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Abstract 

This paper tests directly for deterministic chaos in a set of ten daily Sterling-denominated 

exchange rates by calculating the largest Lyapunov exponent. Although in an earlier paper, 

strong evidence of nonlinearity has been shown, chaotic tendencies are noticeably absent from 

all series considered using this state-of-the-art technique. Doubt is cast on many recent papers 

which claim to have tested for the presence of chaos in economic data sets, based on what are 

argued here to be inappropriate techniques. 
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I. Introduction 

Economists have searched long and hard for chaos in financial, macro- and micro-economic 

data, with very limited success to date. Booth et al. (1990), and Frank et al. (1988), for 

example, claim to have tested for and rejected the possibility of deterministic chaos in various 

data sets. The motivation behind this endeavour is clear: a positive sighting of chaos implies 

that while, by definition, long term forecasting is futile, short-term forecastability and 

controllability (Ott et al., 1990, Shinbrot et al., 1993)  are possible, at least in theory, since 

there is some deterministic structure underlying the data, if only we knew what it was. Varying 

definitions of what actually constitutes chaos can be found in the literature, but the definition 

which will be used here is that a system is chaotic if it exhibits sensitive dependence on initial 

conditions (SDIC). This is a definition which is frequently used, although many others are 

possible (Brock et al., 1991). The concept of SDIC embodies the fundamental characteristic of 

chaotic systems that if an infinitesimal change, x(0) is made to the initial conditions, then 

x(t), the corresponding change iterated through the system until time t, will grow exponentially 

with t (Ruelle, 1990). We can write 

 x(t)       x(0) et
       (1) 

Two statistics which are commonly used to test for the presence of chaos are the correlation 

dimension and the largest Lyapunov exponent. The correlation dimension of Grassberger and 

Procaccia (1983a, 1983b) is a computationally simplified variant of the information or 

Hausdorf dimension (Ruelle, 1990, p244), which measures the amount of  m-dimensional space 

which is filled by the reconstructed attractor. Dimension can also be viewed as a measure of 

complexity of a system (Mizrach, 1992). The largest Lyapunov exponent (LE) measures the 

rate at which information is lost from a system, and is usually given in units of base 2, so that 

the measure can be interpreted as the information loss in bits per iteration. A positive largest 

Lyapunov exponent implies sensitive dependence, and therefore that we have evidence of 

chaos. This has important implications for the predictability of the underlying system, since the 

fact that all initial conditions are in practice estimated with some error (either measurement 
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error or exogenous noise), will imply that long term forecasting of the system is impossible as 

all useful information is likely to be lost in just a few iterations. 

 

Even within the foreign exchange literature, numerous recent publications have developed 

theoretical models which, for some values of the parameters, could generate time series which 

behave chaotically. DeGrauwe and Dewachter (1992) and DeGrauwe et al. (1993), for 

example, propose a chaotic model of the exchange rate based upon the structural model of 

Dornbusch. The model is a generalisation of DeGrauwe and Vansanten (1990) which removes 

the implausible limiting assumption that the chaotic dynamics are generated by the presence of 

a J-curve effect. The possibility of chaos in the revised model arises from the differing 

expectations of two heterogeneous groups of traders in the market, namely fundamentalists, 

who base their expectations of future exchange rate movements upon the economic 

fundamentals, and chartists, who base their expectations on previous patterns in the exchange 

rate. An even simpler chaotic model of exchange rates is suggested by Ellis (1994), who argues 

that “if such a model can demonstrate chaos, the phenomenon must surely be a possibility in 

much more complex systems” (p195). But in empirical applications, the presence of 

deterministic chaos in economic series has been elusive to say the least. 

 

The intention of this paper is not to provide a “chaos primer”; numerous excellent review 

papers of varying technical complexity exist elsewhere (Ramsey et al., 1990; Ruelle, 1990; 

Frank and Stengos, 1988a; Hsieh, 1991, to name but a few
1
), but the purposes of this paper are 

twofold. First, a brief theoretical derivation of the concepts of the correlation dimension and 

Lyapunov exponents will be given, and the techniques applied to a set of foreign exchange 

rates. Second, the results obtained will be examined in the context of related work which has 

employed these methodologies. It will be argued that too much attention has so far been 

                                                 
1
 LeBaron (1994) and Scheinkman (1994) represent up-to-date surveys of the theoretical and empirical 

issues related to testing for and modelling chaos in economic and time series more generally, respectively. 
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focused upon dimension calculations, which cannot, when used in isolation, be viewed as a test 

for chaos. 

 

II.1 The Data and Preliminaries 

The analysis presented here is based on just over twenty years of daily mid-price spot exchange 

rate data, denominated in Sterling, taken from Datastream. The sample period taken covers the 

whole of the post-Bretton Woods era until the present day, specifically from 2 January 1974 

until 1 July 1994 inclusive, a set of 5191 observations. A set of ten currencies are analysed, 

namely the Austrian Schilling/Pound (hereafter denoted A), the Canadian Dollar/Pound (C), the 

Danish Krone/Pound (D), the French Franc/Pound (F), the German Mark/Pound (G), the Hong 

Kong Dollar/Pound (H), the Italian Lira/Pound (I), the Japanese Yen/Pound (J), the Swiss 

Franc/Pound (S), and the U.S. Dollar/Pound (U). The raw exchange rates were transformed into 

log-returns which can be interpreted as a series of continuously compounded daily returns 

(Brock et al., 1991. One possible justification for using returns rather than raw data is that the 

raw data is likely to be nonstationary (see, for example, Corbae and Ouliaris)
2
. Brock (1986) 

shows that linear processes with near unit roots will generate low dimension estimates. 

 

II.2 The Use of Surrogate Data 

When testing for chaos, it is often useful to have a standard set of data with the same 

distributional properties and possibly the same autocorrelation structure as the raw data, but 

with any nonlinear dependence removed. The results of the tests on the raw data can then be 

directly compared with those on the “randomised” data. Scheinkman and LeBaron (1989) 

suggest the use of a “shuffle diagnostic”, where the original data is sampled randomly with 

replacement to form a new random data series. Successive applications of this procedure should 

yield a collection of data sets with the same distributional properties, on average, as the raw 

                                                 
2
The data were tested for the presence of unit root nonstationarity using the Dickey Fuller (Dickey and 

Fuller, 1979; Fuller, 1976), Phillips Perron ( Phillips, 1987; Phillips and Perron, 1988) and Sargan 
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data.  Although the shuffle diagnostic has been widely employed in economic applications (e.g. 

Blank, 1991; Mayfield and Mizrach, 1992), in this study it was considered preferable to instead 

employ the method of surrogate data (e.g. Theiler, 1991; Rapp et al., 1993). This technique is 

similar in many respects to the shuffle algorithm, but the new data set is not sampled directly 

from the original, but rather a randomised data set with the same distribution and 

autocorrelation structure is created. Technically, this is achieved by taking the Fourier 

transform of the original series, randomising the phases, and taking the inverse Fourier 

transform. This technique has the advantage over the Scheinkman and LeBaron technique
3
 that 

the autocorrelation structure is preserved, so that the surrogate data set has the same level of 

linear dependence as the original, but all traces of nonlinear dependence have been removed. 

Furthermore, if a linearly independent series is required with a similar distribution to the raw 

data, this can easily be achieved by linearly filtering the data - that is, fitting the “best” AR(p) 

model to the data (according to some criterion), and then running all subsequent tests on the 

residuals from the estimated linear model. Brock (1986) has shown that dimension and 

Lyapunov exponent estimates are unaltered by linear filtering. If the positive result is still 

apparent in a test on the surrogate data, then the result is likely to be due to linear dependence 

in the data, but if the results between the two data sets differ, this must be due to nonlinear and 

possibly chaotic dependence in the raw data which by definition is not present in the surrogate 

data.  

 

 

III.1 The Correlation Dimension 

The Grassberger Procaccia (GP) correlation dimension (Grassberger and Procaccia, 1983a, 

1983b) is a general characteristic statistic used to distinguish deterministic systems from 

                                                                                                                                               
Bhargava (Sargan and Bhargava, 1983, Bhargava, 1986). The levels data and the log-levels data were 

found in all cases to be strongly I(1), but there was no evidence of nonstationarity in the returns series. 
3
Frank and Stengos (1989) find the shuffle diagnostic useful for dimension calculations, but misleading 

for estimating the Kolmogorov entropy, a measure which is defined as the sum of all positive Lyapunov 

exponents 
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random noise. The formulation of the test statistic is as follows, and is based on the calculation 

of the correlation integral. First, the “m-histories” of the series, xt
m
 = (xt, xt+, .., xt+(m-1)) are 

computed for time t = 1, ..., T-m, for embedding dimension m, and for time delay . This step is 

known as phase space reconstruction, and is due to Takens (1984), who shows that we can test 

if a system is chaotic simply by observing the behaviour of one series from within that system. 

Takens shows that for m  2dim + 1 (where dim is the dimension of the attractor), the phase 

space spanned by the m-history will be an embedding, i.e. it will be topologically equivalent to 

the original unknown set of equations of motion of the system. The reconstructed m-vector will 

therefore have the same correlation dimension and set of Lyapunov exponents. Define the 

correlation integral as  

 C
T m T m

I x xm
t s

t

m

s

m( )
( )( )

( , )
,

 
   


1

1
     (2) 

where I is an indicator function that equals one if x xt

m

s

m  < , and zero otherwise. .  

denotes the supremum norm, which is the most widely used distance measure. Although the 

usual Euclidean norm is equivalent, it is computationally more intensive and hence is rarely 

used in practical applications. The correlation integral thus measures the proportion of points 

that are within a distance  of each other in m-dimensional space. Next calculate the log of the 

correlation integral divided by the log of the distance, , and take the limit as  is made 

progressively smaller. Denoting this limit by m, we have that 

 



m

mC



lim

( ( ))

log( )0
        (3) 

If the process generating the data is characterised by white noise, m will scale with m, i.e. m = 

m  m, but if a deterministic process underlies the system, m will cease to increase at some 

value  = dim, (dim << m in order to sufficiently reconstruct the phase space) as m is increased. 

dim gives the correlation dimension of the system. In practice the correlation dimension is 

estimated from actual data by plotting log(Cm()) against log() and by taking the slope of a 

judiciously chosen linear region where  is as close to zero as is feasibly possible given the 
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number of data points. If  is chosen too large, the slope of the line will be nearly horizontal, 

while if it is chosen very small, the plot becomes rather jagged (Dechert, 1992). The time delay, 

, can be chosen in at least two ways (Casdagli et al., 1991): set  as the first zero (i.e. the first 

value that is not significantly different from zero) of the autocorrelation function, or set  as 

that value which minimises the mutual information function between the past and the future 

(Fraser and Swinney, 1986). Both methods were computed here, and the “optimal” delay times 

selected using each technique are shown in the following table 

 

Table 1: Optimal Delay Times for Calculation of the Correlation Dimension 

Currency A C D F G H I J S U 

1
st 

zero of autocorrelation  function 4 2 6 1 3 3 2 2 3 2 

1
st
 min. of mutual information function 2 1 3 2 2 3 3 1 2 1 

 

There is little to choose between these methods, aside from the point that the first minimum of 

the autocorrelation function should ensure linear independence between xt and xt+, while 

minimising mutual information should ensure general independence. Employing both methods 

yields almost identical results, and hence only those for the latter criteria are shown in the 

tabulated results below. 

 

III.2 Estimation of Lyapunov Exponents 

Arguably the only test explicitly formulated for chaos is the computation of the largest 

Lyapunov exponent. The spectrum of Lyapunov exponents can be defined as follows (Wolf et 

al., 1985). Consider an infinitesimally small hypersphere of radius . If we monitor the 

evolution of the sphere, it will become deformed into an ellipsoid as the system evolves over 

time. The Lyapunov exponent is then measured by the extent of the deformation, and is given 

by 
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where i(t) is the length of the i
th
 principal axis of the ellipsoid at time t. In this paper, two 

separate algorithms for the calculation of Lyapunov exponents are employed. The first is an 

implementation of the Wolf et al. (1985) algorithm, and the second is a more recent technique 

due to Dechert and Gencay (1990, 1992). The Wolf et al. algorithm was the first method 

proposed for estimating Lyapunov exponents in time series data. However, only the largest 

exponent is calculated, and a number of authors (Brock and Sayers, 1988 for example) have 

found that the results of  the estimation are highly sensitive to noise, which is particularly 

problematic in economic data where noise is more prevalent and data series are typically much 

shorter than in the physical sciences. The results given in tables in the appendix are for a delay 

time of one and are given in base 2; a largest Lyapunov exponent in base 2 can be interpreted as 

the loss of information in bits per iteration. 

 

The new technique of Gencay and Dechert seems more promising in that, potentially, the whole 

spectrum of Lyapunov exponents can be estimated. Furthermore, according to simulations on 

known chaotic data sets by the authors of the test (Dechert and Gencay, 1992), the algorithm is 

more powerful in the presence of noise than the earlier technique, although the signal-to-noise 

ratio used in their simulations was high, probably much higher than would be the case for 

actual economic data. Thus even a noisy chaotic system (particularly if the noise is dynamic 

noise which will propagate through the system, rather than additive noise) could lead to 

estimated Lyapunov exponents which are negative
4
. The method uses a similar technique to the 

more frequently cited work by Ellner et al. (1991), in that, unlike the Wolf et al. method which 

directly finds similar pairs of state vectors within the series and estimates how the subsequent 

trajectories diverge, the new procedures use Jacobian methods. These estimate the exponents 

through the intermediate step of estimating the individual Jacobian matrices. Using the 
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terminology of Nychka et al. (1992), let J t



 be the estimate of the Jacobian and T J Jm m

  

 ... 1. 

The estimate of the Lyapunov exponents is given by 

  
1

2
1

m
mlog ( )         (5) 

where 


1( )m  is the largest eigenvalue of  ( ' ) /T Tm m

m
 

2
. In practice, the method of Gencay and 

Dechert uses a single hidden layer feed-forward neural network to model the dynamics of the 

series and the spectrum of Lyapunov exponents are then calculated from the derivative matrices 

of the network models. With this technique, the user does not have to choose a value for the 

delay time (usually denoted ), but one does have to select the number of inputs to the network 

(equivalent to the embedding dimension) and the number of hidden units in the intermediate 

layer, N. The inputs were selected as own lagged values of the series from t-1 to t-m, where m 

is the number of inputs. The network is given by 

 x X w b w Z bN m j ij i j
i

m

j

N



 , ( ; , , ) ( )  
11

     (6) 

where x


 is a vector of fitted values, Z is the input,  represents the hidden to output weights, 

and w and b represent the input to hidden weights. Let 

 x x x xt

m

t m t m t    ( , ,..., )1 2        (7) 

The multivariate nonlinear least squares minimisation problem is then given by 

 min [ ( ; , , )]
, ,

,



w b

t m N m t

m

t

T m

x x x w b





 

 2

0

1

 

and the activation function for the hidden layer is the sigmoid 

  ( )
exp( )

p
p


 

1

1
        (8) 

The number of inputs was varied from 1 to 6, and the number of hidden layers from 1 to 

10. These values were severely constrained by available CPU time, since the estimation is so 

data intensive. To calculate the spectrum of Lyapunov exponents with just six inputs and 1-10 

hidden layers took over 50 hours of C.P.U. time per series on a SparcCentre 2000 with 8 

                                                                                                                                               
4
 I am grateful to an anonymous referee for making this point clear. 



 9 

50Mhz processors. Thus it is impractical to use bootstrapping in this case to construct 

confidence intervals or to undertake tests of significance. The “best fit” from among all 

combinations of alternative models can be chosen using Schwarz’s (1978) information criterion 

(SBIC) or by minimising the in sample-mean square prediction error. The number of inputs, m, 

and the number of hidden units, N, which minimise SBIC and the mean square prediction error 

are shown in tables  2 and 3 respectively: 

 

Table 2: Number of Inputs, m, and Hidden Units, N that Give the First Minimum of SBIC 

Series A C D F G H I J S U 

m 1 1 2 2 1 1 1 1 2 1 

H 1 1 1 2 1 3 2 1 1 1 

 

Table 3: Number of Inputs, m, and Hidden Units, N that Give the First Minimum of Mean 

Squared Prediction Error 

Series A C D F G H I J S U 

m 3 2 5 4 5 1 3 3 3 3 

H 4 5 6 6 5 5 4 2 4 3 

 

The values of Schwarz’s information criterion and of the mean squared prediction error may 

indicate the optimal number of inputs and hidden layers. The latter criterion should be 

interpreted with caution, since there is much evidence that good in-sample prediction may be 

achieved by over-parameterising the network to yield a good fit to the data, at the expense of  

poor out-of-sample performance. In any case, the conclusion is not qualitatively altered by this, 

but in general, Schwarz’s criterion suggests that only one or two inputs and one or two hidden 

units are required for the real and surrogate data. This in itself is indicative of a lack of dynamic 

structure in the data since the “optimal” models according to this metric are very small ones. 

Hence even with such long data series, the improvement in model fit is insufficient to 

compensate for the increase in the penalty term. 

 

IV.1 Results of Correlation Dimension Estimation 

The results of an application of the GP algorithm are given in table 4 below. 

Table 4: Grassberger and Procaccia Correlation Dimension Estimates 
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 Embedding Dimension 

Series 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Returns data 

A 0.96 1.92 2.90 3.90 4.42 5.49 6.10 6.44 7.09 7.51 8.54 7.94 8.29 8.89 8.62 

C 0.99 2.01 2.96 3.96 4.82 5.20 5.80 5.82 5.86 6.10 6.59 6.77 6.80 7.52 7.54 

D 0.99 1.84 2.92 3.95 4.84 5.38 5.98 6.69 6.81 7.20 7.82 7.54 8.29 8.87 8.05 

F 0.97 1.97 2.99 3.98 4.39 4.94 5.19 5.44 5.58 5.56 5.60 5.68 5.81 5.89 6.02 

G 0.94 1.96 2.97 3.93 4.75 5.35 5.82 6.10 6.52 6.51 7.27 7.30 7.37 7.73 7.80 

H 0.99 2.00 2.99 3.71 4.34 4.62 4.76 4.93 5.04 4.90 5.23 5.33 5.20 5.34 5.41 

I 0.99 1.97 2.90 3.25 3.64 3.26 4.10 4.20 3.81 4.53 4.63 4.47 4.89 4.79 4.78 

J 0.92 1.96 2.96 3.94 4.71 5.22 5.88 6.17 6.52 7.01 7.32 7.56 7.87 7.98 8.18 

S 0.93 1.94 2.99 3.97 4.81 5.50 6.32 6.48 7.16 7.59 7.95 8.05 9.07 8.49 8.64 

U 0.98 1.99 2.86 3.16 3.19 3.40 3.22 3.72 3.89 3.47 4.12 4.30 3.74 4.24 4.40 

Surrogate Data 

A 0.96 1.92 2.96 3.98 4.97 5.64 6.55 6.94 7.61 8.17 8.64 9.04 9.56 9.45 10.05 

C 0.99 1.99 2.97 3.99 4.90 5.62 6.42 6.89 7.53 8.02 8.51 9.10 9.47 9.78 10.38 

D 0.98 1.99 2.99 3.99 4.86 5.57 6.39 6.93 7.43 7.94 8.28 8.91 9.38 9.80 9.92 

F 0.97 1.96 2.96 3.92 4.89 5.55 6.45 7.00 7.53 7.86 8.27 8.50 9.24 9.62 9.67 

G 0.98 1.97 2.90 3.99 4.87 5.61 6.19 6.79 7.22 7.74 8.22 8.58 8.82 9.28 9.43 

H 0.99 2.00 2.98 3.99 4.72 5.34 6.10 6.58 7.04 7.60 8.00 8.56 8.74 9.07 9.63 

I 0.99 1.99 3.00 3.99 4.63 5.40 6.11 6.68 7.32 7.84 8.17 8.33 8.85 9.05 9.50 

J 0.92 1.96 2.96 4.00 4.86 5.52 6.30 7.04 7.56 7.29 8.60 8.95 9.32 9.93 10.29 

S 0.94 1.91 2.96 3.99 4.99 5.77 6.44 7.11 7.60 8.26 8.80 9.36 9.51 10.09 10.40 

U 0.99 2.00 2.95 3.97 4.84 5.52 6.13 6.67 7.18 7.71 8.19 8.81 9.14 9.83 10.28 

 

As detailed above, a saturation in the estimate relative to that of the corresponding surrogate 

data, at a given embedding dimension, is taken as evidence of deterministic behaviour 

underlying the series. This dimension estimate provides a lower bound on the number of 

independent variables which would be required to model the series. As table 4 shows, all the 

returns series show some degree of saturation which is not present in their surrogate 

counterparts. This may be indicative that there is some degree of determinism underlying all the 

series, and in many applications, which will be described below, the test has been assumed to 

give prima facie evidence for chaos. Although the degree of saturation is evidently stronger in 

some series than others, it is often around 5-6. This ties in well with the results of Scheinkman 

and LeBaron (1989), and a number of other authors, who find this order of magnitude common 

across many financial markets. The lowest and most stable correlation dimension estimates 

come from the Italian Lira / Pound and U.S. Dollar / Pound returns, which give estimates of 

between 4 and 5 for embedding dimensions up to 15. However, it has been suggested (Ramsey 
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et al., 1990) that this provides only limited evidence for deterministic dynamics, since even 

completely randomly generated data samples will appear to saturate
5
. 

                                                 
5
 . This appears to be the case, since even the dimension estimate for artificial data generated as pure 

Gaussian noise (not shown) slows to just over 10 as the embedding is increased to 15. 
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IV.2 Results of Lyapunov Exponent Estimation 

The results of Lyapunov exponent estimation, using both the Wolf algorithm and the neural 

network technique of Gencay and Dechert, are shown in the following tables: 

 

Table 5: Estimation of Largest Lyapunov Exponents using the method of Wolf et al. 

 Embedding Dimension 

Series 1 2 3 4 5 6 7 8 9 10 

Returns data 

A 1.497 1.284 0.969 0.603 0.360 0.222 0.166 0.116 0.088 0.068 

C 1.847 1.107 0.856 0.723 0.431 0.264 0.198 0.136 0.108 0.075 

D 1.247 1.270 0.965 0.641 0.405 0.247 0.159 0.127 0.101 0.076 

F 1.233 1.131 0.870 0.572 0.369 0.235 0.164 0.118 0.097 0.068 

G 1.364 1.376 1.023 0.659 0.398 0.255 0.170 0.138 0.098 0.078 

H 1.250 0.976 0.792 0.554 0.366 0.232 0.169 0.104 0.078 0.073 

I 1.112 1.053 0.701 0.531 0.346 0.223 0.148 0.114 0.092 0.062 

J 1.591 1.368 1.024 0.669 0.413 0.252 0.180 0.124 0.094 0.064 

S 1.531 1.475 1.054 0.686 0.409 0.256 0.185 0.134 0.091 0.075 

U 1.614 1.440 1.085 0.658 0.402 0.256 0.174 0.128 0.089 0.079 

Surrogate Data 

A 1.425 1.131 0.923 0.710 0.421 0.281 0.184 0.131 0.098 0.072 

C 2.087 1.660 1.270 0.776 0.479 0.313 0.220 0.172 0.133 0.119 

D 1.851 1.305 1.056 0.720 0.445 0.289 0.199 0.142 0.099 0.080 

F 1.608 1.425 1.147 0.748 0.465 0.302 0.202 0.154 0.118 0.095 

G 1.545 1.439 1.140 0.749 0.455 0.302 0.200 0.144 0.109 0.088 

H 1.405 1.296 1.037 0.726 0.437 0.268 0.197 0.136 0.102 0.077 

I 1.577 1.146 0.911 0.660 0.439 0.278 0.213 0.139 0.106 0.077 

J 1.779 1.542 1.217 0.765 0.463 0.296 0.205 0.154 0.118 0.097 

S 1.821 1.575 1.196 0.787 0.462 0.308 0.214 0.158 0.124 0.104 

U 2.048 1.515 1.168 0.770 0.469 0.288 0.208 0.154 0.110 0.090 

 

The salient feature of the data is that  there is no evidence of chaotic dynamics in any of these 

Pound exchange rates. Whilst the largest Lyapunov exponent estimated by the Wolf algorithm 

is in every case positive, as shown in table 5, this cannot be taken as evidence for sensitive 

dependence, since the corresponding estimates for the surrogate data are also positive and are 

of the same order of magnitude. One would expect the Lyapunov exponents for the surrogate 

data to be significantly negative since any chaotic structure which was present in the original 

series should have been destroyed by the randomisation. Calculation of the whole spectrum of 

Lyapunov exponents can potentially be achieved using the method of Dechert and Gencay, 
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although only the largest are shown since it is only the largest Lyapunov exponent which is of 

direct interest
6
.  

 

Table 6: Estimation of Lyapunov Exponents for the German Mark Returns using the method of 

Dechert and Gencay (1990), only largest Lyapunov exponent shown 

 Number of hidden units 

m 1 2 3 4 5 6 7 8 9 10 

1 -5.3325 -4.1221 -2.5603 -3.9918 -3.1416 -3.0514 -2.7805 -2.6132 -2.5713 -3.0728 

2 -3.6197 -2.1553 -1.7933 -1.7618 -1.3154 -1.3417 -1.1881 -1.3038 -1.1326 -1.1011 

3 -0.2341 -1.4485 -0.9230 -0.8256 -0.8870 -0.8566 -1.0082 -0.6362 -0.8545 -0.6659 

4 -0.4345 -0.6858 -0.7449 -0.5844 -0.5963 -0.4703 -0.4785 -0.5741 -0.4511 -0.5217 

5 -1.1297 -1.1275 -0.4560 -0.6140 -0.4517 -0.3759 -0.3860 -0.3383 -0.2886 -0.2271 

6 -0.8743 -0.7197 -0.3360 -0.4435 -0.3113 -0.3081 -0.2671 -0.2242 -0.2278 -0.2526 

 

Table 7: Estimation of Lyapunov Exponents for the Japanese Yen Returns using the method of 

Dechert and Gencay, only largest Lyapunov exponent shown 

 Number of hidden units 

m 1 2 3 4 5 6 7 8 9 10 

1 -2.8543 -2.4349 -2.2309 -3.2254 -2.2154 -3.0422 -1.9149 -1.6613 -1.3588 -1.2613 

2 -2.2560 -1.9439 -2.2819 -1.7703 -1.2669 -1.0833 -1.0269 -0.9783 -0.7011 -0.8103 

3 -1.1907 -0.7417 -1.1974 -0.9897 -0.8506 -0.7242 -0.9406 -0.6902 -0.5629 -0.7053 

4 -1.0013 -1.0057 -1.1144 -0.7051 -0.5578 -0.4751 -0.6011 -0.4293 -0.3879 -0.3857 

5 -0.7379 -0.7679 -0.5536 -0.5608 -0.3806 -0.4705 -0.4809 -0.3503 -0.2614 -0.2448 

6 -0.6211 -0.4922 -0.3639 -0.3838 -0.3032 -0.2267 -0.1786 -0.2491 0.2210 -0.2149 

 

                                                 
6
 Only those results for the three largest trading-volume currencies investigated are shown, since results 

for the other series are qualitatively identical. A full appendix containing these results and additional 

statistics for the surrogate and a set of artificially generated data, is available upon request from the 

author. 
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Table 8: Estimation of Lyapunov Exponents for the US Dollar Returns using the method of 

Dechert and Gencay, only largest Lyapunov exponent shown 

 Number of hidden units 

m 1 2 3 4 5 6 7 8 9 10 

1 -2.8197 -5.7844 -2.4788 -2.1211 -2.4536 -2.2030 -2.3111 -2.4493 -2.3102 -1.5110 

2 -2.1872 -2.0325 -2.8629 -1.8652 -1.5275 -1.3440 -1.0610 -0.9746 -0.9330 -0.9288 

3 -1.6316 -1.1715 -1.4562 -0.8225 -0.6339 -0.6084 -0.7491 -0.7449 -0.5414 -0.5123 

4 -1.2344 -0.7019 -0.8316 -0.6124 -0.5163 -0.4560 -0.3455 -0.2696 -0.3684 -0.2652 

5 -0.6803 -0.5439 -0.4440 -0.3146 -0.4045 -0.3750 -0.3891 -0.2507 -0.2828 -0.2388 

6 -0.2859 -0.3701 -0.4042 -0.3821 -0.2936 -0.2053 -0.3139 -0.2684 -0.2231 -0.1912 

  

Once again, the results shown in tables 6 to 8 give no support to the presence of chaotic 

dynamics in the series considered. Thus it appears overall that the possibility of chaotic 

dynamics is rejected for all the series considered, and this has been the conclusion of almost all 

studies of economic data (Scheinkman, 1994). 

 

V. Relation to other work 

It is important to note that saturation of the correlation dimension estimate is a necessary, but 

by no means sufficient condition for the existence of a chaotic attractor (Hsieh, 1993). In fact, 

an infinite number of nonlinear, but non-chaotic data generating mechanisms would also lead to 

a low and stable dimension estimate. Osbourne and Provenzale (1989) and Scheinkman and 

LeBaron (1989) have shown that nonlinear stochastic systems are capable of exhibiting this 

property
7
. In other words, correlation dimension estimation has power against non-chaotic as 

well as chaotic alternatives. Indeed, the dimension estimates calculated here stabilise at low 

values relative to their randomised surrogate counterparts, and yet the largest estimated 

Lyapunov exponent is almost invariably below zero. 

 

Many authors claim to have tested for chaos using only an application of the Grassberger 

Procaccia technique (Liu et al., 1992; Yang and Brorsen, 1992; Booth et al., 1990 & 1994; 

DeGrauwe et al., 1993; Peters, 1991; Willey, 1992; Varson and Jalivand, 1994). Of these, the 
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last four claim to have found chaos, but all  claim to have tested for its presence. Willey (1992), 

for example,  states that 

 “The increase in dimensionality estimate of the shuffles compared to the 

 residuals of the whitened data indicates that both series are chaotic” (p71).  

Varson and Jalivand (1994) also claim to have found chaos in some series based on low 

dimension estimates, and DeGrauwe et al. (1993) argue that they have “presented empirical 

evidence on the existence of chaos” in foreign exchange rates. It is also possible, however, that 

these low dimension estimates are the product of some nonlinear stochastic (non-chaotic) data 

generating mechanism or “some smoothness in the original data” as Ruelle (1990, p246) puts it. 

 

Frank et al. (1988), Barnett et al. (1992), Dechert and Gencay (1992) and Blank (1991) do 

compute the largest Lyapunov exponent of various financial and macroeconomic time series. 

Of these, only Blank finds a positive exponent in agricultural futures price series which is 

robust to changes in the value of the user-adjustable parameters, such as the embedding 

dimension and delay time. This conjecture is, however, based on an average of only 336 

observations, and uses the direct and less stable algorithm of Wolf et al. (op cit.). 

 

VI. Conclusions 

The correlation dimension and spectrum of Lyapunov exponents have been calculated for a set 

of daily Sterling exchange rates. In common with many other studies, the dimension estimates 

in some cases stabilised as the embedding dimension increased, but in all cases, the largest 

Lyapunov exponent was calculated to be negative. This indicates the presence of some kind of 

nonlinear determinism in the data (of a form which cannot be identified from the tests used 

here, but see Brooks (1996), for a consideration of the form of nonlinearity that may be 

present), but makes the stronger possibility of deterministic chaos unlikely. 

                                                                                                                                               
7
Moreover, Scheinkman and LeBaron (1989) show that even data generated by ARCH or GARCH models 

will lead to saturation in dimension estimates. 
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It has been shown that the correlation dimension estimate of Grassberger and Procaccia has 

been much abused by economists in recent years. These estimates are likely to be biased 

downwards for random noise (Ramsey et al., 1990), and are at best unreliable for small data 

sets, with no finite sample distribution theory available as yet (Ramsey et al., 1990). 

Furthermore, the use of a low-pass filter to reduce noise can give finite, non-integer dimension 

estimates (Rapp et al., 1993). Mitschke et al. (1988) argue that this will not be the case for the 

largest Lyapunov exponent, since only those exponents less than zero will be affected by the 

filtering process. Mizrach (1992) argues that “...entropy should be regarded as the defining 

characteristic” (p188), and Ruelle (1990) notes that “there are quantities other than the 

correlation dimension that one may try to compute, and that may be better behaved...”(p246).  

Given these facts, that more researchers do not compute LE measures is puzzling, but may be a 

consequence of their relative computational complexity and the huge CPU requirement 

mentioned above. Moreover, Lyapunov exponent estimation from observed time series is 

highly unstable to dynamic noise. The problem is likely to be even more troublesome than for 

calculation of the correlation dimension.  

 

Armed with this evidence, a re-examination of the literature has revealed no papers which find 

chaos in economic series based on what may be considered robust techniques (i.e. calculation 

of LE by an indirect method over a long data series). It appears, then, that we are left with the 

likelihood that chaos is decidedly not present in any economic data, or at least cannot be 

detected by the best of the tools which are currently available. Nearly a decade ago, Brock and 

Sayers (1988) argued that “evidence of chaos is weak, but out tests may be to weak to detect 

it...” (p71). Although the Dechert and Gencay technique is a clear step in the right direction, it 

is likely that the levels of system noise present in economic and financial time series would 

render any chaotic structure undetectable, even with the large sample sizes available for the 
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latter. Thus unless a further quantum leap is made in the robustness of tests to the presence of 

dynamic noise, it is likely that chaotic dynamics in economic data will remain elusive. 
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