for the moment, making the weight of each
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particle equal to exp(−C), say, leads to the following quadratic equation for

particle xi at time m:

1
2 (xm − f(xm

i ))TQ−1(xm − f(xm
i ))+

1
2 (y −Hxm

i )TR−1(y −Hxm
i )− log(wrest

i ) = C (15)

Now any quadratic form has a minimum, and depending on the value for C this188

equations has two, one, or zero real roots for a one dimensional system. Zero189

roots means that the particle is unable to reach this specified weight exp(−C);190

the wrest
i factor for such a particle is too low. Clearly, we don’t want the weight191

of each particle to be the same as the worst particle. We have chosen here a192

weight C such that 80% can reach it, and the other 20% will be ignored for now.193

They will re-enter the ensemble via the resampling step later on.194

Once C is chosen, an infinite number of solutions exist if the dimension of

the system is larger than 1. A simple choice is to enforce

xm
i = f(xm−1

i ) + αiM(ym −H(f(xm−1
i ))) (16)

in which M = QHT (HQHT + R)−1, Q is the error covariance of the model

errors, and R is the error covariance of the observations. αi is a scalar that is

determined from equation (15), and we obtain for each αi, (see Van Leeuwen,

2010, 2011)]:

αi = 1−
√

1− bi/ai (17)

in which ai = 0.5xT
i R
−1HKz and bi = 0.5xT

i R
−1xi − C − logwrest

i . Here195

z = ym − H(f(xm−1
i )), C is the chosen weight level, and wrest

i denotes the196

relative weights of each particle i up to this time step, related to the proposal197

density explained above.198

Note that the last time step so far is a purely deterministic step: we have199

chosen C, and directly calculated xm
i . Of course, this last step towards the200

observations cannot be fully deterministic, as can be seen from Eq. (13). A201

deterministic proposal would mean that the proposal transition density q can202

be zero while the target transition density p is non zero, leading to division by203

10



zero: a deterministic move the transition density is a delta function. In the204

example presented below the proposal transition density was chosen to be a205

Gaussian. Since the weights have q in the denominator a draw from the tail of206

a Gaussian could lead to a very high weight for a particle that is perturbed by a207

relatively large amount, resulting in the opposite of the intended outcome. We208

didn’t encounter this problem in this experiment.209

To avoid this potential problem q could be chosen in the last step before the

observations as a mixture density

q(xm|x′) = (1− γ)U(−a, a) + γN(0, a2) (18)

in which x′ is the particle after the deterministic step outlined above. A draw210

from this density would be performed as follows. First, we determine from which211

density U , or N , we will draw the stochastic perturbation, e.g. by drawing u212

from a uniform density U [0, 1] and if u < γ we draw from the normal density213

N(0, a2), and we draw from the uniform density U(−a, a) otherwise. By choos-214

ing γ very small we most likely draw from the uniform density U(−a, a). For215

small a we can completely control the size of the stochastic perturbation to the216

state vector. If by chance we have to choose from N(0, a2) we most likely draw217

from near the peak of this Gaussian. It is very unlikely to draw from the Gaus-218

sian and at the same time draw from the tail of that Gaussian. It is mentioned219

that γ can be made dependent on the number of particles to control the number220

of times we actually draw from the Gaussian, and keep that number small.221

4. The barotropic vorticity equation and statistical set up222

The barotropic vorticity equation describes how the vorticity field ζ changes

with time through advection of the vorticity field by the velocity field:

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
= β (19)

in which u the eastward and v the northward velocity, and in which we included

a random forcing β. The vorticity field is related to the velocity field as

ζ =
∂v

∂x
− ∂u

∂y
= 0 (20)

11



Because the divergence of the horizontal velocity field is zero:

∂u

∂x
+
∂v

∂y
= 0 (21)

a streamfunction can be defined as

u = −∂ψ
∂y

v =
∂ψ

∂x
(22)

Combining this with the evolution equation for the vorticity field leads to the

following set of equations that have to be solved at every time step:

∂q

∂t
− ∂ψ

∂y

∂q

∂x
+
∂ψ

∂x

∂q

∂y
= β

q =
∂2ψ

∂x2
+
∂2ψ

∂y2
(23)

This set of equations is solved on a double periodic domain of 256 by 256 grid223

points and grid spacing ∆x = ∆y = 1/256, leading to a state dimension of224

close to 65,000. At each time step the vorticity field is updated using a semi-225

Lagrangian scheme with time step ∆t = 0.04, followed by an update of the226

streamfunction via an inversion of the second equation using FFT’s.227

The stochastic term is chosen from a multivariate Gaussian with mean zero,228

variance 0.01, and a Gaussian spatial correlation with decorrelation lengthscale229

4 gridpoints. It is integrated using a simple Euler scheme. Because we are not230

interested in the specific stochastic evolution, but in the overall properties of the231

stochastic equation, the accuracy is O(∆t). The initial condition was a random232

vorticiy field with nondimensional amplitude 1 and spatial decorrelation length233

of 10 grid points. This initial condition results in highly nonlinear turbulent234

flow structures. Without the random forcing, the evolution of the system would235

follow that of 2-D turbulence, cascading energy to the largest scales. However,236

the random forcing keeps on injecting energy at smaller scales, so the flow237

remains fully turbulent throughout the whole data assimilation experiment. The238

whole experiment lasted 600 time steps.239

The vorticity field was observed every 50 time steps on every gridpoint, giv-240

ing about 65,000 observations every time step. The observations were obtained241
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from a truth run and independent random measurement noise with standard242

deviation 0.05 was added to each observation. This should be compared to the243

typical nondimensional vorticity values of about 1. We determined the decor-244

relation timescale τ of the system by averaging the correlation time series at245

several points in the field, and taking τ as the time scale at which the correlation246

was 1/e. We found a decorrelation time scale of this system of about 26 time247

steps. Since we observe the system every 50 time steps this is an extremely hard248

nonlinear data assimilation problem.249

Only 24 particles were used to track the posterior pdf. Because we observe250

the full state vector we chose K in the relaxation term as a scalar with maximum251

value K = 0.1. (In general, when only part of the state vector is observed, or252

when H is a nonlinear function, K will be a matrix.) The random forcing253

covariance Q̂ was the same as in the original model Q. This value for K is equal254

to the standard deviation of the model errors, chosen such that the relaxation255

term will be of that order of magnitude. Furthermore, K was chosen to vary256

linearly from zero to its maximum value between observation times. This allows257

the ensemble to spread out due to the random forcing initially, and pulling258

harder and harder towards the new observation the closer the system comes to259

the new observation time. No tuning has been applied in this example of the260

new particle filter, the reasonable values used for the parameters in the scheme261

applied to the Lorenz 1993 and 1996 systems (see Van Leeuwen, 2010,2011) have262

been implemented directly. More detailed experiments in which the sensitivity263

of the results to these specific choices for K will be described in another paper264

in preparation.265

5. Results266

Here a few initial results using the new particle filter with equivalent weights267

are shown. Figure 1 shows the vorticity field at time 50, and figure 2 the mean of268

the particles at that time. The two field are almost identical to the eye, showing269

that the new method is able to track the truth in this highly nonlinear regime.270
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Figure 3 shows the vorticity field at time 600, and its particle filter counterpart271

is shown in figure 4. Again the close tracking is very encouraging.272

Figure 5 shows the absolute value of the difference between the ensemble273

mean and the truth run at time 50. This can be compared to the standard274

deviation in the ensemble in figure 6. Figures 7 and 8 show the same, but now275

after 600 time steps. Although the spread around the truth is underestimated276

at several locations, it is over estimated elsewhere, and the averages over the277

fields are almost equal. Given the statistical nature of these estimates, this is278

satisfactory.279

A check on the workings of the equivalent weights scheme is to visualise the280

weights before resampling. Figure 9 shows that the weights are distributed as281

they should: they display small variance around the equal weight value 1/20282

for the 80% of the 24 particles. Note that the particles with zero weight had283

too small weight to be included in the equivalent weight scheme, and will be284

resampled from the rest. Because the weights vary so little the weights can285

be used back in time, generating a smoother solution for this high-dimensional286

problem with only 24 particles. The results presented here refer to the filter287

solution only.288

One of the questions one could ask is if these results could have been obtained289

with one of the standard scheme’s used in meteorology or oceanography, like290

4DVar or variants of the EnKF. When concentrating on the mean this might be291

so, but clearly the structure of the full pdf cannot be reconstructed with these292

methods. An example is depicted in figure 10, which shows the posterior pdf293

for the vorticity value at a certain point after 600 time steps. The non-Gaussian294

structure, hinting at bimodality, cannot be captured by any of these traditional295

methods.296

Variational methods like 4DVar typically provide no error estimate because297

that is too expensive for large-dimensional problems like encountered in e.g.298

numerical weather prediction. From a scientific point of view this is not satis-299

factory. Furthermore, in a situation like depicted in figure 10 the usefulness of300

just the modal value would be limited, and also an error estimate based on the301
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Hessian, so the local curvature, has limited significance. Finally, given that the302

observation times are about two decorrelation time scales apart, 4DVar might303

struggle to convergence, but that is not tested here.304

Ensemble Kalman filter methods do assume Gaussian prior and posterior305

densities. It might be possible by tuning inflation factors and localisation func-306

tions to obtain a proper evolution of the ensemble mean, comparable with the307

true evolution of the system. The ensemble generated with an EnKF might308

show bimodal structures, but it is unclear if these are real since the update does309

assume Gaussian pdf’s, leading to a posterior pdf that does have the correct310

posterior mean and covariance (under the Gaussian assumption). The actual311

positions of the ensemble members differ in the different variants of the ensem-312

ble Kalman filter and have no direct statistical meaning. Furthermore, it is313

unclear if the ensemble covariance would have any real scientific meaning for314

these highly non-Gaussian pdf’s. The ensemble spread is perhaps more used315

for tuning the system to ensure the correct evolution of the mean via inflation316

and localisation, than representing actual covariances in these highly nonlinear317

systems.318

It is stressed here that no tuning has been applied in this example of the319

new particle filter, the reasonable values used for the parameters in the scheme320

applied to the Lorenz 1993 and 1996 systems (see Van Leeuwen, 2010, 2011)321

have been implemented directly.322

An important issue is the quality of the scheme to infer the full posterior pdf.323

We have seen that the mean is close to the truth, but that could be due to e.g.324

extreme relaxation, so that all particles are very close to the observations, and325

so close to the truth in this high dimensional system. To investigate the quality326

of the ensemble we calculated a rank histogram using the ensemble values at327

every 50th time step and at every 4th grid point in each row and column of the328

field, assuming they were close to independent. For each time instance we rank329

the value of the truth in each gridpoint in the ensemble values at that gridpoint.330

This is done through ranking the values for the ensemble members from low to331

high, and determining where the truth lies in this ranking. The rank histogram332
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is constructed by adding a value of 1 to that bin in which the truth falls, e.g. bin333

4 is increased by 1 if the truth ranks between ensemble member 3 and 4. This334

is repeated for each gridpoint as mentioned above, and for each time instance,335

generating one rank histogram. The result is depicted in figure 11.336

The second way to generate a rank histogram is to rank the observations in337

the measured ensemble members perturbed by the normal measurement error.338

This is the method of choice when the truth is not available, as in any real339

situation. Figure 11 shows the ranking of the truth, but both methods give340

similar results.341

In the ideal case any of the particles could act as the truth, resulting in a342

uniform histogram. A low bias of the particles would yield a histogram in which343

the truth is biased to the higher rankings, so a histogram with higher bins to344

the right, and vice versa. An under dispersive ensemble will give rise to a truth345

value that is either lower or higher than the typical ensemble, resulting in a346

U-shaped histogram. Finally, an over dispersive ensemble leads to a histogram347

with a hump in the middle. Although the present histogram in figure 11 is348

not uniform, it is close to it given the statistical noise. One could do a proper349

confidence interval test, but that is not attempted here. It is remarkable to350

see how flat the histogram is, realising the high dimension of the system, the351

long interval between observations, and the fact that we only use 24 particles.352

The hump in the middle of the histogram might indicate an over dispersive353

ensemble, but the peaks at the end of the interval tend to show the opposite,354

an under dispersive ensemble. Or perhaps we see an over dispersive ensemble355

with biases in both directions. This little discussion shows that weakness of356

the histogram, it can be nearly flat for several reasons, not all of them positive.357

But, not withstanding that, the results are encouraging.358

The results so far are encouraging and a much more detailed analysis of the359

present results, looking e.g. more closely at the posterior pdf’s, the sensitivity360

to the observation uncertainty, and the spatial and temporal frequency of the361

observations. This will be reported on in a future paper.362
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6. Conclusions and discussion363

The effectiveness of a new particle filter that exploits the proposal density364

and allows small ensemble sizes has been demonstrated on the highly nonlin-365

ear 65,000 dimensional barotropic vorticity equation that simulates ocean eddy366

processes. It was shown using identical twin experiments that the ensemble367

mean closely follows the truth, and that the ensemble spread is a good measure368

of the difference between the two. The nonlinear character of the problem is369

highlighted by studying the posterior pdf’s, which often tend to show bimodal370

behaviour. Finally, a rank histogram for the whole experiment was shown to be371

close to uniform, indicating that the statistics of the ensemble is sound.372

The advantage of this method is the enormous freedom in the two steps that373

make up the new method. The first adds terms to the model equations that374

force the model towards the future observations. The simple additive terms375

allow easy implementation in any simulation code for atmosphere or ocean, or376

more generally any computer code that simulates a Markov process. But also377

more sophisticated proposals can be used, like methods that optimise paths on378

each particle, e.g. a weak-constraint 4DVar solution on each particle. Note379

that the 4DVar would be special in the sense that the initial condition of the380

4DVar is fixed, the particle position at time zero, but a model error term has to381

be included. Furthermore, since a 4DVar is a deterministic solution a random382

perturbation has to be added to each time step after the full 4DVar solution has383

been obtained.384

The second crucial step allows the weights to be almost equal. Without385

this step the particle filter would still be degenerate with a large number of386

independent observations in the present settings. Also here much freedom exists387

in how this term is implemented. We replaced the search for the intersection388

of a hyperplane and the pdf in the 65,000 dimensional space by a simple line389

search, but many other possibilities can be explored. There is an interesting390

connection with new developments in rare event simulation using Monte-Carlo391

methods. Also there good proposal densities are essential, and advances have392
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been made that allow simulation with minimal Monte-Carlo statistical errors393

(see e.g. Vanden Eijnden and Weare, 2012). These links will be pursued in394

future work.395

One of the main questions is why this particle filter works in this high-396

dimensional system with only 24 particles. The reason is not entirely clear397

yet, but is most likely related to the following. First, one has to realise that398

there is no inherent problem related to the size of the space spanned by a small399

number of the particles with a high number of independent observations. (This400

would be the case for an ensemble Kalman filter.) The clearest examples are401

variational methods like 4DVar that are able to absorb all observations in a402

single model run. In the present implementation of the particle filter we do403

not run a complete 4DVar on each particle but a very crude approximation to404

that through the relaxation term. (One could run a 4DVar on each particle,405

as mentioned above, which is what the implicit particle filter of Chorin and406

Tu (2009) does, but that would be much more expensive, although probably407

better.) This, however is not enough to avoid filter divergence of the particle408

filter, i.e. the fact that the likelihood and proposal weights vary too much, with409

one particle getting a weight close to one, and the others all weights close to zero,410

when the number of independent observations is large. For that a scheme like411

the equivalent-weights step is needed to allow for the majority of the particles412

to have very similar weights, thus avoiding degeneracy. The actual dimension413

of the manifold on which the dynamics happens will be (much) smaller than414

the 65,000. The barotropic vorticity dynamics exhibits spatial and temporal415

coherency in which the smaller-scale motions tend to be slaved to the larger416

scales. (However, it should be realised that the small-scale random forcing does417

destroy this coupling to some extent.) It should be realised that of interest is418

the dimension of the dynamics given the observations, which will be different419

from that of the dynamical manifold of a free run. Exploring this fact is a very420

exciting research direction in which the data assimilation community and the421

dynamical systems community will have to work closely together. It will be422

clear, however that the dimension of this manifold will be much higher than 24.423
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Some variant of the EnKF could be used as proposal density for the particle424

filter, allowing e.g. for localisation, which is not straightforward in particle425

filtering (see e.g. Van Leeuwen, 2009, Papadakis et al, 2010, Prakash et al,426

2011). This might allow us to ignore the relaxation scheme at each time step.427

The localised EnKF scheme could then be followed by the equivalent weights428

scheme. This is one direction of further research.429

One of the main advantages of this particle filter scheme is that no reference430

is made to the covariance of the model state. It is well known that 4DVar431

stands or falls with the quality of the covariance of the initial state, the so-432

called B matrix. An enormous research effort has been spent, and is still spent433

on improving this B matrix. Also Ensemble Kalman Filters rely on the accuracy434

of the ensemble covariance matrix. This is why so much effort has gone into,435

and is still going into better inflation and localisation schemes. All these issues436

play no role in particle filtering.437

It is well realised in the geoscienes community that errors in the model438

equations have to be included in the data-assimilation schemes. However, a439

proper statistical description of these errors is hard to come by. Even if it is440

assumed that the errors are Gaussian distributed, the mean, related to a model441

bias, and its covariance need to be specified, which is not easy. But that doesn’t442

mean we should not go forward, especially when we realise that this will be the443

proper way to model improvement. As soon as an estimate of the statistical444

properties of the model errors is obtained, implementation in ensemble data445

assimilation methods like EnKf and particle filters is relatively easy because446

random realisations for these error estimates can be added directly to each447

ensemble member (and similar for multiplicative errors). Much more research448

is needed to come up with efficient implementations in variational methods.449

So, particle filters like the one explored here force us to consider where we are450

weakest: the errors in the model equations, and these particle filters are not451

distracted by problems in covariance structures in the model states themselves.452

Although the results presented here might be promising, much more research453

is needed before questions on suitability for e.g. numerical weather forecasting454
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can be answered. For example, we observed the full state vector at observation455

times, which is never the case for any real application from the geosciences.456

We are working hard on partially observed systems now. On the other hand,457

we observed the system at twice the decorrelation time scale, which makes the458

problem extremely hard since the information from previous observations is lost459

to a very large extent, showing the robustness of the method.460

Another critical issue is to what extent the method pulls the system out461

of quasi balanced states. In numerical weather prediction tremendous progress462

was made when models were forced to stay close to balanced states, greatly463

suppressing artificial gravity waves that ruined the forecasts. It should be re-464

alised that as soon as we accept a statistical description of model errors model465

balances will be perturbed. So the question is if and how the proposal den-466

sity will perturb the model balances more than just the random forcing. By467

keeping the stochastic part of the proposal density of similar magnitude as the468

original transition density that part should not add extra perturbations. The469

deterministic relaxation term can grow quite large, but if that becomes problem-470

atic we can restrict its size to some maximum value without problem. Another471

option is to project the relaxation terms to some sort of slow manifold, as is472

done in high-resolution numerical weather prediction ensemble Kalman filter473

applications. However, when the dynamics is strongly nonlinear it is unclear474

what the actual balances are. Finally, the essential equivalent weights step can475

be large too. Also here we could limit the size of the deterministic move, but476

this might destroy the possibility for majority of the weights to be equivalent.477

Also, projection on a slow manifold might help here too, with the same caveat478

as above. More research into these aspects are needed, and will no doubt be479

problem dependent.480
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Figure 1: Snap shot of the vorticity field of the truth at time 50. Note the highly chaotic state
of the field.
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Figure 2: Snap shot of the vorticity field of the mean of the particle filter mean at time 50.
Compare with figure 1 and note the close to perfect tracking.
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Figure 3: Snap shot of the vorticity field of the truth at time 600. Note again the highly
chaotic state of the field.
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Figure 4: Snap shot of the vorticity field of the mean of the particle filter mean at time 600.
Compare with figure 3 and note the close to perfect tracking.
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Figure 5: Snap shot of the absolute value of the mean-truth misfit at time 50. Note the highly
irregularity of the field, reflecting the statistical nature of the estimate.
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Figure 6: Snap shot of the absolute value of the standard deviation in the ensemble at time
50 for comparison with figure 5. The ensemble underestimates the spread at several locations,
but averaged over the field it is slightly higher, 0.074 versus 0.056.
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Figure 7: Snap shot of the absolute value of the mean-truth misfit at time 600.
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Figure 8: Snap shot of the absolute value of the standard deviation in the ensemble at time
600 for comparison with figure 7
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Figure 9: Weights distribution of the particles before resampling. All weights cluster around
0.05, which is close to 1/24 for uniform weights (using 24 particles). The 5 particles with
weights zero will be resampled. Note that the other particles form the smoother estimate.
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Figure 10: Estimate of the posterior pdf of the vorticity value at point (200,200) after 600 time
steps. The bimodal structure shows that variational methods that look for the mode of this
pdf have little meaning, and also methods based on the EnKF will not be able to represent
this structure accurately.
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Figure 11: Rank histogram of how the truth ranks in the ensemble. The nearly uniform
distribution shows that each particle could act as the truth, suggesting the ensemble is of
good quality. (But see discussion in text.)
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