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ABSTRACT

Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, un-

derstanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer

additional benefits. Here the origins of biases in decadal predictions are investigated, including whether

analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent

bias tendency. A ‘‘toy’’ model of a prediction system is initially developed and used to show that there are

several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-

time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true

bias tendency, which can provide information about errors in the underlying model and/or errors in the

specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to

adjust decadal forecasts.

The methods developed are applied to decadal hindcasts of global mean temperature made using the

Hadley Centre CoupledModel, version 3 (HadCM3), climate model, and it is found that this model exhibits a

small positive bias tendency in the ensemble mean. When considering different model versions, it is shown

that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–

greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of

these relevant physical quantities.

1. Introduction

Until recently, projections of future climate have been

generated by running climate models forced by esti-

mates of future natural and anthropogenic (e.g., from

greenhouse gases and aerosols) radiative forcing. The

motivation for decadal climate predictions is to improve

on these standard projections by using observations to

initialize predictablemodes of natural variability, and by

correcting errors in a model’s response to past radiative

forcings. Producing climate predictions that are initial-

ized using observations of the current climate state is

now a major field of scientific research (e.g., Smith et al.

2007, hereafter S07; Keenlyside et al. 2008; Pohlmann

et al. 2009; Smith et al. 2013). For example, initialized

decadal climate prediction experiments are a major

component of phase 5 of the Coupled Model Inter-

comparison Project (CMIP5; Meehl et al. 2009; Taylor

et al. 2012; Meehl et al. 2014). Decadal climate pre-

dictions could potentially be of great benefit to society,

for example, helping to inform decisions on adaptation

to a changing climate.However, there aremany challenges

in producing forecasts that are useful for adaptation

decisions (e.g., Meehl et al. 2009; Oreskes et al. 2010).

One key challenge in producing robust predictions

of future climate is to demonstrate an ability to make

predictions in the past (‘‘hindcasts’’). Comparisons be-

tween hindcasts and past observations offer a wealth of

information for assessing the strengths and weaknesses

of a prediction system, including information that can

guide work to improve the system. Such an approach has

proved invaluable in weather forecasting (e.g., Ferranti

and Viterbo 2006). Comparisons may focus on specific

case studies (e.g., Robson et al. 2012; Yeager et al. 2012),

particular regions (e.g., Toniazzo and Woolnough 2013)
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or on the average behavior of a system over a longer

period (e.g., S07; Smith et al. 2010; vanOldenborgh et al.

2012). A particularly important issue for decadal climate

predictions is the existence of large biases (i.e., system-

atic differences between hindcasts and observations).

Biases may vary with the lead time of hindcasts and are

often larger than the anomalies that the system is aiming

to predict. In this situation the current standard ap-

proach (e.g., Goddard et al. 2013) is to subtract themean

bias from all hindcasts before assessing other aspects of

the system performance (e.g., RMSE). Such an ap-

proach is pragmatic but assumes a linear additivity be-

tween bias and forced response and ignores many

important issues, such as the following: Why is the bias

present? Does it provide any useful information? Could

it be reduced?

The aim of this paper is to investigate the first two of

these questions in particular, initially in the context of an

idealized ‘‘toy’’ model, and second using results from

a real decadal prediction system. We focus especially on

the growth of bias with lead time, which we demonstrate

offers valuable information about a prediction system

and the underlying climatemodel.We then show further

that analysis of biases for different model versions can

be used to obtain useful information about the real world,

in particular new constraints on the transient climate re-

sponse, which measures the transient sensitivity of the

climate system to increases in greenhouse gases.

The structure of the paper is as follows. Section 2

discusses the design of decadal prediction experiments

and clarifies terminology. Section 3 introduces our toy

model of a decadal prediction system, explains how the

bias can be decomposed into distinct contributions, and

examines sampling issues. The methodology we develop

is then applied to predictions of global mean surface

air temperature from an operational decadal prediction

system in sections 4 and 5. Conclusions and a discussion

of implications are in section 6.

2. Experimental design and terminology

There are several types of decadal climate prediction

experiment discussed in the literature. One important

issue is the specification of external radiative forcings in

the hindcasts. The two main choices are as follows:

d ‘‘Projection’’ type, where anthropogenic forcings are

assumed to be known, but ‘‘projected’’ natural forc-

ings are used (e.g., see S07). In this case any volcanic

aerosol present at the forecast start time is allowed

to decay, but no ‘‘future’’ volcanic aerosol is used. In

addition, the solar cycle is repeated from the previous

cycle. This approach attempts to mimic the realistic

situation in which there is little knowledge of future

natural forcing.
d ‘‘CMIP5’’ type, where all forcings are assumed to

be known. This is the design adopted by the CMIP5

protocol (Taylor et al. 2012).

In addition, hindcasts may be initialized using obser-

vations at the forecast start time (‘‘Assim’’—because

assimilation is used to generate the initial states), or be

initialized directly from a model state without the use of

observations (‘‘NoAssim’’).

The simplest case is arguably the ‘‘NoAssim CMIP5’’

type, corresponding to traditional so-called ‘‘transient’’

climate model simulations. However, the ensemble sizes

for these simulations tend to be small (fewer than 5),

which, as we will show, limits the robustness of the bias

analysis. In this study we focus on the ‘‘NoAssim pro-

jection’’ type of hindcasts, as performed by the Met

Office (see S07). The Met Office used this approach to

produce a very large ensemble of hindcasts with differ-

ent versions of the same GCM (Smith et al. 2010), which

proves to be a very useful resource for our analysis. How-

ever, in examining these hindcasts we must take into ac-

count the difference between the natural forcings used to

force the model and those that occurred in the real world.

The reason that we focus on NoAssim-type experi-

ments is that understanding the biases in these experi-

ments is a prerequisite for understanding the biases in

Assim-type experiments. We demonstrate that the bias

derived from NoAssim experiments provides useful in-

formation, and we will be investigating applications to

Assim-type experiments in future work.

3. Estimating bias in a toy model of a decadal
prediction system

We first build a toy model of a decadal prediction

system to examine some of the issues involved with es-

timating the bias of a real prediction system.

a. Bias of hindcasts

Pseudo-observations O(t) are generated by assuming

an externally forced linear trend in time, with added

red noise,

O(t)5 ~O1at1 �(t) , (1)

where t is time, ~O is the ‘‘observed’’ climatology, a is the

slope of the linear trend, and the red noise is denoted

by �(t).

We first assume that the ensemble mean of our pseu-

dohindcasts (N) for the same quantity can be generally

represented, for start time T and lead time t, by
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N(T , t)5 ~N1 (T1 t)g , (2)

where ~N is the model climatology and g is the modeled

linear response to the external forcing. If a 6¼ g then the

climate model would produce a different trend from the

observations and therefore be biased. This could either

be because the model is in error or because there is an

error in the specification of the forcing (see later). This

equation for N assumes that we have an infinite en-

semble of hindcasts, as there is no noise in the ensemble

mean. This assumption will be relaxed later. Note that

these pseudohindcasts are only attempting to predict

the forced response and not the internal variability

component.

The bias B of a prediction system is simply the mean

error as a function of prediction lead time:

B(t)5
1

L
�
L

T51

[N(T, t)2O(T1 t)] , (3)

where L is the number of hindcast start dates and we

assume that there is a decadal hindcast (t 5 1–10 yr)

started every year between, and including, T 5 1 and

T 5 L. Note that in an operational system N and O

would often represent anomalies from a particular ref-

erence period. However, our analysis focusses on ‘‘bias

tendency’’ (defined below), which is independent of the

choice of reference period.

b. Correcting the bias for observed variability

The estimated bias defined in Eq. (3) has two con-

tributing factors: the true bias (if a 6¼ g or ~N 6¼ ~O) and

a bias from an insufficient sampling of the internal var-

iability in the observations. Ideally, we would like to

correct for this second variability contribution to obtain

the true bias.

Following Robson (2010), in the case of an infinite

ensemble in a stationary climate (a 5 g 5 0), the bias

from Eq. (3) would be

Bstationary(t)5
1

L
�
L

T51

[ ~N2 ~O2 �(t)] , (4)

5 ~N2 ~O2
1

L
�
L1t

t5t
�(t) , (5)

5 ~N2 ~O1Bobsvar(t) , (6)

where t represents time and Bobsvar(t) is the mean of the

observational anomalies used for validation for a par-

ticular lead time t. An important point is that different

observations are used for different lead times. Thus,

Bobsvar(t) is an estimate of the bias resulting from the

insufficient sampling of the observed variability and

will approach zero as L increases leaving the true bias,
~N2 ~O.

For the more realistic case when the climate is not

stationary, and there is a trend in the observations (a 6¼
0) then we can estimate

Bobsvar(t)52
1

L
�
L1t

t5t
detrended[O(t)] , (7)

and this is the definition we adopt. In the toy model

examples shown here we use a linear detrending. When

considering the real observations we performed sensi-

tivity tests to explore linear and quadratic detrending

and the results were very similar (not shown), so assume

a linear detrending in all that follows.

A schematic demonstrating Bobsvar for different lead

times is shown in Fig. 1 with pseudo-observations in

black, which include a linear trend and red noise, and

some predictions (for a noninfinite ensemble) shown in

red in each panel. The gray regions indicate the area

to be integrated to give the value of Bobsvar, which varies

with the lead time chosen, and need not be zero, as

shown in Fig. 1d.

c. Bias tendency

In this analysis we generally consider the bias tendency

B0 rather than the bias itself, that is, we use the bias rel-

ative to the bias for the mean of the first year:

B0(t)5B(t)2B(t5 1). (8)

This choice is made because we want to consider the

growth of bias with lead time, which is natural for a pre-

diction system. We do not use t 5 0 to avoid arbitrary

assumptions about defining climatological periods.Hence,

this bias tendency has the desirable property of being

independent of the choice of climatology.

Similarly to the bias, the observed variability correc-

tion is also made into a tendency:

B0
obsvar(t)5Bobsvar(t)2Bobsvar(t5 1), (9)

as shown in Fig. 1e, and an estimate of the underlying

true bias tendency B0
true is then

B0
true(t)5B0(t)2B0

obsvar(t) . (10)

The nature of the bias growth may give valuable in-

formation about the physical processes that cause prediction

errors, potentially allowing particular parameterizations

to be targeted for improvement.
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d. Estimating the bias tendency in the toy hindcasts

To test the bias tendency estimates described above,

we first consider whether we can estimate the true bias

tendency of the toy model using various numbers of

hindcast start dates. Here, we generally assume that a5
0.016Kyr21 and that the red noise � in Eq. (1) has a first-

order autoregressive (AR1) parameter b5 0.5 and total

variances2
� 5 0:01K. These values are chosen to roughly

simulate observed annual global mean surface air tem-

perature (SAT) observations since 1850 (Brohan et al.

2006), although the conclusions are insensitive to the

exact choices. We pick g 5 0.020Kyr21 (i.e., the toy

hindcasts are positively biased by 25%) and retain the

infinite ensemble assumption for now.

An example of such a hindcast system is shown in Fig. 2a

for decadal hindcasts started every year for L 5 20yr,

where the black line represents the observations, the solid

blue line is the true forced trend (a), the dashed blue line is

a linear fit to the observations used in the estimation of

B0
obsvar, and the red lines represent the pseudohindcastsN,

which are identical because of the infinite ensemble

assumption.

In Fig. 2b, we show estimates of the bias tendency for

the situation in Fig. 2a. The solid blue line uses the

definition of uncorrected bias tendency [Eq. (8)], and

the dashed blue line corrects for the observed variability

using Eq. (10). Note that the dashed blue line does not

match the true bias (gray shading) because the estimated

trend from the observations is not correct (i.e., the es-

timate of B0
obsvar is not exact). If the true forced trend is

used in the estimation of B0
obsvar then the true bias ten-

dency is recovered (black line).

We next simulate 1000 realizations of the pseudo-

observations and hindcast sets. Bias tendency estimates

for 10 examples of these realizations are shown in Fig.

2c. With these 20 start dates there is a wide range of

estimated bias tendencies. For different numbers of

hindcast start dates L, Fig. 3 demonstrates that cor-

recting the bias tendency using B0
obsvar (dashed line) re-

duces the error in the estimates of bias tendency at a lead

time of 10 yr compared to using the uncorrected bias

tendency (solid line). Both estimators of the bias ten-

dency are themselves unbiased (i.e., the mean over all

realizations equals the true bias tendency; not shown).

The spread in bias tendency estimates decreases with the

number of start dates as more observations allow more

accurate estimates. The observed variability correction

also becomes smaller with more start dates. When ana-

lyzing the operational NoAssim hindcasts in section 4

we generally use 40 start dates, so the spread is around

half as large as suggested in Fig. 2c.

For the particular set of toy model parameters chosen

here, we see that the expected error in the bias tendency

FIG. 1. A schematic illustrating the definition of Bobsvar [Eq. (7)] and consistent verification times (section 2e). (a)–(c) Black lines show

pseudo-observations, the red lines show pseudopredictions (with noise) for three lead times t as labeled, and the gray regions indicate the

area integrated in the definition of Bobsvar. The blue bars indicate the range of times that are considered ‘‘consistent’’ (i.e., where all lead

times can be simultaneously assessed). (d)Bobsvar for all verification times (black) and consistent verification times (blue). (e)As in (d), but

for B0
obsvar.
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estimate becomes smaller than the bias itself (gray line

in Fig. 3; i.e., the sign of the true bias tendency could be

detected) for aroundL5 15–20 hindcast start dates. For

fewer hindcasts, the uncertainty in the bias estimates

does not allow a detection, with the implication for en-

semble design that more start dates are required. If the

bias is uncorrected then more start dates are required to

detect the bias.

e. Forcing bias and consistent verification times

So far we have assumed that the radiative forcing that

is causing a warming or cooling trend has been correctly

specified and so any bias tendency is attributable to er-

rors in the model response to this forcing. However,

there are two types of forcing bias that could make this

assumption invalid: start-time-independent and start-

time-dependent bias. The CMIP5 design discussed in

section 2 results in start-time-independent forcing biases

because all hindcasts see the same forcing at the same

date. However, for the Projection design this is not the

case: hindcasts started from different dates may see

different forcings. For example, a hindcast started in

1989 would not include any volcanic aerosol from the

Mount Pinatubo eruption in 1991, whereas a hindcast

started in 1992 would. Thus, there is a start-time-

dependent forcing bias. S07 noted that this type of forcing

bias makes a significant contribution to the bias of a set

of hindcasts. They attempted to remove it, somewhat

arbitrarily, by excluding years just after volcanic erup-

tions from the estimation of the bias. Fortunately, a

further correction is available to account for this start-

time-dependent bias.

In deriving,B fromEq. (3) we chose to use all possible

combinations of start dates and verification times.

However, an alternative is to use a ‘‘consistent’’ set of

verification times, which only includes years where all

lead times t can be simultaneously assessed (i.e., the

same observation can be used to assess the bias at all

lead times). In the schematic of Fig. 1 these times are

shown by the range of the blue bars (i.e., years 11–21 in

this example) as year 11 is the earliest time that a 10-yr

lead-time forecast can be verified (along with forecasts

for lead times of 1–9 yr), and year 21 is the last time that

a 1-yr lead time can be verified (along with forecasts for

lead times of 2–10 yr).

Using these consistent verification times, assuming

there is no start-time-dependent forcing bias and an

infinite ensemble, and generalizing fromEq. (3), the bias

becomes

Bconsis(t)5
1

L2 tmax1 1
�
L11

t511t
max

[N(T , t)2O(t)] ,

(11)

FIG. 2. (a) Example of a simple pseudoprediction

system, including observations (black), predictions (red),

the true forced trend (solid blue), and estimated forced

trend (dashed blue). (b) The bias tendency estimates for

the predictions in (a), showing the true bias tendency

(dark gray), the raw bias tendency estimate (solid blue),

the bias tendency corrected using Bobsvar for the cases

when the forced trend is known (black) and unknown

(dashed blue). (c) Ten examples of the bias estimates in

(b) with different realizations of the observations.
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5
1

L2 tmax1 1
�
L11

t511t
max

[N(t)2O(t)] , (12)

5A , (13)

where tmax is the largest lead time to be considered.

Crucially, for this particular choice of verification times,

all the terms on the right-hand side of Eq. (12) are

independent of lead time, becauseN(t) is the same for all

lead times and B0
obsvar is zero for this choice of verifica-

tion times (Fig. 1). In this instance, Bconsis(t) is a con-

stant A with lead time, and therefore, the bias tendency

using consistent verification times is

B0
consis(t)5Bconsis(t)2Bconsis(t5 1), (14)

5 0: (15)

Hence, in the absence of a start-time-dependent forc-

ing bias, B0
consis is exactly zero (assuming an infinite

ensemble).

To test the impact of a start-time-dependent forcing

bias in our toy model, we generalize Eq. (1) by adding

a volcanic eruption into the pseudo-observations, within

the consistent validation time period, of the following form:

V(j)5 0:2 exp(2j) , (16)

where V is the temperature response to a volcanic

eruption, which reduces over time j (measured in years)

with an exponential decay time scale of 1 yr, from a peak

impact of 0.2 K. We also assume that the hindcasts

also include this impact, but only after the eruption

has occurred.

Repeating our toy hindcasts (Fig. 4), still assuming an

infinite ensemble, demonstrates that the measured bias

tendency (blue) is overestimated when compared to the

true bias tendency (dark gray), because the bias ten-

dency attributable to the volcanic eruption is nonzero

FIG. 3. The spread in 1000 realizations of the bias tendency es-

timates, an example of which is shown in Fig. 2, for the raw bias

tendency (solid black) and corrected bias tendency (dashed black)

at a lead time of 10 yr. The magnitude of the true bias is shown in

gray, indicating that, for this choice of toy model parameters, the

bias could be detected with L ’ 16 (20) hindcast start dates if the

correction is made (not made).

FIG. 4. (left) Example of a pseudoprediction system with a start-time-dependent bias, including observations

(black), hindcasts (red), the true forced trend (solid blue), and estimated forced trend (dashed blue), including

a mock volcanic eruption. (right) The bias tendency estimates for the predictions in (left), showing the true bias

tendency (dark gray), true forcing bias tendency (light gray), the raw bias tendency estimates (blue), the bias ten-

dency using consistent verification times (red), and the bias tendency estimates corrected using the consistent bias

tendency (green). The dashed blue and green lines are corrected using B0
obsvar.
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(light gray). HereB0
consis is shown by the red line in Fig. 4

(right panel), which matches the forcing bias tendency

(light gray) as expected.

Note especially that to estimate B0
consis from the data

there is no need to assume any functional form for the

forcing bias. Therefore, we can correct for the start-

time-dependent forcing bias by estimating the bias ten-

dency using all verification times, and subtracting off the

bias tendency estimated using consistent verification

times (B0
consis). Generalizing Eq. (10),

B0
true(t)5B0(t)2B0

obsvar(t)2B0
consis(t) . (17)

The green lines in Fig. 4 (right panel) are an example of

such an estimate using the bias tendency corrected only

by the consistent verification times (solid) and using Eq.

(17) (dashed). Below we will demonstrate that it is

necessary to remove the forcing bias in this way to ob-

tain a robust estimate of the true bias tendency, which is

the key quantity of interest.

We note here that there are still two contributions to

the true bias tendency. The first is errors in the un-

derlying climate model; for example, if the sensitivity of

the model to greenhouse gas forcing is higher or lower

than that of the real world, the hindcasts will warm too

rapidly or too slowly, giving a positive or negative bias

tendency. The second is (start-time independent) errors

in the forcing applied to the model; for example, if the

negative radiative forcing attributable to anthropogenic

aerosols is lower or higher in the model than in the real

world, this will also give a positive or negative bias

tendency. Correcting the bias tendency using the period

of consistent verification times does not deal with the

issue of forcing errors that may occur outside of the

period of consistent verification times, and this is dis-

cussed further when considering the real observations.

Finally, it should be noted that estimating the bias

tendency using all verification times and subtracting off

the bias tendency using consistent verification times is

not the same as estimating the bias tendency using

‘‘nonconsistent’’ verification times (not shown).

f. How many ensemble members are needed?

As discussed above, we have so far assumed that the

toy hindcasts have infinite ensemble members. We now

relax this assumption to understand howmany ensemble

members would be required to ensure a robust bias

tendency estimate.

For a finite ensemble, our toy model for the predic-

tions is generalized from Eq. (2) to

N(T, t)5 (T1 t)g1 z(T, t) , (18)

where z is red noise with the sameAR1 parameter as the

pseudo-observations (b 5 0.5) and a noise component

which depends onM, the number of ensemble members

[i.e., s(z)5s�/
ffiffiffiffiffi

M
p

]. Note that this definition is equiva-

lent to taking the mean of M different ensemble mem-

bers, each with variance s2
� .

Figure 5 explores the spread in estimates of the true

bias tendency using various values for M, making (or

not) the different corrections discussed above. This

spread is derived from 100 000 different realizations of

the toy model. The colors represent using 20 start dates

(gray) and 40 start dates (blue). First, the most reliable

and accurate estimate of the true bias is when all the

corrections described above are applied (Fig. 5a). For

the other cases, the bias estimate itself becomes more

biased, or more uncertain (Figs. 5b–d).

In addition, as the number of ensemble members is

increased the uncertainty in the bias estimates initially

decrease, but then stabilize. For M * 8, the expected

error in the bias remains roughly constant. This analysis

suggests that as long as M * 8, then the ensemble is

effectively infinite for global mean temperature. In ad-

dition, to detect the sign of a true bias tendency it is far

better to increase the number of start years, than to in-

crease the number of ensemble members. This is also

found to be the case when the variance of the noise is

doubled to represent a regional mean, rather than a

global mean (not shown).

We note that themean of the toymodel realizations in

the fully corrected case does not quite match the

expected value (black). This is probably as a result of an

interaction between the Bconsis and Bobsvar correction

terms as Bconsis will also have a variability component,

but this estimate is still the least biased.

4. Estimating the true bias in an operational
decadal prediction system

S07 describe the performance of a set of hindcasts

made using the Hadley Centre Coupled Model, version

3 (HadCM3), global climate model (Gordon et al. 2000).

Here we analyze a later set of ensembles, termed

NoAssimPPE, which utilizes the same HadCM3 GCM,

but with nine different ‘‘perturbed physics’’ versions

(Smith et al. 2010). These different perturbed physics

ensemble (PPE) versions were chosen to sample a wide

range of climate sensitivities and ENSO amplitudes

(e.g., Murphy et al. 2004; Smith et al. 2010; Collins et al.

2011).

The hindcasts were initialized from model states

consistent with the applied radiative forcings using start

dates once per year from 1961 to 2001, with one 10-yr

prediction per model version. As in the original S07
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hindcasts, the NoAssimPPE hindcasts used the projection

approach to specifying external forcings (section 2).

a. Start-time-dependent forcing bias

First, we demonstrate the presence of a start-time-

dependent forcing bias in the NoAssimPPE hindcasts

(41 start dates and 9 ensemble members, 1961–2001).

Because the hindcasts use only information available

at the start of the forecast, ‘‘future’’ volcanic eruptions

were not considered. This produces hindcasts that are

biased warm when compared to observations. Also, the

previous solar cycle is repeated, which is another po-

tential source of bias.

Figure 6 shows estimates of the natural forcings

(volcanic and solar) used in the transient twentieth-

century integrations (left panels) and in the prediction

system (center panels). The estimates for the prediction

systems assume an exponential decay rate of the volca-

nic aerosol present at the forecast start time of 1 yr and

an 11-yr solar cycle length. The resulting forcing bias is

shown in the right panels.

When integrated over all start dates an estimate of the

start-time-dependent forcing bias is produced (Fig. 6,

bottom right). The magnitude of the bias is dominated

by the volcanic component and peaks at around

0.45Wm22 at a lead time of 3 yr, subsequently dropping

to around 0.30Wm22 at a lead time of 10 yr.

b. Bias tendency estimates in NoAssimPPE

We now explore the expected error in the bias esti-

mates using the results from analysis of the toy model.

Figure 7 shows the expected growth with lead time of the

error in the estimated bias for NoAssimPPE (gray)

where the solid (dashed) gray line indicates the expected

error using 1 (9) ensemble members. The black line

shows the corresponding error for the original NoAssim

(S07) hindcasts (effectively 20 start dates and 16 en-

semble members). The greater number of ensemble

members in the original NoAssim results in a smaller

expected error at short lead times (1–3 yr), compared

with the single member PPE system. However, the

larger number of start dates in NoAssimPPE suggests

a far smaller error at long lead times (5–10 yr), even

using a single ensemble member. The uncertainty esti-

mates for 5-yr means (horizontal gray bars) are used

below in section 5.

We next apply the bias estimate methodology de-

veloped using the toy model to annual means of global

FIG. 5. Spread in bias tendency estimates at a lead time of 10 yr, as a function of the number of ensemble members

considered, for (a) fully corrected bias estimate, (b) no observed variability correction, (c) no start-time-dependent

forcing bias correction, and (d) the raw bias.
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mean surface air temperature from the NoAssimPPE

hindcasts (Fig. 8). We compare the hindcasts to four

observational datasets [Hadley Centre/Climatic Re-

search Unit temperature, version 4 (HadCRUT4;Morice

et al. 2012), Goddard Institute for Space Studies Surface

(GISS) Temperature Analysis (GISTEMP; Hansen et al.

2010), National Centers for Environmental Prediction

(NCEP) reanalysis (Kalnay et al. 1996), and 40-yr

European Centre for Medium-Range Weather Fore-

casts (ECMWF) Re-Analysis (ERA-40; Uppala et al.

2005)], but all give consistent results. Note that the ob-

servations used are for 1961–2010, except ERA-40,

which uses 1961–2001. Unless otherwise stated we use

HadCRUT4 in all that follows. For the NoAssimPPE

system, the raw bias tendency estimate (Fig. 8a) suggests

that HadCM3 has a warm bias, which is apparently a

primary result of a start-time-dependent forcing bias

(Fig. 8b) rather than an insufficient sampling of the ob-

servational variability (Fig. 8c). The best estimate for

the true bias tendency (Fig. 8d) shows a very slight warm

bias of around 0.04Kdecade21, which is marginally

statistically significant. The interpretation of this true

bias tendency is discussed in section 5.

In addition, we note that the bias is positive over both

land and sea (Figs. 8e,f). Both the spatial pattern and

physical processes responsible for the bias growthwill be

explored in future work.

The global mean SAT bias tendency associated with

the time-dependent forcing error makes the largest

contribution to the SAT total bias tendency (Fig. 8). S07

also recognized the importance of accounting for the

bias caused by volcanic eruptions. They estimated that

the raw bias for NoAssim was around 0.14Kdecade21

(consistent with Fig. 8), but they removed the forcing

bias by excluding some years following volcanic

eruptions. We believe that our result is more robust as

we are accounting for the forcing bias more explicitly

and objectively.

FIG. 6. An estimate of the start-time-dependent forcing bias in

the NoAssim prediction system (Smith et al. 2010) for (left) the

forcing estimates used in the transient integrations, (center) the

estimated forcing used in NoAssimPPE, and (right) the differ-

ence. The eruptions of Agung, El Chichon, and Pinatubo are the

main cause of the bias.
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The lead-time evolution of the ensemble mean global

averaged shortwave radiation (SW) bias tendency over

the ocean at the top of the atmosphere (TOA) (i.e., the

forcing error) using the consistent verification times is

illustrated in Fig. 9a, and shows a rapid increase in

downward solar radiation in the first 3–4 yr to about

0.30–0.35Wm22 and it maintains this magnitude after-

ward. This estimated forcing error and its lead time

evolution are consistent with the implied surface heat

flux bias tendency from vertically integrated ocean heat

content (OHC) bias tendency (the implied flux bias

tendency is not sensitive to the depth chosen for the

integration since OHC bias tendency is mostly confined

in the top 500m) as shown in Fig. 9b and it is also con-

sistent with the directly estimated forcing error associ-

ated with volcanic eruptions (Fig. 9c, smoothed from

Fig. 6). A caveat with using the 1961–2001 start dates for

validation is that theAgung volcano in 1963 is before the

consistent verification times. We have performed a sen-

sitivity test by excluding the hindcasts from 1961 through

1964, but this does not significantly affect the results.

The relative importance of each component of the bias

is illustrated in Fig. 10, which confirms that the lead-time-

dependent forcing bias dominates. For NoAssimPPE the

sampling correction (orange) is very small for global

mean temperature because the number of hindcast

starts dates is large. Note, however, that this contribu-

tion is expected to be larger for other variables and

smaller regions. These results illustrate clearly the im-

portance of decomposing the bias into its different

components before interpreting its meaning. Further-

more, if a bias correction were to be applied to a forecast

(rather than a hindcast), we suggest it is the underlying

true bias tendency that should be used, rather than the

raw bias tendency derived from the hindcasts, in con-

trast to some current practices (e.g., Smith et al. 2013).

We plan to explore the issues surrounding the applica-

tion of bias corrections to forecasts in future work.

5. Interpretation of the true bias tendency

a. Role of ocean heat uptake in bias tendency

The true bias tendency could arise either from start-

time-independent errors in the forcings applied to the

model (e.g., errors in the specification of anthropogenic

aerosols) or from errors in the transient sensitivity of the

model to such forcings (or both). Errors in the transient

sensitivity could themselves arise from errors in either

the representation of atmospheric or surface feedbacks

and/or from errors in the representation of ocean heat

uptake (e.g., Raper et al. 2002; Gregory and Forster

2008; Bo�e et al. 2009). This last factor can be examined

by considering the bias tendency for global mean OHC

(Fig. 11). As for surface air temperature the total bias is

dominated by the start-time-dependent forcing bias.

The true bias tendency for the surface or top 100m is

again positive, and is near zero below a few hundred

meters. If insufficient ocean heat uptake were the cause

of the warming bias at the surface we would expect to

see a cooling bias subsurface. The fact that we do not see

such a feature suggests that ocean heat uptake is not the

reason for the warming bias in surface air temperature.

Further insights into the true bias tendency may be

obtained by considering the biases associated with in-

dividual model versions (as distinct from the ensemble

mean considered previously). Figure 12 shows that,

within the PPE, there is a high positive correlation be-

tween the true bias tendency for OHC and that for SAT.

This correlation again implies that variations in ocean

heat uptake are not the primary cause of variations in

SAT bias in NoAssimPPE.

b. Relating climate sensitivity, forcing trends,
and bias tendency

Next we consider the possible causes of the different

true bias tendencies in the various PPE versions.

The first possible explanation is that the true bias

tendency is directly related to the climate sensitivity of

the model version (Fig. 13a). Values for the transient

climate response (TCR) were obtained for each model

FIG. 7. Toy model estimates for the error in true bias tendency

estimates for the hindcast setup of two operational prediction

systems: NoAssim1 (S07) and NoAssimPPE (Smith et al. 2010).

NoAssim1 uses 20 years of hindcasts, with an effective ensemble

size of 16 members (black line). NoAssimPPE uses 40 years of

hindcasts with nine different PPE versions of the model, each with

a single member. These can be considered as independent single

member ensembles (solid gray) or as a nine-member ensemble

(dashed gray). The horizontal error bars indicate the errors for 5-yr

mean predictions for NoAssimPPE (single members).
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version through separate specific experiments carried

out at the Met Office. The HadCM3 NoAssimPPE

model versions have a TCR range of 1.6–2.7K with

a mean of 2.1K, which may be compared with the likely

range of 1.0–2.5K from the Intergovernmental Panel

on Climate Change (IPCC) Fifth Assessment Report

(AR5; Stocker et al. 2013). Figure 13a shows a linear

relationship between the true bias tendency for global

mean SAT and TCR, in which the most sensitive models

give the largest warming bias tendency, with a correla-

tion coefficient of 0.89. This high correlation suggests

that the true bias tendency may be providing very useful

information about the sensitivity of the underlying

model. The correlation between TCR and the uncorrected

bias tendency is 0.75, so the corrections have also im-

proved this relationship. In addition, since a perfect

model should yield a true bias tendency of zero, we can

use this relationship to estimate a likely range for TCR.

FIG. 8. Bias tendency estimates (K) for global mean surface air temperature using NoAssimPPE. Different colors

represent different observational datasets. (a) Raw bias. (b) Consistent verification times bias which is an estimate of

the start-time-dependent forcing bias. (c) Raw bias corrected by observed variability. (d) The true bias estimate,

which is (c)2 (b). The error ranges in (d) are derived from the toy model (Fig. 7) and are shown relative to the ERA-

40 results. The true bias estimates for (e) land and (f) sea grid points.
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AMonte Carlo approach is used to fit regression lines

to the data by perturbing the true bias tendency of each

model version, taking into account the bias tendency

uncertainty (0.016K, calculated from the toy model).

The distribution of the intercepts of these lines with the

y 5 0 line (corresponding to zero true bias tendency)

then provides an observationally constrained range for

TCR. We find that the 5%–95% range for TCR con-

strained in this way is 1.4–1.8K with a median of 1.6K

using HadCRUT4 (Fig. 13c). This range is considerably

narrower than the corresponding likely range from

IPCC AR5 of 1.0–2.5K, and observation-based ranges

of 1.3–2.3K (Gregory and Forster 2008) and 0.9–2.0K

(Otto et al. 2013). With doubled estimates for the un-

certainty in the true bias tendency the range from this

study becomes 0.9–1.9K.The standard version ofHadCM3

has a TCR of 2.0K (Randall et al. 2007).

The constrained ranges of TCR for different obser-

vational datasets, are summarized in Table 1. Results

indicate that the median and the ranges of the con-

strained TCR are only slightly sensitive to the data that

are used to validate the hindcasts, with the other data-

sets producing values of TCR about 0.15K higher. The

reduced spread of TCR is a robust feature and so the

underlying SAT true bias tendency from the decadal

climate hindcasts could be used to constrain the model

TCR, complementing other approaches proposed in the

literature (e.g., Allen et al. 2000; Stott and Forest 2007;

Gregory and Forster 2008; Knutti and Tomassini 2008;

FIG. 9. Time evolution of ensemble mean (a) true bias tendency

(Wm22) in shortwave radiation at the TOA of HadCM3

NoAssimPPE hindcasts for the period 1961–2001 against the

ERA-40 dataset, (b) implied surface heat flux bias tendency

(Wm22) from integrated OHC bias for the top 1500m against the

Met Office ocean analysis, and (c) estimated global mean error

(Wm22) associated with volcanic forcing in hindcasts.

FIG. 10. The components of the total bias tendency for

NoAssimPPE against HadCRUT4 data. The total bias tendency

(black) is dominated by the start-time-dependent forcing bias

(green). The magnitude of the forcing bias is qualitatively con-

sistent with the magnitude of the forcing errors (Fig. 6).

2942 JOURNAL OF CL IMATE VOLUME 27



Murphy 2010; Tett et al. 2013). It is also interesting to

note that having a range of models with widely different

TCR has proved very useful in this analysis, especially to

constrain the upper end of our TCR ranges.

However, there is another possible explanation for the

true bias tendency differences. When considering the

role of TCR we have assumed that the forcing trends in

each PPE version are the same. However, Harris et al.

(2013) recently demonstrated that the different PPE

versions of HadCM3 have different non–greenhouse gas

(GHG) forcing, likely attributable to the different in-

teraction of aerosols with low clouds. The relationship

is such that versions of HadCM3 with a low TCR, and

negative bias tendency, also have a cooling trend from

non-GHG forcing from 1961 to 2010, and this could

potentially contribute to the relationship between TCR

and true bias tendency.

Figure 13b relates the true bias tendency to the non-

GHG forcing trends for the different PPE model ver-

sions. The forcing data are taken from Harris et al.

(2013), and linear trends have been fitted from 1961 to

2010, excluding years with, and shortly after, volcanic

eruptions. This provides an estimate of the non-GHG

forcing trends and the observed relationship can be used

to produce an improved constraint on the non-GHG

forcing trend, which is found to be negative, unlike in the

majority of the model versions.

Therefore, there are two possible causes for the re-

lationship between perturbed parameter versions of

HadCM3 and the true bias tendency: it is clear that the

parameter perturbations affect both the TCR and the

non-GHG forcing trends and that both factors influence

the true bias tendency. Trying to separate the two effects

is beyond the scope of this paper, but further work will

use the spatial patterns, and other climate variables, to

further understand the causes of the bias tendencies.

However, we note that if both factors are playing a role

then the constrained ranges for TCR and non-GHG

forcing would broaden.

An additional related caveat is that if there is a sys-

tematic error (i.e., common to all model versions) in the

trends in the radiative forcing applied to the model then

this would also affect the true bias tendency. For ex-

ample, if the forcing trends were systematically too large

then the true bias tendency would also be too large, and

vice versa. The result of any such bias would be to dis-

place all the data in Figs. 13a,b vertically along the true

bias tendency axis. Such a displacement would shift

the constrained ranges but would not broaden the

distributions. This caveat should be kept in mind when

interpreting our results.

One possible approach to addressing these various

caveats would be a multimodel study where the forcings

FIG. 11. Time evolutions of ensemble mean bias tendencies (K)

for ocean temperature at 5m and OHC (top 100 and top 500m) of

HadCM3NoAssimPPE hindcasts for the period 1961–2010 against

Met Office ocean analysis data. (a) Using all verification times

(1961–2010), (b) using consistent verification times (1971–2001),

and (c) true bias tendency with linear trend removed in the analysis

before calculating bias tendency associated with observed vari-

ability. (d) Time evolution of ensemble mean true bias tendency

(K) as a function of depth for global ocean temperature (OT) for

HadCM3NoAssimPPE hindcasts for the period 1961–2010 against

the Met Office ocean analysis.
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are likely to be different for each model, and this is

planned further work.

6. Conclusions and discussion

We have explored the estimation of bias in a toy

model of a decadal prediction system, and applied the

techniques developed to analyze the bias of operational

predictions of global mean temperature. We have fo-

cused on hindcasts initialized from model states, rather

than from observations, and examined the bias tendency

in particular. The main findings can be summarized as

follows:

d The total bias tendency can be separated into several

components: a contribution from sampling uncertainty

attributable to internal variability, a start-time-dependent

forcing bias tendency, and the true bias tendency.
d We have shown how the contributions from sampling

uncertainty and start-time-dependent forcing bias can

be estimated, and removed, to give a better (lower

variance and less biased) estimate of the true bias

tendency. We argue that it is the true bias tendency,

not the total bias tendency, which should be used to

adjust decadal forecasts.
d The true bias tendency is attributable to the following:

1) errors in the sensitivity of the underlying model to

forcing and/or 2) start-time-independent errors in the

specification of forcing (e.g., errors in the specification

of anthropogenic aerosols).
d To improve estimates of bias tendencies, more hind-

cast start dates are more beneficial than more ensem-

ble members.
d The Met Office NoAssimPPE prediction system ex-

hibits, in the ensemble mean, a small positive true bias

tendency in hindcasts of global mean surface air

temperature, and this is marginally statistically signif-

icant. We have demonstrated that this bias is not

attributable to insufficient ocean heat uptake.
d The different true bias tendencies in global mean

surface air temperature in the various PPE versions

can be used to constrain relevant physical properties

of the models, such as the TCR and non-GHG forcing

trends.

There are a number of caveats to the findings above.

In the toy model, we have assumed linear trends. How-

ever, we do not believe that this compromises the de-

composition of the bias tendency into its different terms.

Second, we assumed that the toy model has the same

variability properties as the toy observations. This is

unlikely to hold perfectly in an operational setting as

there is a broad spread in simulated variability among

different models (Hawkins and Sutton 2012) and even

among the different PPE versions of HadCM3 (Ho et al.

2013), but this would only change the number of start

dates and ensemble members required to reliably esti-

mate the bias. Most importantly, we have assumed the

radiative forcings imposed in the decadal hindcasts are

correct, as discussed in section 5.

In the decadal hindcast experiments for CMIP5, the

standard start dates are every 5 years (Meehl et al. 2009;

Taylor et al. 2012). In this situation there is no way of

estimating the consistent bias on annual time scales.

Therefore, any lead-time-dependent errors in the forc-

ing cannot be removed. However, in the ‘‘Tier 1’’ CMIP5

predictions, the complete volcanic and solar forcings are

assumed known, so there should be little start-time-

dependent forcing bias. In other suggested experiments

FIG. 12. Relationships between global mean SAT true bias tendencies (K) (against HadCRUT4 data) and global

mean OHC (top 1000m) bias tendencies (against the Met Office ocean analysis) for nine PPE model versions:

(a) Average for lead years 1–5 and (b) average for lead years 6–10.
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this is not the case. We suggest that the design of future

decadal prediction experiments should consider start

dates every year to allow for any start-time-dependent

forcing bias to be removed.

We believe that the analysis of bias tendencies has

considerable potential to provide further insights into

climate models and the real climate system. We note

that Masson and Knutti (2013) suggest that perturbed-

physics and multimodel ensembles can behave differ-

ently and show opposite emergent constraints so it

would be valuable to repeat this analysis using a wider

range of operational prediction systems.

Beyond the global means considered in this paper

there is a great deal of information in the spatial patterns

of bias growth for a range of variables, and we have

begun work to analyze these patterns. Last, there is an

obvious need to examine how the growth of biases in

a system initialized from model states is related to the

growth of biases in a system initialized from observa-

tional states. This work involves many challenges but is

essential for the development of decadal predictions.

FIG. 13. Relationships between the lead years 6–10 averaged global mean SAT true bias tendencies (K) against

HadCRUT4 data for each version of PPE hindcasts for (a) TCR and (b) non-GHGaerosol forcing trend, using nine

PPE model versions. The error bars for bias tendency are based on the toy model (Fig. 7). Gray lines are example

linear fits to TCR and to the non-GHG aerosol forcing trend using a Monte Carlo approach, and the red lines are

the best fit. The constrained ranges of TCR and the non-GHG aerosol forcing trend are shown as black bars

assuming a true bias tendency error of 0.016K (solid) and 0.032K (dashed). Other ranges for TCR (Stocker et al.

2013; Gregory and Forster 2008, denoted GF08 here) ranges are also given. (c),(d) Estimated probability distri-

bution functions (PDFs) of unconstrained (blue) and constrained (solid black and dashed black) TCR and non-

GHG aerosol forcing trends. The dashed black lines indicate the PDF for doubled uncertainties in the true bias

tendency.

TABLE 1. The 5%–95% ranges and medians (in parentheses) of

the original TCR (K) and the bias constrained values using aMonte

Carlo approach of linear fits to TCR against different observations.

TCR

Original 1.61–2.64 (2.17)

Constrained ranges

ERA-40 1.65–1.99 (1.82)

NCEP reanalysis 1.59–1.91 (1.75)

GISTEMP 1.61–1.93 (1.77)

HadCRUT4 1.45–1.83 (1.64)
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