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Abstract

This paper tests directly for deterministic chaos in a set of ten daily Sterling-denominated
exchange rates by calculating the largest Lyapunov exponent. Although in an earlier paper,
strong evidence of nonlinearity has been shown, chaotic tendencies are noticeably absent from
all series considered using this state-of-the-art technique. Doubt is cast on many recent papers
which claim to have tested for the presence of chaos in economic data sets, based on what are

argued here to be inappropriate techniques.
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I. Introduction

Economists have searched long and hard for chaos in financial, macro- and micro-economic
data, with very limited success to date. Booth et al. (1990), and Frank et al. (1988), for
example, claim to have tested for and rejected the possibility of deterministic chaos in various
data sets. The motivation behind this endeavour is clear: a positive sighting of chaos implies
that while, by definition, long term forecasting is futile, short-term forecastability and
controllability (Ott et al., 1990, Shinbrot et al., 1993) are possible, at least in theory, since
there is some deterministic structure underlying the data, if only we knew what it was. Varying
definitions of what actually constitutes chaos can be found in the literature, but the definition
which will be used here is that a system is chaotic if it exhibits sensitive dependence on initial
conditions (SDIC). This is a definition which is frequently used, although many others are
possible (Brock et al., 1991). The concept of SDIC embodies the fundamental characteristic of
chaotic systems that if an infinitesimal change, 6x(0) is made to the initial conditions, then
X(t), the corresponding change iterated through the system until time t, will grow exponentially
with t (Ruelle, 1990). We can write

[ty ~ /ox(0)/e™ D)

Two statistics which are commonly used to test for the presence of chaos are the correlation
dimension and the largest Lyapunov exponent. The correlation dimension of Grassberger and
Procaccia (1983a, 1983b) is a computationally simplified variant of the information or
Hausdorf dimension (Ruelle, 1990, p244), which measures the amount of m-dimensional space
which is filled by the reconstructed attractor. Dimension can also be viewed as a measure of
complexity of a system (Mizrach, 1992). The largest Lyapunov exponent (LE) measures the
rate at which information is lost from a system, and is usually given in units of base 2, so that
the measure can be interpreted as the information loss in bits per iteration. A positive largest
Lyapunov exponent implies sensitive dependence, and therefore that we have evidence of
chaos. This has important implications for the predictability of the underlying system, since the

fact that all initial conditions are in practice estimated with some error (either measurement



error or exogenous noise), will imply that long term forecasting of the system is impossible as

all useful information is likely to be lost in just a few iterations.

Even within the foreign exchange literature, numerous recent publications have developed
theoretical models which, for some values of the parameters, could generate time series which
behave chaotically. DeGrauwe and Dewachter (1992) and DeGrauwe et al. (1993), for
example, propose a chaotic model of the exchange rate based upon the structural model of
Dornbusch. The model is a generalisation of DeGrauwe and Vansanten (1990) which removes
the implausible limiting assumption that the chaotic dynamics are generated by the presence of
a J-curve effect. The possibility of chaos in the revised model arises from the differing
expectations of two heterogeneous groups of traders in the market, namely fundamentalists,
who base their expectations of future exchange rate movements upon the economic
fundamentals, and chartists, who base their expectations on previous patterns in the exchange
rate. An even simpler chaotic model of exchange rates is suggested by Ellis (1994), who argues
that “if such a model can demonstrate chaos, the phenomenon must surely be a possibility in
much more complex systems” (pl195). But in empirical applications, the presence of

deterministic chaos in economic series has been elusive to say the least.

The intention of this paper is not to provide a “chaos primer”; numerous excellent review
papers of varying technical complexity exist elsewhere (Ramsey et al., 1990; Ruelle, 1990;
Frank and Stengos, 1988a; Hsieh, 1991, to name but a few®), but the purposes of this paper are
twofold. First, a brief theoretical derivation of the concepts of the correlation dimension and
Lyapunov exponents will be given, and the techniques applied to a set of foreign exchange
rates. Second, the results obtained will be examined in the context of related work which has

employed these methodologies. It will be argued that too much attention has so far been

! LeBaron (1994) and Scheinkman (1994) represent up-to-date surveys of the theoretical and empirical
issues related to testing for and modelling chaos in economic and time series more generally, respectively.



focused upon dimension calculations, which cannot, when used in isolation, be viewed as a test

for chaos.

I1.1 The Data and Preliminaries

The analysis presented here is based on just over twenty years of daily mid-price spot exchange
rate data, denominated in Sterling, taken from Datastream. The sample period taken covers the
whole of the post-Bretton Woods era until the present day, specifically from 2 January 1974
until 1 July 1994 inclusive, a set of 5191 observations. A set of ten currencies are analysed,
namely the Austrian Schilling/Pound (hereafter denoted A), the Canadian Dollar/Pound (C), the
Danish Krone/Pound (D), the French Franc/Pound (F), the German Mark/Pound (G), the Hong
Kong Dollar/Pound (H), the Italian Lira/Pound (1), the Japanese Yen/Pound (J), the Swiss
Franc/Pound (S), and the U.S. Dollar/Pound (U). The raw exchange rates were transformed into
log-returns which can be interpreted as a series of continuously compounded daily returns
(Brock et al., 1991. One possible justification for using returns rather than raw data is that the
raw data is likely to be nonstationary (see, for example, Corbae and Ouliaris)®. Brock (1986)

shows that linear processes with near unit roots will generate low dimension estimates.

11.2 The Use of Surrogate Data

When testing for chaos, it is often useful to have a standard set of data with the same
distributional properties and possibly the same autocorrelation structure as the raw data, but
with any nonlinear dependence removed. The results of the tests on the raw data can then be
directly compared with those on the “randomised” data. Scheinkman and LeBaron (1989)
suggest the use of a “shuffle diagnostic”, where the original data is sampled randomly with
replacement to form a new random data series. Successive applications of this procedure should

yield a collection of data sets with the same distributional properties, on average, as the raw

“The data were tested for the presence of unit root nonstationarity using the Dickey Fuller (Dickey and
Fuller, 1979; Fuller, 1976), Phillips Perron ( Phillips, 1987; Phillips and Perron, 1988) and Sargan



data. Although the shuffle diagnostic has been widely employed in economic applications (e.g.
Blank, 1991; Mayfield and Mizrach, 1992), in this study it was considered preferable to instead
employ the method of surrogate data (e.g. Theiler, 1991; Rapp et al., 1993). This technique is
similar in many respects to the shuffle algorithm, but the new data set is not sampled directly
from the original, but rather a randomised data set with the same distribution and
autocorrelation structure is created. Technically, this is achieved by taking the Fourier
transform of the original series, randomising the phases, and taking the inverse Fourier
transform. This technique has the advantage over the Scheinkman and LeBaron technique® that
the autocorrelation structure is preserved, so that the surrogate data set has the same level of
linear dependence as the original, but all traces of nonlinear dependence have been removed.
Furthermore, if a linearly independent series is required with a similar distribution to the raw
data, this can easily be achieved by linearly filtering the data - that is, fitting the “best” AR(p)
model to the data (according to some criterion), and then running all subsequent tests on the
residuals from the estimated linear model. Brock (1986) has shown that dimension and
Lyapunov exponent estimates are unaltered by linear filtering. If the positive result is still
apparent in a test on the surrogate data, then the result is likely to be due to linear dependence
in the data, but if the results between the two data sets differ, this must be due to nonlinear and
possibly chaotic dependence in the raw data which by definition is not present in the surrogate

data.

I11.1 The Correlation Dimension
The Grassberger Procaccia (GP) correlation dimension (Grassberger and Procaccia, 1983a,

1983b) is a general characteristic statistic used to distinguish deterministic systems from

Bhargava (Sargan and Bhargava, 1983, Bhargava, 1986). The levels data and the log-levels data were
found in all cases to be strongly 1(1), but there was no evidence of nonstationarity in the returns series.
3Frank and Stengos (1989) find the shuffle diagnostic useful for dimension calculations, but misleading
for estimating the Kolmogorov entropy, a measure which is defined as the sum of all positive Lyapunov
exponents



random noise. The formulation of the test statistic is as follows, and is based on the calculation
of the correlation integral. First, the “m-histories” of the series, X" = (X, X¢rn - Xts Am-1)) are
computed for time t = 1, ..., T-m, for embedding dimension m, and for time delay z. This step is
known as phase space reconstruction, and is due to Takens (1984), who shows that we can test
if a system is chaotic simply by observing the behaviour of one series from within that system.
Takens shows that for m > 2dim + 1 (where dim is the dimension of the attractor), the phase
space spanned by the m-history will be an embedding, i.e. it will be topologically equivalent to
the original unknown set of equations of motion of the system. The reconstructed m-vector will
therefore have the same correlation dimension and set of Lyapunov exponents. Define the

correlation integral as

1 m m
Cal&)= (T Zm 13T =y e X @

m
S

< ¢, and zero otherwise. ||

where |, is an indicator function that equals one if Hx{" - X
denotes the supremum norm, which is the most widely used distance measure. Although the
usual Euclidean norm is equivalent, it is computationally more intensive and hence is rarely
used in practical applications. The correlation integral thus measures the proportion of points
that are within a distance ¢ of each other in m-dimensional space. Next calculate the log of the
correlation integral divided by the log of the distance, & and take the limit as ¢ is made

progressively smaller. Denoting this limit by v, we have that

- (Cn(£))
o= M log(e) “

If the process generating the data is characterised by white noise, v, will scale with m, i.e. v, =
m Vv m, but if a deterministic process underlies the system, v, will cease to increase at some
value v = vgim, (dim << m in order to sufficiently reconstruct the phase space) as m is increased.
vaim gives the correlation dimension of the system. In practice the correlation dimension is
estimated from actual data by plotting log(C(&)) against log(g) and by taking the slope of a

judiciously chosen linear region where ¢ is as close to zero as is feasibly possible given the



number of data points. If ¢ is chosen too large, the slope of the line will be nearly horizontal,
while if it is chosen very small, the plot becomes rather jagged (Dechert, 1992). The time delay,
7, can be chosen in at least two ways (Casdagli et al., 1991): set t as the first zero (i.e. the first
value that is not significantly different from zero) of the autocorrelation function, or set t as
that value which minimises the mutual information function between the past and the future
(Fraser and Swinney, 1986). Both methods were computed here, and the “optimal” delay times

selected using each technique are shown in the following table

Table 1: Optimal Delay Times for Calculation of the Correlation Dimension

Currency A|CID|IF|G|H|IT]|]J]|S|U

1% zero of autocorrelation function 4 (2116|1332 2]3

1% min. of mutual informationfunction | 2 | 1 [ 3 [ 2 [ 2|3 (|3 |12 1

There is little to choose between these methods, aside from the point that the first minimum of
the autocorrelation function should ensure linear independence between Xx; and Xu., while
minimising mutual information should ensure general independence. Employing both methods
yields almost identical results, and hence only those for the latter criteria are shown in the

tabulated results below.

111.2 Estimation of Lyapunov Exponents

Arguably the only test explicitly formulated for chaos is the computation of the largest
Lyapunov exponent. The spectrum of Lyapunov exponents can be defined as follows (Wolf et
al., 1985). Consider an infinitesimally small hypersphere of radius e. If we monitor the
evolution of the sphere, it will become deformed into an ellipsoid as the system evolves over

time. The Lyapunov exponent is then measured by the extent of the deformation, and is given

by



A =Ilim lim |_ilogz(gi—(t)j| 4)
ng(oHoLT &,(0) J

where &(t) is the length of the i" principal axis of the ellipsoid at time t. In this paper, two
separate algorithms for the calculation of Lyapunov exponents are employed. The first is an
implementation of the Wolf et al. (1985) algorithm, and the second is a more recent technigque
due to Dechert and Gencay (1990, 1992). The Wolf et al. algorithm was the first method
proposed for estimating Lyapunov exponents in time series data. However, only the largest
exponent is calculated, and a number of authors (Brock and Sayers, 1988 for example) have
found that the results of the estimation are highly sensitive to noise, which is particularly
problematic in economic data where noise is more prevalent and data series are typically much
shorter than in the physical sciences. The results given in tables in the appendix are for a delay
time of one and are given in base 2; a largest Lyapunov exponent in base 2 can be interpreted as

the loss of information in bits per iteration.

The new technigue of Gencay and Dechert seems more promising in that, potentially, the whole
spectrum of Lyapunov exponents can be estimated. Furthermore, according to simulations on
known chaotic data sets by the authors of the test (Dechert and Gencay, 1992), the algorithm is
more powerful in the presence of noise than the earlier technique, although the signal-to-noise
ratio used in their simulations was high, probably much higher than would be the case for
actual economic data. Thus even a noisy chaotic system (particularly if the noise is dynamic
noise which will propagate through the system, rather than additive noise) could lead to
estimated Lyapunov exponents which are negative’. The method uses a similar technique to the
more frequently cited work by Ellner et al. (1991), in that, unlike the Wolf et al. method which
directly finds similar pairs of state vectors within the series and estimates how the subsequent
trajectories diverge, the new procedures use Jacobian methods. These estimate the exponents

through the intermediate step of estimating the individual Jacobian matrices. Using the



terminology of Nychka et al. (1992), let J. be the estimate of the Jacobian and T, = J ... J1.

The estimate of the Lyapunov exponents is given by

1 N
A= —mlog Ul(m)‘ %)

2

where zAjl(m) is the largest eigenvalue of (T;W"I'Am ™2

. In practice, the method of Gencay and
Dechert uses a single hidden layer feed-forward neural network to model the dynamics of the
series and the spectrum of Lyapunov exponents are then calculated from the derivative matrices
of the network models. With this technique, the user does not have to choose a value for the
delay time (usually denoted 7), but one does have to select the number of inputs to the network
(equivalent to the embedding dimension) and the number of hidden units in the intermediate

layer, N. The inputs were selected as own lagged values of the series from t-1 to t-m, where m

is the number of inputs. The network is given by
N N m
XN,m(X;ﬂIW!b)ZZﬂj¢(ZwijZi+bj) (6)
j=1 i=1

where X is a vector of fitted values, Z is the input, S represents the hidden to output weights,

and w and b represent the input to hidden weights. Let

m

X; = (Xt+m—l’xt+m—2 7""Xt) (7
The multivariate nonlinear least squares minimisation problem is then given by
T_m-1

min Y, [X.,. —>A<N,m(Xtm;,B,W,b)]2
Bwb o

and the activation function for the hidden layer is the sigmoid

$(p) = (8)

1+exp(—p)

The number of inputs was varied from 1 to 6, and the number of hidden layers from 1 to
10. These values were severely constrained by available CPU time, since the estimation is so
data intensive. To calculate the spectrum of Lyapunov exponents with just six inputs and 1-10

hidden layers took over 50 hours of C.P.U. time per series on a SparcCentre 2000 with 8

* I am grateful to an anonymous referee for making this point clear.



50Mhz processors. Thus it is impractical to use bootstrapping in this case to construct
confidence intervals or to undertake tests of significance. The “best fit” from among all
combinations of alternative models can be chosen using Schwarz’s (1978) information criterion
(SBIC) or by minimising the in sample-mean square prediction error. The number of inputs, m,
and the number of hidden units, N, which minimise SBIC and the mean square prediction error

are shown in tables 2 and 3 respectively:

Table 2: Number of Inputs, m, and Hidden Units, N that Give the First Minimum of SBIC

Series | A C D F G H | J S U
m 1 1 2 2 1 1 1 1 2 1
H 1 1 1 2 1 3 2 1 1 1

Table 3: Number of Inputs, m, and Hidden Units, N that Give the First Minimum of Mean

Squared Prediction Error

Series | A C D F G H | J S U
m 3 2 5 4 5 1 3 3 3
H 4 5 6 6 5 5 4 2 4 3

The values of Schwarz’s information criterion and of the mean squared prediction error may
indicate the optimal number of inputs and hidden layers. The latter criterion should be
interpreted with caution, since there is much evidence that good in-sample prediction may be
achieved by over-parameterising the network to yield a good fit to the data, at the expense of
poor out-of-sample performance. In any case, the conclusion is not qualitatively altered by this,
but in general, Schwarz’s criterion suggests that only one or two inputs and one or two hidden
units are required for the real and surrogate data. This in itself is indicative of a lack of dynamic
structure in the data since the “optimal” models according to this metric are very small ones.
Hence even with such long data series, the improvement in model fit is insufficient to

compensate for the increase in the penalty term.

1V.1 Results of Correlation Dimension Estimation
The results of an application of the GP algorithm are given in table 4 below.

Table 4: Grassberger and Procaccia Correlation Dimension Estimates




Embedding Dimension

Series| 1 |2 [ 3| 4[5 |67 [8]9f10]11] 12 ] 13 ] 14] 15
Returns data

0.96]1.92(2.90|3.90(4.42|5.4916.10(6.44|7.09|7.51|8.54| 7.94 | 8.29 | 8.89 | 8.62

0.99]2.01{2.96|3.96|4.82|5.20|5.80{5.82|5.86|6.10{6.59| 6.77 | 6.80 | 7.52 | 7.54

0.99]1.84{2.92|3.95/4.84|5.38|5.98(6.69|6.81|7.20{7.82| 7.54 | 8.29 | 8.87 | 8.05

0.97]1.97(2.99|3.98|4.39]4.94|5.19(5.44|5.58|5.56|5.60| 5.68 | 5.81 | 5.89 | 6.02

0.94]1.96(2.97|3.93|4.75|5.35|5.82(6.10|6.52|6.51|7.27| 7.30 | 7.37 | 7.73 | 7.80

0.99]2.00{2.99|3.71|4.34]4.62|4.76{4.93|5.04|4.90|5.23] 5.33 | 5.20 | 5.34 | 5.41

0.99]1.97{2.90|3.25|3.64|3.26|4.10{4.20|3.81|4.53|4.63| 4.47 | 4.89 | 4.79 | 4.78

0.92]1.96(2.96|3.94|4.71|5.22|5.88(6.17|6.52|7.01|7.32| 7.56 | 7.87 | 7.98 | 8.18

0.93]1.94(2.99|3.97|4.81]5.50|6.32(6.48|7.16/7.59|7.95| 8.05 | 9.07 | 8.49 | 8.64

Clu|«|—[IZ|O(M|T(O|>

0.98(1.99(2.86|3.16|3.19|3.40|3.22|3.72|3.89|3.47|4.12| 4.30 | 3.74 | 4.24 | 4.40
Surrogate Data

0.96(1.92|2.96|3.98]4.97|5.64|6.55(6.94|7.61|8.17|8.64| 9.04 | 9.56 | 9.45 [10.05

0.99(1.99|2.97|3.99]4.90|5.62(6.42(6.89|7.53|8.02|8.51| 9.10 | 9.47 | 9.78 [10.38

0.98(1.99(2.99|3.99]4.86|5.57(6.39(6.93|7.43|7.94]8.28| 8.91 | 9.38 | 9.80 | 9.92

0.97(1.96/2.96|3.92]4.89|5.55|6.45(7.00|7.53|7.86|8.27| 8.50 | 9.24 | 9.62 | 9.67

0.98(1.97/2.90|3.99]4.87|5.61|6.19(6.79|7.22|7.74]|8.22| 8.58 | 8.82 | 9.28 | 9.43

0.99(2.00(2.98|3.99]4.72|5.34|6.10(6.58|7.04|7.60|8.00| 8.56 | 8.74 | 9.07 | 9.63

0.99(1.99/3.00|3.99]4.63|5.40|6.11{6.68|7.32|7.84]8.17| 8.33 | 8.85 | 9.05 | 9.50

0.92(1.96/2.96|4.00|4.86|5.52(6.30(7.04|7.56|7.29|8.60| 8.95 | 9.32 | 9.93 [10.29

0.94(1.91|2.96|3.99]4.99|5.77(6.44|7.11|7.60|8.26|8.80| 9.36 | 9.51 | 10.09 | 10.40

Clo|a|—|[Z(o|m|T|lo|>

0.99(2.00/2.95|3.97|4.84|5.52(6.13(6.67|7.18|7.71|8.19| 8.81 | 9.14 | 9.83 [10.28

As detailed above, a saturation in the estimate relative to that of the corresponding surrogate
data, at a given embedding dimension, is taken as evidence of deterministic behaviour
underlying the series. This dimension estimate provides a lower bound on the number of
independent variables which would be required to model the series. As table 4 shows, all the
returns series show some degree of saturation which is not present in their surrogate
counterparts. This may be indicative that there is some degree of determinism underlying all the
series, and in many applications, which will be described below, the test has been assumed to
give prima facie evidence for chaos. Although the degree of saturation is evidently stronger in
some series than others, it is often around 5-6. This ties in well with the results of Scheinkman
and LeBaron (1989), and a number of other authors, who find this order of magnitude common
across many financial markets. The lowest and most stable correlation dimension estimates
come from the Italian Lira / Pound and U.S. Dollar / Pound returns, which give estimates of

between 4 and 5 for embedding dimensions up to 15. However, it has been suggested (Ramsey

10



et al., 1990) that this provides only limited evidence for deterministic dynamics, since even

completely randomly generated data samples will appear to saturate®.

> This appears to be the case, since even the dimension estimate for artificial data generated as pure
Gaussian noise (not shown) slows to just over 10 as the embedding is increased to 15.

11



1VV.2 Results of Lyapunov Exponent Estimation

The results of Lyapunov exponent estimation, using both the Wolf algorithm and the neural

network technique of Gencay and Dechert, are shown in the following tables:

Table 5: Estimation of Largest Lyapunov Exponents using the method of Wolf et al.

Embedding Dimension
Series 1 2 3 | 4 5 6 | 7 | 8 | 9 | 10
Returns data
A 1.497 | 1.284 | 0.969 | 0.603 | 0.360 | 0.222 | 0.166 | 0.116 | 0.088 | 0.068
C 1.847 | 1.107 | 0.856 | 0.723 | 0.431 | 0.264 | 0.198 | 0.136 | 0.108 | 0.075
D 1.247 | 1.270 | 0.965 | 0.641 | 0.405 | 0.247 | 0.159 | 0.127 | 0.101 | 0.076
F 1.233 | 1.131 | 0.870 | 0.572 | 0.369 | 0.235 | 0.164 | 0.118 | 0.097 | 0.068
G 1.364 | 1.376 | 1.023 | 0.659 | 0.398 | 0.255 | 0.170 | 0.138 | 0.098 | 0.078
H 1.250 | 0.976 | 0.792 | 0.554 | 0.366 | 0.232 | 0.169 | 0.104 | 0.078 | 0.073
I 1.112 | 1.053 | 0.701 | 0.531 | 0.346 | 0.223 | 0.148 | 0.114 | 0.092 | 0.062
J 1591 | 1.368 | 1.024 | 0.669 | 0.413 | 0.252 | 0.180 | 0.124 | 0.094 | 0.064
S 1.531 | 1.475 | 1.054 | 0.686 | 0.409 | 0.256 | 0.185 | 0.134 | 0.091 | 0.075
U 1.614 | 1.440 | 1.085 | 0.658 | 0.402 | 0.256 | 0.174 | 0.128 | 0.089 | 0.079
Surrogate Data
A 1.425 | 1.131 | 0.923 | 0.710 | 0.421 | 0.281 | 0.184 | 0.131 | 0.098 | 0.072
C 2.087 | 1.660 | 1.270 | 0.776 | 0.479 | 0.313 | 0.220 | 0.172 | 0.133 | 0.119
D 1.851 | 1.305 | 1.056 | 0.720 | 0.445 | 0.289 | 0.199 | 0.142 | 0.099 | 0.080
F 1.608 | 1.425 | 1.147 | 0.748 | 0.465 | 0.302 | 0.202 | 0.154 | 0.118 | 0.095
G 1.545 | 1.439 | 1.140 | 0.749 | 0.455 | 0.302 | 0.200 | 0.144 | 0.109 | 0.088
H 1.405 | 1.296 | 1.037 | 0.726 | 0.437 | 0.268 | 0.197 | 0.136 | 0.102 | 0.077
I 1.577 | 1.146 | 0.911 | 0.660 | 0.439 | 0.278 | 0.213 | 0.139 | 0.106 | 0.077
J 1.779 | 1.542 | 1.217 | 0.765 | 0.463 | 0.296 | 0.205 | 0.154 | 0.118 | 0.097
S 1.821 | 1.575 | 1.196 | 0.787 | 0.462 | 0.308 | 0.214 | 0.158 | 0.124 | 0.104
U 2.048 | 1.515 | 1.168 | 0.770 | 0.469 | 0.288 | 0.208 | 0.154 | 0.110 | 0.090

The salient feature of the data is that there is no evidence of chaotic dynamics in any of these

Pound exchange rates. Whilst the largest Lyapunov exponent estimated by the Wolf algorithm

is in every case positive, as shown in table 5, this cannot be taken as evidence for sensitive

dependence, since the corresponding estimates for the surrogate data are also positive and are

of the same order of magnitude. One would expect the Lyapunov exponents for the surrogate

data to be significantly negative since any chaotic structure which was present in the original

series should have been destroyed by the randomisation. Calculation of the whole spectrum of

Lyapunov exponents can potentially be achieved using the method of Dechert and Gencay,

12




although only the largest are shown since it is only the largest Lyapunov exponent which is of

direct interest®.

Table 6: Estimation of Lyapunov Exponents for the German Mark Returns using the method of

Dechert and Gencay (1990), only largest Lyapunov exponent shown

Number of hidden units

1 2 3 4 5 6 7 8 9 10

-5.3325 | -4.1221 | -2.5603 | -3.9918 | -3.1416 | -3.0514 | -2.7805 | -2.6132 | -2.5713 | -3.0728

-3.6197 | -2.1553 | -1.7933 | -1.7618 | -1.3154 | -1.3417 | -1.1881 | -1.3038 | -1.1326 | -1.1011

-0.2341 | -1.4485 | -0.9230 | -0.8256 | -0.8870 | -0.8566 | -1.0082 | -0.6362 | -0.8545 | -0.6659

-0.4345 | -0.6858 | -0.7449 | -0.5844 | -0.5963 | -0.4703 | -0.4785 | -0.5741 | -0.4511 | -0.5217

-1.1297 | -1.1275 | -0.4560 | -0.6140 | -0.4517 | -0.3759 | -0.3860 | -0.3383 | -0.2886 | -0.2271

SNEIRNENEE

-0.8743 | -0.7197 | -0.3360 | -0.4435 | -0.3113 | -0.3081 | -0.2671 | -0.2242 | -0.2278 | -0.2526

Table 7: Estimation of Lyapunov Exponents for the Japanese Yen Returns using the method of

Dechert and Gencay, only largest Lyapunov exponent shown

Number of hidden units

1 2 3 4 5 6 7 8 9 10

-2.8543 | -2.4349 | -2.2309 | -3.2254 | -2.2154 | -3.0422 | -1.9149 | -1.6613 | -1.3588 | -1.2613

-2.2560 | -1.9439 | -2.2819 | -1.7703 | -1.2669 | -1.0833 | -1.0269 | -0.9783 | -0.7011 | -0.8103

-1.1907 | -0.7417 | -1.1974 | -0.9897 | -0.8506 | -0.7242 | -0.9406 | -0.6902 | -0.5629 | -0.7053

-1.0013 | -1.0057 | -1.1144 | -0.7051 | -0.5578 | -0.4751 | -0.6011 | -0.4293 | -0.3879 | -0.3857

-0.7379 | -0.7679 | -0.5536 | -0.5608 | -0.3806 | -0.4705 | -0.4809 | -0.3503 | -0.2614 | -0.2448

SNEINERENEE

-0.6211 | -0.4922 | -0.3639 | -0.3838 | -0.3032 | -0.2267 | -0.1786 | -0.2491 | 0.2210 | -0.2149

® Only those results for the three largest trading-volume currencies investigated are shown, since results
for the other series are qualitatively identical. A full appendix containing these results and additional
statistics for the surrogate and a set of artificially generated data, is available upon request from the
author.
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Table 8: Estimation of Lyapunov Exponents for the US Dollar Returns using the method of

Dechert and Gencay, only largest Lyapunov exponent shown

Number of hidden units

m 1 2 3 4 5 6 7 8 9 10

1| -2.8197 | -5.7844 | -2.4788 | -2.1211 | -2.4536 | -2.2030 | -2.3111 | -2.4493 | -2.3102 | -1.5110
2| -2.1872 | -2.0325 | -2.8629 | -1.8652 | -1.5275 | -1.3440 | -1.0610 | -0.9746 | -0.9330 | -0.9288
3| -1.6316 | -1.1715 | -1.4562 | -0.8225 | -0.6339 | -0.6084 | -0.7491 | -0.7449 | -0.5414 | -0.5123
4| -1.2344 | -0.7019 | -0.8316 | -0.6124 | -0.5163 | -0.4560 | -0.3455 | -0.2696 | -0.3684 | -0.2652
5| -0.6803 | -0.5439 | -0.4440 | -0.3146 | -0.4045 | -0.3750 | -0.3891 | -0.2507 | -0.2828 | -0.2388
6] -0.2859 | -0.3701 | -0.4042 | -0.3821 | -0.2936 | -0.2053 | -0.3139 | -0.2684 | -0.2231 | -0.1912

Once again, the results shown in tables 6 to 8 give no support to the presence of chaotic
dynamics in the series considered. Thus it appears overall that the possibility of chaotic
dynamics is rejected for all the series considered, and this has been the conclusion of almost all

studies of economic data (Scheinkman, 1994).

V. Relation to other work

It is important to note that saturation of the correlation dimension estimate is a necessary, but
by no means sufficient condition for the existence of a chaotic attractor (Hsieh, 1993). In fact,
an infinite number of nonlinear, but non-chaotic data generating mechanisms would also lead to
a low and stable dimension estimate. Osbourne and Provenzale (1989) and Scheinkman and
LeBaron (1989) have shown that nonlinear stochastic systems are capable of exhibiting this
property’. In other words, correlation dimension estimation has power against non-chaotic as
well as chaotic alternatives. Indeed, the dimension estimates calculated here stabilise at low
values relative to their randomised surrogate counterparts, and yet the largest estimated

Lyapunov exponent is almost invariably below zero.

Many authors claim to have tested for chaos using only an application of the Grassberger

Procaccia technique (Liu et al., 1992; Yang and Brorsen, 1992; Booth et al., 1990 & 1994;

DeGrauwe et al., 1993; Peters, 1991; Willey, 1992; Varson and Jalivand, 1994). Of these, the
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last four claim to have found chaos, but all claim to have tested for its presence. Willey (1992),

for example, states that
“The increase in dimensionality estimate of the shuffles compared to the
residuals of the whitened data indicates that both series are chaotic” (p71).
Varson and Jalivand (1994) also claim to have found chaos in some series based on low
dimension estimates, and DeGrauwe et al. (1993) argue that they have “presented empirical
evidence on the existence of chaos” in foreign exchange rates. It is also possible, however, that
these low dimension estimates are the product of some nonlinear stochastic (non-chaotic) data

generating mechanism or “some smoothness in the original data” as Ruelle (1990, p246) puts it.

Frank et al. (1988), Barnett et al. (1992), Dechert and Gencay (1992) and Blank (1991) do
compute the largest Lyapunov exponent of various financial and macroeconomic time series.
Of these, only Blank finds a positive exponent in agricultural futures price series which is
robust to changes in the value of the user-adjustable parameters, such as the embedding
dimension and delay time. This conjecture is, however, based on an average of only 336

observations, and uses the direct and less stable algorithm of Wolf et al. (op cit.).

V1. Conclusions

The correlation dimension and spectrum of Lyapunov exponents have been calculated for a set
of daily Sterling exchange rates. In common with many other studies, the dimension estimates
in some cases stabilised as the embedding dimension increased, but in all cases, the largest
Lyapunov exponent was calculated to be negative. This indicates the presence of some kind of
nonlinear determinism in the data (of a form which cannot be identified from the tests used
here, but see Brooks (1996), for a consideration of the form of nonlinearity that may be

present), but makes the stronger possibility of deterministic chaos unlikely.

"Moreover, Scheinkman and LeBaron (1989) show that even data generated by ARCH or GARCH models
will lead to saturation in dimension estimates.
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It has been shown that the correlation dimension estimate of Grassberger and Procaccia has
been much abused by economists in recent years. These estimates are likely to be biased
downwards for random noise (Ramsey et al., 1990), and are at best unreliable for small data
sets, with no finite sample distribution theory available as yet (Ramsey et al., 1990).
Furthermore, the use of a low-pass filter to reduce noise can give finite, non-integer dimension
estimates (Rapp et al., 1993). Mitschke et al. (1988) argue that this will not be the case for the
largest Lyapunov exponent, since only those exponents less than zero will be affected by the
filtering process. Mizrach (1992) argues that “...entropy should be regarded as the defining
characteristic” (p188), and Ruelle (1990) notes that “there are quantities other than the
correlation dimension that one may try to compute, and that may be better behaved...”(p246).
Given these facts, that more researchers do not compute LE measures is puzzling, but may be a
consequence of their relative computational complexity and the huge CPU requirement
mentioned above. Moreover, Lyapunov exponent estimation from observed time series is
highly unstable to dynamic noise. The problem is likely to be even more troublesome than for

calculation of the correlation dimension.

Armed with this evidence, a re-examination of the literature has revealed no papers which find
chaos in economic series based on what may be considered robust techniques (i.e. calculation
of LE by an indirect method over a long data series). It appears, then, that we are left with the
likelihood that chaos is decidedly not present in any economic data, or at least cannot be
detected by the best of the tools which are currently available. Nearly a decade ago, Brock and
Sayers (1988) argued that “evidence of chaos is weak, but out tests may be to weak to detect
it...” (p71). Although the Dechert and Gencay technique is a clear step in the right direction, it
is likely that the levels of system noise present in economic and financial time series would

render any chaotic structure undetectable, even with the large sample sizes available for the
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latter. Thus unless a further quantum leap is made in the robustness of tests to the presence of

dynamic noise, it is likely that chaotic dynamics in economic data will remain elusive.
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