
Oscar Martínez-Alvarado¹, Suzanne L Gray¹, Jennifer L Catto² and Peter A Clark¹

¹ Department of Meteorology, University of Reading, UK
² School of Geography and Environmental Science, Monash University, VIC 3800, Australia

E-mail: o.martinezalvarado@reading.ac.uk

Received 5 March 2014, revised 5 March 2014
Accepted for publication 5 March 2014
Published 21 March 2014

Recent work with the original cyclone track dataset used in this article has revealed that some of these tracks correspond to storms that are not in the set of 100 most intense cyclones between the winters of 1989/90 and 2008/09. Hence, the phrase ‘the 100 most intense cyclones’ in the article should read as ‘a set of 100 cyclones’. Although these findings change the character of the cyclones considered, almost all the findings would be correct given this change. The only exception is Figure 3a, since that figure shows the distribution of cyclones according to cyclone intensity (as measured by relative vorticity) for the 100 most intense cyclones rather than the set of 100 cyclones actually considered. To reflect the distribution for the set of 100 cyclones actually considered, this figure should be substituted for figure 1 here; although details differ, the structure of the distribution has the same features as the published figure. The already significant main conclusion of the article, that sting jets are a common feature of windstorms, is strengthened when the actual set of 100 most intense cyclones is considered: the percentage of sting-jet cyclones increases from the previously reported range of 23%–32% to a revised range of 39%–49% (for same thresholds in the size of a precursor region as those given in the original article).

Figure 1. Maximum relative vorticity distribution of whole sample of intense cyclones (grey) and those cyclones with sting-jet precursors (black). Bin width is 0.5 × 10⁻⁵ s⁻¹; bin centres start at 11.5 × 10⁻⁵ s⁻¹ and finish at 16.5 × 10⁻⁵ s⁻¹.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.