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Abstract

The structural analogy between Ni-doped greigite minerals (Fe3S4) and the (Fe,Ni)S clusters present in biological enzymes
has led to suggestions that these minerals could have acted as catalysts for the origin of life. However, little is known about the
distribution and stability of Ni dopants in the greigite structure. We present here a theoretical investigation of mixed thiospi-
nels (Fe1�xNix)3S4, using a combination of density functional theory (DFT) calculations and Monte Carlo simulations. We
find that the equilibrium distribution of the cations deviates significantly from a random distribution: at low Ni concentra-
tions, Ni dopants are preferably located in octahedral sites, while at higher Ni concentrations the tetrahedral sites become
much more favourable. The thermodynamic mixing behaviour between greigite and polydymite (Ni3S4) is dominated by
the stability field of violarite (FeNi2S4), for which the mixing enthalpy exhibits a deep negative minimum. The analysis of
the free energy of mixing shows that Ni doping of greigite is very unstable with respect to the formation of a separate violarite
phase. The calculated variation of the cubic cell parameter with composition is found to be non-linear, exhibiting significant
deviation from Vegard’s law, but in agreement with experiment.
� 2012 Elsevier Ltd. Open access under CC BY license.
1. INTRODUCTION

Greigite is the iron sulphide mineral Fe3S4 (Rickard and
Luther, 2007), which consists of a mixture of Fe3+ and Fe2+

ions bonded to S2� ions. It has a cubic unit cell with cell
parameter a = 9.876 Å and Fd3m space group symmetry
(Skinner et al., 1964). Classified as the sulphur analogue
of magnetite, the cubic unit cell of this thiospinel (Fig. 1)
consists of eight AB2S4 units (Vaughan and Craig, 1978),
with trivalent Fe cations occupying the tetrahedral (A)
sites, and both trivalent and divalent Fe cations located in
the octahedral (B) sites (Vaughan et al., 1971; Devey
et al., 2009).

Greigite formation in nature may occur via the reduc-
tion of iron solutions by the bacteria Desulphibrio desulphi-
0016-7037� 2012 Elsevier Ltd.
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ricans (Freke and Tate, 1961), but only under anaerobic
conditions in H2S-rich waters (Hoffmann, 1992). Iron–nick-
el sulphides have been implicated in the origin of life, based
on the observation that these minerals contain iron-sul-
phide clusters akin to those found in a number of contem-
porary enzymes known to catalyse similar reactions to
those involved in primordial metabolism (Huber and
Wächtershäuser, 1997), specifically the acetyl-coenzyme-A
(CoA) pathway, which involves the overall conversion of
two molecules of carbon dioxide (CO2) into an acetate
group, with water as a by-product (Ferry, 1995; Huber
and Wächtershäuser, 1997; Russell and Martin, 2004).
Nickel is a vital component required for such catalytic
activity, and it is also a known impurity in greigite (Rickard
and Luther, 2007). The structural resemblance between the
NiFeS clusters in the active sites of many biological en-
zymes and nickel-doped iron sulphide minerals such as gre-
igite (Russell and Martin, 2004), led to the proposal of the
iron–sulphur membrane theory (Russell and Hall, 1997),
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Fig. 1. Greigite as seen along the c-axis; S in light grey, Fe in dark
grey.
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which suggests that life arose at a redox and pH front on
the Hadean ocean floor (�4 billion years ago). According
to these suggestions, the meeting between the alkaline
hydrothermal front generated in the oceanic crust with
the acidic oceanic fluid led to a spontaneous precipitation
of FeS and NiS membranes or ‘bubbles’, which formed
via a reaction between dissolved transition metals from
the ocean, such as iron, with bisulphide contained in the
hydrothermal fluid (Russell and Martin, 2004). These mem-
branes are then supposed to have undergone a geochemical
transformation to form greigite (Fe3S4) and violarite (Fe-
Ni2S4) (Cody, 2004). The reducing environment necessary
for the conversion of CO2 to CO is readily achieved via a
switch in valency of Fe ions from II (ferrous) to III (ferric)
(Russell and Martin, 2004). FeS membranes formed at the
hydrothermal front would certainly have contained trace
amounts of Ni, probably sufficient to cleave the hydrother-
mal hydrogen at the nickel site producing hydride (Russell
and Hall, 1997), an important step in the present-day acet-
yl-CoA pathway. We know nickel to have an important
role in biological catalysis, and its inclusion in enzymes is
attributed to its flexibility in coordination and ability to
transfer quickly between either of the oxidation states (I)
(II) and (III) (Ragsdale, 2009).

In order to develop further the chemical analogy be-
tween FeNi enzymes and FeNi-sulphide minerals, a com-
parison between the coordination environment of the
cations in the enzymes and the minerals would be useful.
In NiFe hydrogenases, a class of enzymes responsible for
the conversion of molecular hydrogen into a proton and
hydride (Russell and Hall, 1997; Volbeda and Fontecilla-
Camps, 2003; Canaguier et al., 2008; Ragsdale, 2009), the
coordination of nickel in the active site is always lower than
that of iron. For instance, when the enzyme is in the oxi-
dised state, Ni is in square-planar coordination, while Fe
is square-pyramidal; in the reduced state, Ni exhibits a
square-pyramidal coordination, and the Fe has an octahe-
dral geometry (Volbeda et al., 1995; Volbeda and Fontecil-
la-Camps, 2005; Canaguier et al., 2008). In the case of
CODH (carbon monoxide dehydrogenase – responsible
for the catalysis of CO2 to CO (Russell and Martin, 2004;
Ragsdale, 2009)), Ni is in a tetrahedrally distorted square-
planar coordination, with the proximal Fe also displaying
tetrahedral geometry (Dobbek et al., 2001; Svetlitchnyi
et al., 2004; Gencic et al., 2010). This is also the case for
the distal Ni in acetyl coenzyme-A synthetase (ACS) (the
enzyme which acts to combine the resultant CO with a
methyl group (Volbeda and Fontecilla-Camps, 2005)),
where Ni exhibits a square-planar geometry (Lindahl,
2004). From these observations, it seems that the analogy
between the sulphide minerals and the enzymes is closer
when Ni is preferentially located in tetrahedral sites of the
greigite structure, and indeed, this agrees with the represen-
tation made of the Ni-doped greigite structure in the origi-
nal paper on the iron–sulphur membrane theory by Russell
and Martin (2004). However, so far the coordination envi-
ronment of Ni in greigite has not been investigated.

In this work, we present a theoretical investigation of the
partitioning of Ni over the tetrahedral and octahedral sites
of greigite, for which we find a strong composition depen-
dence. We also discuss the thermodynamics of mixing in
the (Fe,Ni)3S4 system, to explain why violarite (FeNi2S4)
is the most common composition in the solid solution series
between greigite and polydymite (Ni3S4), while low Ni/Fe
ratios are much less abundant (Misra and Fleet, 1974).

2. METHODOLOGY

2.1. Density functional theory

We have employed density functional theory (DFT)
calculations to obtain the energies and equilibrium geome-
tries of the Fe/Ni thiospinels, using the Vienna ab initio

simulation package (VASP) (Kresse and Hafner, 1993,
1994; Kresse and Furthmüller, 1996). This approach has al-
ready been used successfully in the modelling of a number
of iron sulphide minerals (e.g. Rohrbach et al. (2003),
Devey et al. (2008, 2009), Devey and de Leeuw (2010)).
All calculations are performed within the generalised gradi-
ent approximation (GGA), with the exchange–correlation
functional developed by Perdew et al. (1992), and the spin
interpolation formula of Vosko et al. (1980). Following pre-
vious work (Devey et al., 2009), a Hubbard correction with
Ueff = 1 eV was applied to the Fe d orbitals to improve the
description of the electron localisation.

The valence orbitals are calculated as linear combina-
tions of plane waves, and the size of the basis set is deter-
mined by a cutoff energy (400 eV in our case). The core
levels are kept ‘frozen’ during the calculations, which in this
instance consist of orbitals up to, and including 3p for Fe
and Ni, and 2p for S. The interactions between the valence
electrons and core orbitals are described using the projector
augmented wave (PAW) method (Blöchl, 1994) in the
implementation of Kresse and Joubert (1999). All calcula-
tions were performed in a cell with composition Fe24�n-

NinS32. A Monkhorst–Pack grid (Monkhorst and Pack,
1976) of 4 � 4 � 4 was employed to sample the Brillouin
zone. All calculations were spin-polarised, and the magnetic
moments of the octahedral and tetrahedral sublattice were
always given opposite orientations, in agreement with
experimental evidence (Devey et al., 2009).

2.2. Statistical mechanics of configurations

For low Ni concentrations, we have evaluated all the
different configurations of Fe/Ni substitutions in the
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simulation cell, using the site occupancy disorder (SOD)
program (Grau-Crespo et al., 2007), which has been em-
ployed previously in simulations of the ionic distribution
in minerals (e.g. Grau-Crespo et al. (2003, 2004, 2010)
and Ruiz-Hernandez et al. (2010)). This program uses the
crystal symmetry to reduce the configurational space that
must be evaluated with the DFT calculations, selecting only
the symmetrically inequivalent configurations. We can as-
sign a probability of occurrence to each inequivalent config-
uration m (m = 1, . . .,M) with degeneracy Xm as:

P m ¼
1

Z
Xm exp

�Em

kBT
ð1Þ

where T is the temperature, kB is Boltzmann’s constant and
equal to 8.6173 � 10�5 eV K�1, Em is the energy of the con-
figuration, and Z is the partition function which ensures
that the sum of probabilities is equal to 1. We can then cal-
culate the configurational average of any quantity Q (e.g.
energy, cell parameter, etc.) using:

hQi ¼
XM

m¼1

P mQm ð2Þ

where Qm is the quantity value for configuration m. How-
ever, at high dopant concentrations the cost of calculating
the full configurational spectrum becomes prohibitive. We
therefore introduce a model based on nearest-neighbour
(NN) concentration-dependent interactions (hereafter re-
ferred to as the NN model), which is fitted to the results
of the DFT calculations and then employed to evaluate
the energies of configurations sampled with a Monte Carlo
procedure (Lavrentiev et al., 2003; Purton et al., 2005). The
acceptance or rejection of each configuration is based on
the Metropolis algorithm (Metropolis et al., 1953), which
involves the calculation of the energy difference, DE, be-
tween the particular configuration i and the previously ac-
cepted one:

DE ¼ Ei � Eði�1Þ ð3Þ

If DE < 0, then the configuration is accepted. Otherwise,
a random number r is generated (such that 0 < r < 1), and
the condition of acceptance then becomes:

r < expð�DE=kBT Þ ð4Þ

Within this procedure, a technique known as impor-
tance sampling is utilised, whereby the generation of
our random configurations is biased in such a way that
the previously accepted configuration is used as a tem-
plate for the new one. In our case, the modification intro-
duced at each step is that one Ni and one Fe ion swap
sites within the lattice. In order to eliminate the impact
of uncommon or extreme readings on the final result,
the simulation is allowed to run and equilibrate for some
time before we collect data from it. Convergence is mon-
itored by checking the deviation in energy of the new
configuration from the previously calculated average.
Once below a certain threshold, the calculation is
accepted to have converged.
3. RESULTS AND DISCUSSION

3.1. Ni doping at low concentrations

We first discuss the case of low concentrations of nickel
in greigite (0–3 ions per unit cell, or fractional concentra-
tions x 6 0.125 in (NixFe1�x)3S4), for which we were able
to obtain the full configurational spectrum via DFT
calculations.

In the case of one Ni in the unit cell, there are only two
possible substitutional configurations: in an octahedral or
in a tetrahedral site. The energy of the substitution in the
tetrahedral site is De = 0.439 eV higher than in the octahe-
dral site. In order to interpret this energy difference, we can
calculate the occupancies xA and xB of the two types of sites
in the limit of very low overall concentrations x from the
equation:

xA

xB

¼ e�
De
RT ð5Þ

which together with the condition

1

3
xA þ

2

3
xB ¼ x ð6Þ

leads to

xA ¼
3xe�

De
RT

2þ e�
De
RT

; xB ¼
3x

2þ e�
De
RT

ð7Þ

In real samples the distribution of cations is unlikely to
be equilibrated at room temperature because the thermal
energy is not enough to overcome the activation barriers
for cation diffusion. We therefore discuss here the equilib-
rium distribution of cations at a representative temperature,
T = 600 K, which is chosen close to the maximum temper-
ature at which the whole (NixFe1�x)3S4 series is known to
be stable (the pure Ni end-member is stable only up to
�630 K (Vaughan and Craig, 1985)). At this temperature,
xA = 0.0003x, which means that in the limit of low concen-
trations only 0.01% of the total Ni content would be in tet-
rahedral sites.

For two or more Ni atoms per unit cell, the analysis can-
not be done in terms of one energy difference, because there
are several possible configurations for the ions in the cell
(Table 1). For example, for 2 Ni atoms in the cell there
are 24!/(22!2!) = 276 combinations, of which 7 are symmet-
rically different. These include configurations with both Ni
in octahedral positions, configurations with both Ni in tet-
rahedral positions and configurations with one octahedral
and one tetrahedral Ni. In this case, the effective Ni occu-
pancy of the tetrahedral (A) sites can be obtained as an
average (Eq. (2)) of the Ni tetrahedral occupancies of the
configurations:

xA ¼
1

8

XM

m¼1

P mtm ð8Þ

where tm is the number of tetrahedral Ni atoms per cell in
configuration m, which has probability Pm (Eq. (1)). At
600 K and Ni concentrations x = 0.0833 and 0.1250 (2
and 3 Ni per cell), the tetrahedral site occupancies are



Table 1
Number of cation configurations as a function of the total number
n of Ni ions per unit cell.

n Total number of
configurations

Symmetrically inequivalent
configurations

1 24 2
2 276 7
3 2024 25
4 10,626 97
5 42,504 297
6 134,596 853
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1.4 � 10�3 and 1.2 � 10�2, which correspond to 0.6% and
3.3% of the total Ni content, respectively.

It is therefore clear that, although Ni strongly prefers to
occupy octahedral positions when substituted at low con-
centrations, an increase in the overall concentration leads
to an increase in the fraction of Ni occupying tetrahedral
positions. It is interesting to investigate whether this trend
continues for higher Ni concentrations.

3.2. Heavy Ni-doping: Monte Carlo simulations

At higher dopant concentrations (more than 3 Ni ions
per cell, or x > 0.125), it becomes too expensive to perform
DFT calculations of the entire configurational spectrum,
due to the large number of possible configurations (see
Table 1). We therefore have used the data obtained from
our DFT calculations to fit a simplified interaction model
for a rapid evaluation of energies. The model is based on
an Ising-type Hamiltonian with three types of nearest-
neighbour (NN) interactions and separate concentration-
dependent substitution energies for tetrahedral (A) and
octahedral (B) sites:

E ¼ Eo þ N AeA þ NBeB þ N AAJAA þ NBBJBB þ N ABJAB ð9Þ

where NA and NB refer to the number of Ni ions in A and B
sites, and NAA, NBB and NAB refer to the number of tetra-
hedral–tetrahedral, octahedral–octahedral and tetrahedral–
octahedral nearest-neighbour Ni–Ni pairs. These parame-
ters are specific for each configuration. Eo is the energy of
un-doped (pure iron) greigite, and the constants J then refer
to the interaction energies between Ni ions in the corre-
sponding NN sites. eA and eB are the costs of individual
Ni substitutions in sites A and B, respectively, and these
values are allowed to vary linearly with concentration as:

eA ¼ eo
Að1þ axÞ; eB ¼ eo

Bð1þ bxÞ ð10Þ

where eo
A and eo

B are the costs of placing a Ni in the A or B
site in the limit of low concentrations. This leads to an en-
ergy model with a total of seven parameters. The DFT data
used for the fitting consisted of all configurations with
n = 0 � 3 Ni per unit cell as discussed above; all configura-
tions with 4 6 n 6 8 and either purely tetrahedral or purely
octahedral occupancy; and a random selection of tetrahe-
dral/octahedral mixed occupancy configurations for each
composition. The final fitted values were eo

A

¼ 2:590 eV; eo
B ¼ 2:091 eV; a ¼ �1:02741; b ¼ 0:07771;

JAA ¼ 0:05465 eV; JBB ¼ �0:02997 eV; JAB ¼ 0:05290
eV, while Eo was taken directly from the DFT calculation
of pure greigite. Fig. 2 shows that this NN interaction mod-
el accounts very well for the energy differences between
configurations.

We then used this NN model to run Monte Carlo simu-
lations at 600 K for concentrations 0 6 x 6 0.333. Averages
of energies and tetrahedral occupancies could then be ex-
tracted from the accepted configurations at each concentra-
tion. The calculated tetrahedral/octahedral partition for the
whole range of concentrations is shown in Fig. 3, where we
show the total Ni concentration (x) as a sum of both tetra-
hedral ð1

3
xA) and octahedral ð2

3
xB) contributions. We also

illustrate the distribution of cations that is expected in the
full disorder limit, where the concentration of nickel in
the A sites is always one-third of the total nickel concentra-
tion, as well as the Monte Carlo result at 600 K, which devi-
ates significantly from the random distribution. As we
discussed above, at low Ni concentrations, B site substitu-
tions are strongly favoured, while at higher concentrations
there is a greater proportion of nickel ions in the A sites
than in the B sites. The change in site preference occurs be-
tween x = 0.20 and x = 0.25. At x = 1/3, 87% of the Ni is
located in tetrahedral sites. The plateau in the amount of
tetrahedral Ni near x = 1/3 appears because of the filling
of the tetrahedral sites. The high tetrahedral occupancy of
Ni at high concentrations is consistent with observations
that the mineral violarite FeNi2S4, with even higher Ni/Fe
ratio, has only Ni in its tetrahedral sites (Tenailleau et al.,
2006; Waldner, 2009).
3.3. Mixing thermodynamics

We now consider the enthalpy of mixing greigite and
polydymite (Ni3S4):

DH mix ¼ E½ðFe1�xNixÞ3S4� � ð1� xÞE½Fe3S4� � x½Ni3S4� ð11Þ

where we have ignored zero-point energy, heat capacity and
pressure–volume contributions to the mixing enthalpy,
which are typically small. The result is shown in Fig. 4a,
including data obtained from both DFT and the NN inter-
action model. The energies of violarite, polydymite and
Fe-doped polydymite were obtained directly from DFT cal-
culations. In the case of violarite, the energy is a Boltz-
mann-weighted average of 97 configurations.

It is clear that violarite (x = 0.666) is the most energeti-
cally stable member of the (Fe,Ni)S solid solution series,
with a very negative enthalpy of mixing of �15 kJ/mol,
while Ni-doped greigite has a positive enthalpy of mixing.
In order to obtain the maximum concentration of Ni do-
pants that is stable in greigite with respect to separation
into violarite, it is convenient to write the formula for Ni-
doped greigite as Fe(Fe1�yNiy)2S4, where y ¼ 3x

2
. Now

y = 0 corresponds to greigite and y = 1 to violarite. The
mixing enthalpy between greigite and violarite is shown in
the inset in Fig. 4a. DHmix(y) is positive, at least for all val-
ues of y studied here (0 < y < 0.5). At low concentrations,
the dependence with y is linear with slope W = 38.9 kJ/
mol. This large value (compared to RT) indicates that it
is energetically unfavourable to move Ni from violarite to



Fig. 2. Comparison between the energies per Ni substitution as
calculated with DFT and those calculated with a nearest-neighbour
interaction model (NNM). R2 is the linear correlation coefficient,
which measures the strength of correlation between the variables.
Rv2 is the residual sum of squares, and is a measure of the
discrepancies between the NNM and the DFT results.

Fig. 3. Equilibrium distribution of Ni ions over tetrahedral and
octahedral sites as a function of the total Ni concentration (x) at
T = 600 K, in comparison with the random distribution (T!1).
The open circles are values obtained from the Monte Carlo
simulations.
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greigite. We can estimate the maximum concentration of Ni
that is stable in greigite from the minimum of the mixing
free energy:

DGmixðyÞ ¼ Wy � TDSmixðyÞ ð12Þ

where we have inserted the linear expression for the mixing
enthalpy because the minimum can be expected to occur at
low concentration due to the large W value. The mixing
entropy can then be obtained from the configurational
entropies of Ni-doped greigite and violarite (there is no
configurational entropy in pure greigite), ignoring the small
vibrational contributions, as:

DSmixðyÞ ¼ S½FeðFe1�yNiyÞ2S4� � yS½FeNi2S4� ð13Þ

where

S½FeðFe1�yNiyÞ2S4� ¼ �2kB½y ln y þ ð1� yÞ lnð1� yÞ� ð14Þ

is the entropy associated with the disorder of Ni dopants in
greigite, assuming they are all in octahedral sites (which is
accurate at very low concentrations as seen above), and

S½FeNi2S4� ¼ 2kB ln 2 ð15Þ

is the entropy of the disorder in the octahedral sites of viol-
arite, which are occupied by Ni and Fe in a 50:50 propor-
tion. The factor of 2 in Eqs. (14) and (15) accounts for
the presence of two octahedral sites in each formula unit.
The mixing free energy at T = 600 K has a minimum at
approximately y = 0.01 (Fe(Fe0.99Ni0.01)2S4 or Ni:Fe =
1:150), where Ni is mainly octahedral. This corresponds
to the maximum equilibrium concentration (solubility) of
Ni in greigite. Since most Ni is in octahedral sites at any
reasonably low temperature and the Ni–Ni interaction is
negligible at low concentrations, W does not vary apprecia-
bly with temperature and we can estimate the solubilities in
a small range of temperatures, as shown in Fig. 4b.
Although the solubility increases with temperature, even
at 700 K the maximum Ni:Fe ratio in thermodynamic equi-
librium is around 1:87. The consideration of higher temper-
atures is not relevant, as we have already discussed that the
(Fe,Ni)S solid solution series will not be stable at such high
temperatures (Vaughan and Craig, 1985).

The analysis above shows that Ni doping of greigite is
thermodynamically very unfavourable with respect to the
competitive formation of violarite FeNi2S4. Metastable
incorporation beyond these limits is possible, as occurs in
many minerals due to kinetic control of mineral growth.
However, our results indicate that low Ni/Fe thiospinels
would not be very abundant, and there is a notable lack
of documentation on any such minerals being found in
nature.

3.4. Variation of bond lengths and cell parameter with

composition

Table 2 shows the bond lengths of Fe–S/Ni–S obtained
from our DFT optimisations of pure greigite, polydymite,
and greigite with one nickel substituted in place of a
tetrahedral or octahedral iron. As we can see, inclusion of
one Ni in either of the lattice sites in greigite leads to a de-
crease in the equivalent cation–sulphur bond length in pure
greigite, although the bond distance is still greater than
those Ni–S bonds found in polydymite. Yet the effect of
Ni substitution on the adjacent Fe–S bonds varies depend-
ing on which lattice site is occupied by the dopant. When Ni
is substituted in the tetrahedral site, the distance between
the Fe coordinated to the same S as Ni also decreases.
However, when Ni occupies an octahedral site, then the sur-
rounding Fe–S bonds will be slightly longer than those
found in pure greigite, effectively counteracting the decrease
in bond length caused by Ni substitution. This effect ex-



Fig. 4. (a) The energy of mixing DHmix(x) calculated per formula
unit with respect to greigite (x = 0) and polydymite (x = 1)
(x = 0.666 corresponds to violarite). Inset: DHmix(y) calculated
per formula unit with respect to greigite (y = 0) and violarite
(y = 1). (b) The free energy of mixing DGmix(y) calculated with
respect to greigite (y = 0) and violarite (y = 1) at a range of
different temperatures.

Fig. 5. Variation in cell parameter as calculated via DFT methods
and the Nearest Neighbour Energy Model, shown alongside
experimental results (Craig, 1971).
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plains why at this low concentration, substitution of Ni into
a tetrahedral site in greigite will lead to a greater reduction
in cell parameter than for the equivalent octahedral site
substitution.

These geometrical effects link in with the results displayed
in Fig. 5, which shows that substitution of the first 8 Ni into
the greigite unit cell leads to a sharp decrease in the cell
parameter, by a value of approximately 0.366 Å. Yet substi-
tution of a further 8 Ni (to form violarite) is accompanied by
Table 2
Relaxation geometries from DFT calculations.

Structure Cell parameter
a (to 3 s.f.)

Bond type Length (Å)

Fe24S32 9.83 FeA–S 2.199
FeB–S 2.413

Ni24S32 9.47 NiA–S 2.190
NiB–S 2.289

NiAFe23S32 9.77 NiA–S 2.175
FeB–S(–NiA) 2.387

NiBFe23S32 9.80 NiB–S 2.399
FeB–S(–NiB) 2.433
FeA–S(–NiB) 2.213
a further reduction of only 0.032 Å. The implication is again
that, as suggested from our DFT calculations, the biggest dis-
tortion of the unit cell occurs from occupation of the tetrahe-
dral sites by Ni (we know from our NN model that at a
concentration of 8 Ni per unit cell, the Ni will occupy all of
the A sites). It should also be noted that the trend exhibited
by cell parameter a shows a deviation from Vegard’s law,
but is supported by experimental measurements (Craig,
1971). Vaughan and Craig (1978) have explained this phe-
nomenon in the context of the number of electrons in the
anti-bonding r* orbitals. The numbers (per formula unit)
for greigite, violarite and polydymite are 7, 4 and 6, respec-
tively. The greater the number of electrons occupying these
orbitals, the greater the repulsive effect on the proximal sul-
phur ligands, and thus the larger the cell parameter.

4. CONCLUSIONS

We have shown here that partitioning of Ni between tet-
rahedral and octahedral sites in Fe–Ni thiospinels, (Fe1�x-

Nix)3S4, is strongly dependent on the composition. At low
concentrations (x < 0.2) there is a strong preference for
octahedral (B) site occupation of Ni. This is an interesting
result because it somehow breaks the analogy between
Ni-doped greigite and biological enzymes with (Fe,Ni)S
clusters, where Ni is usually tetra-coordinated (Volbeda
et al., 1995; Dobbek et al., 2001; Volbeda and Fontecilla-
Camps, 2003, 2005; Svetlitchnyi et al., 2004; Ragsdale,
2009; Gencic et al., 2010). The analogy in coordination
environment is better for the thiospinels with higher Ni
concentrations (x > 0.25), for which Ni ions locate prefer-
entially in the tetrahedral (A) sites.

It should also be noted that in enzymes such as CODH,
there are four Fe ions and only one Ni ion in the active
C-cluster (Dobbek et al., 2001; Thauer, 2001; Ragsdale,
2009), which partly explains why the iron–sulphur mem-
brane theory papers refer to Ni-doped greigite rather than
violarite, which has a higher Ni/Fe ratio. Yet (Fe1�xNix)3S4

minerals with a low concentration of nickel are not very
abundant or are not well documented, which coincides with
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our own results, showing that Ni doping of greigite is highly
unstable with respect to separation into a violarite phase.

Our results raise the issue of whether (Fe,Ni)3S4 thiospi-
nels with higher Ni content, rather than low-Ni greigite,
should be considered as responsible for the catalytic activity
mimicking the role of enzymes in existing theories of the
origin of life.
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