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Abstract1

The time discretization in weather and climate models introduces truncation errors that limit2

the accuracy of the simulations. Recent work has yielded a method for reducing the amplitude3

errors in leapfrog integrations from first-order to fifth-order. This improvement is achieved by4

replacing the Robert–Asselin filter with the RAW filter and using a linear combination of the5

unfiltered and filtered states to compute the tendency term. The purpose of the present paper is6

to apply the composite-tendency RAW-filtered leapfrog scheme to semi-implicit integrations. A7

theoretical analysis shows that the stability and accuracy are unaffected by the introduction of8

the implicitly treated mode. The scheme is tested in semi-implicit numerical integrations in both9

a simple nonlinear stiff system and a medium-complexity atmospheric general circulation model,10
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and yields substantial improvements in both cases. We conclude that the composite-tendency11

RAW-filtered leapfrog scheme is suitable for use in semi-implicit integrations.12

1 Introduction13

The performance of time-stepping schemes in atmosphere and ocean models has received increasing14

attention in recent years (e.g. Durran and Blossey 2012; Clancy and Pudykiewicz 2013). The15

renewed interest arguably has stemmed from the accumulation of evidence that the errors arising16

from time discretizations may be a non-negligible component of total model error in weather and17

climate simulations (e.g. Pfeffer et al 1992; Zhao and Zhong 2009; Williamson and Olson 2003;18

Mishra et al 2008). The artefacts of time discretization are not limited to the formal accuracy19

restrictions inflicted by truncation errors (Teixeira et al 2007) but may also include unexpected20

effects such as aliasing of Rossby waves (Huang and Pedlosky 2003) and a loss of stability as the21

time step is shortened (Heimsund and Berntsen 2004).22

The leapfrog time-differencing scheme is used extensively in current models, in concert with the23

stabilizing Robert–Asselin filter (Asselin 1972) to suppress the computational mode (e.g. Griffies et24

al 2001; Bartello 2002; Fraedrich et al 2005; Hartogh et al 2005; Williams et al 2009). To increase25

the amplitude accuracy of this filtered leapfrog scheme, Williams (2009) introduced what has26

become known as the Robert–Asselin–Williams (RAW) filter. The RAW filter attempts to reduce27

the filter’s impacts on the physical mode, by conserving the filter perturbations in an average sense28

during each application of the filter. Williams (2011) studied the impacts of the RAW filter in29

semi-implicit integrations. Amezcua et al (2011) have found that the RAW filter improves the skill30

of medium-range weather forecasts compared to the Robert–Asselin filter. Many current models31

have subsequently adopted the RAW filter in place of the Robert–Asselin filter (see Williams 201332

for a list).33

Williams (2013) identified two strategies for further increasing the amplitude accuracy of the34
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filtered leapfrog scheme. We recall that the RAW filter eliminates the first-order amplitude errors35

associated with the Robert–Asselin filter and yields third-order amplitude accuracy. The two36

improvements proposed by Williams (2013) are as follows. First, leapfrogging over a suitably37

weighted blend of the filtered and unfiltered tendencies was shown to eliminate the third-order38

amplitude errors and yield fifth-order amplitude accuracy.///see////Li/////and////////////Williams/////////(2014)/////for//a/////////formal39

//////////analysis. Second, the use of a more discriminating (1,−4, 6,−4, 1) filter instead of a (1,−2, 1)40

filter was shown to eliminate the fifth-order amplitude errors and yield seventh-order amplitude41

accuracy; see Moustaoui et al (2014) for a variant of this approach.42

The purpose of the present paper is to apply the composite-tendency RAW-filtered leapfrog43

scheme to semi-implicit integrations. The layout is as follows. First, in the theoretical analysis44

section, the amplification factor associated with the scheme is derived. Series expansions allow us45

to derive the asymptotic behaviour of the phase and amplitude errors in the limit of small time46

steps. Numerical solutions allow us to study the phase and amplitude errors for finite time steps.47

The stability of the physical and computational modes is studied. Second, we test the scheme48

in semi-implicit integrations of a simple nonlinear stiff system. Finally, we test the scheme in a49

medium-complexity atmospheric general circulation model, which is closer to the models used for50

operational numerical weather prediction. The paper concludes with a summary and conclusions.51

2 Theoretical analysis52

2.1 The numerical amplification equation53

Consider the two-frequency oscillation equation for the complex variable x(t),54

dx

dt
= iωlowx+ iωhighx, (1)

where ωlow and ωhigh are slow and fast angular frequencies and i =
√
−1 (see e.g. Durran, 1991;55

Durran, 1999). Following Williams (2011), we apply the explicit leapfrog scheme to discretize the56
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ωlow term and the implicit Crank–Nicholson scheme to discretize the ωhigh term. Letting ∆t denote57

the size of the time step, and using the RAW filter as a stabilizer, we obtain the following numerical58

scheme:59

x(t+ ∆t)− ¯̄x(t−∆t)

2∆t
= iωlowx̄(t) + iωhigh

[
x(t+ ∆t) + ¯̄x(t−∆t)

2

]
, (2)

with the RAW filter given by:60

¯̄x(t) = x̄(t) +
να

2
[¯̄x(t−∆t)− 2x̄(t) + x(t+ ∆t)] (3)

61

x̄(t+ ∆t) = x(t+ ∆t) +
ν(α− 1)

2
[¯̄x(t−∆t)− 2x̄(t) + x(t+ ∆t)] . (4)

There are two dimensionless parameters in the RAW filter. The first is the usual Robert–Asselin62

parameter, which satisfies 0 < ν � 1 and is usually of the order of 10−2–10−1 (see e.g. Asselin,63

1972; Déqué and Cariolle, 1986; Durran, 1991). The second is the extra parameter of the RAW64

filter, which satisfies 0 ≤ α ≤ 1 and specifies the relative sizes of the filter perturbations at times65

t and t+ ∆t. In particular, α = 1 recovers the classical Robert–Asselin filter.66

Following Williams (2013), let us now assume that in a computational code both x(t) and x̄(t)67

are kept in memory. Then we can use a linear combination of them to calculate the tendency68

associated with the slow term, which we write as γx̄(t) + (1 − γ)x(t). In Williams (2013), the69

analysis was restricted to values of γ satisfying 0 ≤ γ ≤ 1. The reason for this is that there is70

then a natural, intuitive interpretation of γ in terms of positive weighting coefficients, with the71

filtered tendency having weight γ and the unfiltered tendency having weight 1−γ. This restriction72

is not necessary, however, for the consistency of the scheme (where consistency here means that73

the discretised equations tend to the continuous equations as the time step tends to zero). The74

composite tendency can be re-written as x(t) + γ(x̄(t)− x(t)). Then, it is evident that there is no75

restriction to the value of γ, and the scheme is consistent because x̄(t)→ x(t) as ∆t→ 0.76

Using the composite tendency, one solves for x(t+ ∆t) and (2) becomes:77

x(t+ ∆t) =

(
1 + i∆tωhigh

1− i∆tωhigh

)
¯̄x(t−∆t) +

(
2i∆tωlow

1− i∆tωhigh

)
(γx̄(t) + (1− γ)x(t)) . (5)
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We define the complex numerical amplification factor as:78

A =
x(t+ ∆t)

x(t)
=
x̄(t+ ∆t)

x̄(t)
=

¯̄x(t+ ∆t)
¯̄x(t)

. (6)

To find an expression for A, we rewrite (3), (4), and (5) with x evaluated at time t solely, using (6).79

Furthermore, we let ωhigh = rωlow. In particular, we are interested in the case |r| ≥ 1. A negative80

r means the slow and fast waves propagate in opposite directions, while a positive r means the81

direction of both waves is the same. The region |r| < 1 is of no practical interest, since it would82

imply using an explicit scheme for fast oscillations and an implicit scheme for slow oscillations.83

Nonetheless, r = 0 is of interest since it recovers the single oscillation case of Williams (2013).84

After manipulation, we obtain a homogeneous matrix equation for the vector [¯̄x(t) x̄(t) x(t)]T .85

For nontrivial solutions, the determinant of the matrix of coefficients must vanish, yielding a cubic86

equation in A:87

c3A
3 + c2A

2 + c1A+ c0 = 0, (7)

with coefficients given by88

c3 = −1 + riωlow∆t (8)

c2 = ν + [2 + (α− 1)γν] iωlow∆t+ (α− 1)νriωlow∆t (9)

c1 = 1− ν + [(α− 1)(1− 2γ)− 1] νiωlow∆t+ (1− αν)riωlow∆t (10)

c0 = (α− 1)(γ − 1)νiωlow∆t. (11)

These coefficients reduce to those indicated in Williams (2013) when r = 0. Equation (7) yields89

three solutions for A(iωlow∆t; ν, α, γ, r), which we label AP, AC1 and AC2. The first solution is90

the physical mode, P, and the other two solutions are computational modes, C1 and C2. One91

of the computational modes vanishes when c0 = 0, because the cubic equation then reduces to a92

quadratic equation. This happens if γ = 1, because then x(t) disappears from (5), or if α = 1 or93

ν = 0, because then x̄(t) = x(t). These conditions are the same as obtained by Williams (2013)94
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for explicit integrations. Therefore, the introduction of the implicitly treated term does not affect95

the existence of the computational modes. For comparison, the exact amplification factor is:96

Aexact(ωlow, r) = exp [i(1 + r)ωlow∆t] (12)

For the exact solution, oscillations neither amplify nor dissipate, i.e. |Aexact| = 1, and the phase97

advancement per time step is given by arg(Aexact) = (1 + r)ωlow∆t.98

2.2 Asymptotic behaviour99

In this section, we will analyze the asymptotic amplitude and phase behaviour of the three modes100

as ωlow∆t → 0. Let us start with the amplitudes and perform a Maclaurin series expansion for101

|AP|. The amplitude error for the physical mode is found to be:102

|AP| − 1 =
ν(1− 2α)(1 + r)2

2(2− ν)
(ωlow∆t)2 +O

[
(ωlow∆t)4

]
. (13)

As in Williams (2013), the leading-order amplitude error over one time step is proportional to103

(∆t)2 and is independent of γ. The presence of the fast mode, however, introduces an extra factor104

of (1 + r)2. Equation (13) is the same as (11) in Williams (2011), in which ν � 1 was deliberately105

ignored in the denominator. If we choose106

α =
1

2
(14)

then the coefficient of the quadratic term vanishes. This choice implies using equal and opposite107

filter perturbations at the present and future times. With this choice, (13) becomes:108

∣∣∣AP,(α= 1
2)

∣∣∣− 1 =
(1 + r)3ν((4− ν)γ − (3 + r − ν))

4(2− ν)2
(ωlow∆t)4 +O

[
(ωlow∆t)6

]
. (15)

Let us now examine the coefficient of the quartic term. The factor ν/[4(2− ν)2] is always positive,109

since 0 < ν < 1, so the sign of this term is determined by the factor (1 + r)3((4−ν)γ− (3 + r−ν)),110

and this sign indicates the asymptotic stability of the P mode. In particular, if111

γ =
3 + r − ν

4− ν
, (16)
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then this coefficient vanishes, and the first non-zero term in the series is proportional to (ωlow∆t)6.112

For smaller values of γ the quartic coefficient is negative, indicating asymptotic stability, and for113

larger values it is positive, indicating asymptotic instability. Comparing (16) with equation (18)114

in Williams (2013), we notice an extra r term in the numerator. ///In////////////Williams/////////(2013),/////the////////value///of115

//γ/////was/////////////restricted////to//////////////0 ≤ γ ≤ 1.////In//////the//////////present///////case,////////////however,///it///is///////clear//////that////////γ > 1////in///////(16),///////since116

///////ν < 1/////and////////r > 1.117

Let us now examine the asymptotic stability of the computational modes. For the sake of118

brevity, we consider α = 1/2 from the beginning. Maclaurin expansions for the magnitudes of C1119

and C2 yield:120 ∣∣∣AC1,(α= 1
2)

∣∣∣ = 1− ν +
K(γ, ν, r)

8(1− ν)3
(ωlow∆t)2 +O

[
(ωlow∆t)4

]
(17)

and121

|AC2,(α= 1
2)| =

∣∣∣∣ν(γ − 1)

2(1− ν)

∣∣∣∣ (ωlow∆t) +O
[
(ωlow∆t)3

]
. (18)

where the exact expression forK(γ, ν, r) is spared for brevity. The amplitude of C1 is approximately122

1 − ν, indicating unconditional asymptotic stability. The amplitude of C2 is approximately zero,123

indicating unconditional asymptotic stability. Therefore, both computational modes are stable for124

small values of ωlow∆t.125

To complement the preceding amplitude analysis, let us now examine the phase properties of126

the three modes. We start with a Maclaurin series expansion for arg(AP). The first term of the127

series is (1 + r)ωlow∆t, which is the phase of the exact amplification factor. After substituting128

α = 1/2, the phase error is found to be:129

arg(AP,α= 1
2
)−(1+r)ωlow∆t =

(r + 1)2(6νγ − r(8− ν) + 1− 5ν)

12(2− ν)
(ωlow∆t)3+O

[
(ωlow∆t)5

]
. (19)

The leading-order phase error is proportional to (ωlow∆t)3, agreeing with Williams (2013). It shows130

cubic variation with r, agreeing with equation (13) in Williams (2011).131

Let us finally analyse the phase properties of the two computational modes. Starting with an132
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expansion for arg(AC1), we obtain:133

arg(AC1,α= 1
2
) =

(2− ν)(γν + r(1− ν) + 1)

2(1− ν)2
(ωlow∆t) +O

[
(ωlow∆t)3

]
. (20)

The phase advancement of C1 per time step is approximately zero. For arg(AC2) we have:134

arg(AC2,α= 1
2
) = S(γ, ν, r, ωlow∆t)π+

−(2− ν)(γν + r(1− ν)) + (3− 2ν)ν

2(1− ν)2
(ωlow∆t)+O

[
(ωlow∆t)3

]
,

(21)

where S = ±1 is a complicated sign function that depends on the parameters of the filter. Hence,135

the phase advancement of C2 per time step is approximately ±π.136

2.3 Behavior for finite ωlow∆t137

It is of practical interest to study the amplitude and phase behaviour for finite values of ωlow∆t.138

For that reason, we now obtain numerical solutions of (7). We begin with |AP|, which is a function139

of ωlow∆t that also depends on the parameters {ν, α, γ, r}. We fix ν = 0.1 for this analysis.140

In figure 1 we plot the solutions for different values of α, γ, and r (both positive and negative).141

Panel (b) corresponds to figure 5 in Williams (2009), and panel (k) roughly corresponds to the142

right panel of figure (6) in Williams (2011).143

For all cases, the most dissipative solution corresponds to α = 1, the classical Robert–Asselin144

filter. Note that panels (a) and (c) are the same, since r = 0. In the absence of fast oscillations145

(first row), the solutions for all values of α are very similar for the three values of γ. This is146

true for the interval studied 0 ≤ ωlow∆t ≤ 0.4 and agrees with figure 4 of Williams (2013). For147

r 6= 0, more apparent differences appear; note that the ordinate range in panels (d)–(l) is one148

order of magnitude larger than for panels (a)–(c). Let us start with the case r = ±5 (second row).149

We see that the amplification for small values of α grows as γ grows. Moreover, the parameter150

combination α = 1/2 and γ = (3 + r − ν)/(4 − ν) causes |AP| to remain closest to unity for the151

range of ωlow∆t shown. We can notice that the overall behaviour of the case r = −5 and r = 5 is152
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the same, but for r = −5 all the lines remain closer to the ideal |AP| = 1. The difference between153

positive and negative r becomes less noticeable as we increase |r|. The third row of the figure154

shows the case r = ±10. The features are very similar to the case r = ±5, although the growth in155

amplification/dissipation is slower with respect to ωlow∆t. For r = ±100, the interaction between156

α and γ is similar, and the difference between positive and negative values of r is negligible. In this157

case, moreover, we infer the existence of a value 0.25 < α < 0.5 for which |AP| remains close to158

unity when γ = (3 + r− ν)/(4− ν). Finally, note that the amplification/dissipation of the physical159

mode saturates for large values of r, as the curves become almost horizontal after some value of160

ωlow∆t.161

In figure 2, we plot the numerical solutions for |AC1| (top row) and |AC2| (bottom row) as162

functions of ωlow∆t. We choose the cases r = −10 (dashed lines) and r = 10 (solid lines), and we163

fix ν = 0.1. We use γ = (3− ν)/(4− ν) (left column) and γ = (3 + r − ν)/(4− ν) (right column).164

Different values of α are plotted with different colors. Both modes are stable over the range of165

ωlow∆t shown, except that mode C1 has a zone of instability when α = 0 and γ = (3+r−ν)/(4−ν).166

Note that |AC2| = 0 for α = 1, which is expected because this case corresponds to the classical167

Robert–Asselin filter. For C1, the amplification factor is larger for positive values of r than for168

negative values of r, regardless of the value of γ. For r = ±10 this difference is still appreciable,169

but the larger the magnitude of r, this difference tends to disappear (not shown). For C2, the170

amplification for negative r is smaller than for positive r when γ < 1, but the opposite happens171

when γ > 1. Again, these differences are less noticeable as |r| increases (not shown).172

Finally, in figure 3 we explore the r-dependence of the magnitudes of the three modes; for173

this purpose we study values in the interval −1000 ≤ r ≤ 1000. We fix ν = 0.1 and α = 0.5174

and compare two cases: γ = (3 − ν)/(4 − ν) (top row) and γ = 1 (center row). The latter case175

corresponds to the classical RAW filter, i.e. with a non-composite tendency, and this case does not176

have a second computational mode. The bottom row displays the difference of the first minus the177
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second row. As in Williams (2011), we observe that the inclusion of the implicitly treated mode178

stabilizes the numerical scheme and widens the range of frequencies that yield stability. We notice179

that under our choice of α, |AP| is dissipative. For both values of γ, the damping of this mode180

increases as both ωlow∆t and |r| increase.181

The difference plotted in panel (f) in figure 3 shows different behaviour for positive and neg-182

ative values of r. For r > 0 (r < 0), the difference is negative (positive), which implies that183 ∣∣AP,γ=(3−ν)/(4−ν)
∣∣ is more (less) dissipative than |AP,γ=1|. The contours corresponding to negative184

and positive values of the same |r| are not symmetric. The magnitudes of the differences are of the185

order of 10−4 and are concentrated in the region where |r| is small and ωlow∆t is large. Panel (g)186

shows a similar behaviour. A vast region of the plane shows negative differences, implying that the187

computational mode C1 is more damped with γ = (3− ν)/(4− ν) than it is for the regular RAW188

filter without composite tendency. This is true for the whole region r > 0 and for some values of189

r < 0. In contrast, there is a region for small negative values of r and large ωlow∆t in which the190

difference is positive, indicating that
∣∣AC1,γ=(3−ν)/(4−ν)

∣∣ is more dissipative than |AC1,γ=1| . Fi-191

nally, the computational mode C2 exists only when γ 6= 1, and therefore we only have one plot for192

this mode, i.e. panel (c). The region where r is small and ωlow∆t is large is particularly important,193

since the growth of this mode is largest there.194

To finish this section, we emphasize that the values of γ obtained in this section are based on195

the linear equation (1), first in the asymptotic limit ∆t→ 0, and then under finite time steps. In196

the next sections we will be using nonlinear models. One cannot necessarily expect these values of197

γ to be optimal in the nonlinear setting, but they can still be useful as general guidance.198

3 Experiments with a simple model199

We now test the proposed semi-implicit integration method in a simple yet realistic nonlinear200

system, the elastic pendulum, following Williams (2011). This stiff system exhibits two modes: a201
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slow rotational mode about the point of suspension and a fast vibrational mode (see e.g. Lynch202

2002). In the present setting, a massless spring of unstretched length l0 = 0.63 m and force203

constant k = 100 N m−1 is loaded with a point mass m = 0.1 kg subject to a gravitational field204

g = 10 m s−2. The equilibrium length of the loaded spring is l = l0 + mg/k = 0.64 m. The two205

resulting angular frequencies are ωlow =
√
g/l ≈ 3.95 rad s−1 and ωhigh =

√
k/m ≈ 31.62 rad s−1,206

hence r = 8 exactly.207

The system is described in polar coordinates by two variables: the polar angle of oscillation with208

respect to the downward vertical is θ(t), and the radial coordinate of the point mass is l(1 + η(t)).209

The first derivatives of these variables (the velocities) are denoted as vθ(t) and vη. The nonlinear210

equations of motion are:211

θ̇ = vθ (22)

v̇η = −ω2
low(1− cos θ)− ω2

highη + (1 + η)v2θ (23)

η̇ = vη (24)

v̇θ =
−ω2

low sin θ − 2vθvη
1 + η

. (25)

The underlined terms in these equations are the ones responsible for the fast oscillations, and hence212

they are treated implicitly in the numerical integration. Unusually for a semi-implicit scheme, this213

system yields explicit analytical expressions for the future state and does not require any iteration.214

The equilibrium position of this system is θ = 0 rad and η = 0. The time-continuous equations215

conserve the total energy:216

E =
1

2
ml2(v2η + (1 + η)2v2θ)−mgl(1 + η)cosθ +

1

2
kl2(η +mg/kl)2 +mgl − 1

2
k(l − l0)2 (26)

For our chosen initial conditions (θ = 1 and η = 0.01), this corresponds to E(t = 0) ≈ 0.29 J.217

The results of our numerical experiments are depicted in figure 4. The evolution of the slow218

variable θ is shown in panel (a), the evolution of the fast variable η is shown in panel (b), and219

the evolution of the energy E is shown in panel (c). We start by computing a reference solution220
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using a 4th-order Runge–Kutta integration scheme with ∆t = 10−3 s. This can be considered a221

very good approximation to the exact solution of the system, and corresponds to the black lines222

in figure 4. This solution conserves energy to within 10−10 J at all times during the integration.223

The integration runs from t = 0 s to t = 10 s, although in the figure we show only 0 < t < 5 s for224

clarity.225

For the semi-implicit integrations we use ∆t = 0.1 s, which is too large to resolve the fast226

oscillations, but the implicit treatment of the fast mode keeps the integration stable. Setting227

ν = 0.2, we compute six solutions. The first uses α = 1, and the other five use α = 1/2 and228

γ = {−3.5, 0, 0.73, 1, 2.79}. The case α = 1 corresponds to the traditional Robert–Asselin filter,229

and is denoted using gray lines in the figure. This is the most dissipative solution; for both θ and230

η the amplitude of the oscillations is reduced with time, and therefore the energy decreases with231

time. The experiments were repeated for ν = 0.1 (figures not shown) with the same qualitative232

behaviour, the difference is that the effects take longer to be noticeable.233

Before describing the results for the different values of γ, it is useful to assess the change in234

computer time resulting from using a composite tendency in the integration. This model is run235

in Matlab R2007a, and the time for an integration from t = 0 s to t = 10 s is measured using236

the tic/toc command. This is repeated 100 times to account for any internal variability in the237

processing. The average integration time for the standard (pure tendency) RAW-filtered semi-238

implicit leap-frog scheme is 0.073 s, while the time for the integration using composite tendency is239

0.086 s. This means an increase of 18% in computing time.240

Going back to the results of the integration, for α = 1/2 the first value we choose is γ = −3.5241

(red line). With this large negative value |AC2| becomes larger than 1 and therefore the scheme242

loses stability. As a result, we find that the magnitude of the slow variable grows with time.243

Consequently, the energy grows with time. Next we choose γ = (3 + r− ν)/(4− ν) ≈ 2.79 (purple244

line), which is the optimal value for suppressing errors in the P mode (at least according to the245
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linear analysis). The amplitude of the solution decreases with time (although not as fast as in the246

Robert–Asselin case) and there is a progressive dephasing of the solution. This combination also247

results in the largest amplitudes for η. Consequently, the energy decreases slowly with time but248

not in a smooth manner.249

Next, we choose the values γ = 1 (the traditional RAW filter using the pure filtered tendency,250

blue line), γ = 0 (using the pure unfiltered tendency for the RAW filter, yellow line), and γ =251

(3− ν)(4− ν) ≈ 0.73 (the optimal value found in Williams (2013) for r = 0, green line). The three252

cases show a very similar performance, and they are much more accurate that the other options.253

In the three cases, it appears that the amplitude is conserved reasonably well. There is a slight254

progressive dephasing, which is smallest for the case γ = 0.255

Finally, we take a closer look at the accuracy of the solution for more values of γ. We keep256

α = 1/2 fixed and compute solutions with γ = {−3.6,−3.55, . . . , 0, . . . , 2.95, 3}. For each solution,257

we compute the root-mean-square error (RMSE) of the energy E(t) with respect to E(t = 0) ≈258

0.299 J over the whole integration window. This is done in the following manner:259

RMSEE =

√√√√ 1

N

N∑
n=1

(E(t = n∆t)− E0)2 (27)

where N corresponds to the total number of time steps up to t = 10. The result of this computation260

is shown in figure 5. For reference, the RMSE of the solution using the Robert–Asselin filter is261

0.181 J. In this figure, it is clear that the RMSE generally grows as |γ| grows. There are two local262

minima in RMSE: the first occurs around γ = −3.2, and the other around γ = 0.7. The latter263

is also the global minimum. It seems that the region −0.5 < γ < 1.5 is a good choice for this264

parameter.265

We repeat the same experiment for different final values of integration: tmax = 5, 6..., 30 s. The266

result, shown in figure 6 reveals that the overall shape of figure 5 appears at about tmax ≈ 7. As267

tmax increases the valley around the negative local minimum of γ becomes narrower. The valley268

around the positive (and global) minimum of γ is more robust to changes in tmax.269

13



4 Experiments with an AGCM270

To finalize this work, we test our numerical integration scheme with a more complicated model,271

which is closer to the models used for operational numerical weather prediction. As in Amezcua272

et al (2011), we use the Simplified Parameterizations, primitivE-Equation Dynamics (SPEEDY)273

model (Molteni, 2003). SPEEDY is a medium-complexity atmospheric general circulation model274

(AGCM) which has a spectral primitive-equation dynamic core and a set of simplified physical275

parameterization schemes.276

Miyoshi (2005) adapted SPEEDY for use in data assimilation, with output every 6 hours.277

The model time step is 40 minutes. We use this model implementation in our experiments. It278

has a resolution of T30L7, i.e. with horizontal spectral truncation at total wavenumber 30 and279

with 7 vertical levels. Data are output on a horizontal grid of 96 longitudinal and 48 latitudinal280

points. The model is based on a spectral dynamical core developed at the Geophysical Fluid281

Dynamics Laboratory. The model is hydrostatic, and it is formulated in σ coordinates in the282

vorticity–divergence form described by Bourke (1974). Five field variables are calculated: zonal283

wind u, meridional wind v, temperature T , relative humidity q, and surface pressure ps. The284

geopotential height z for different pressure levels may be obtained by interpolation (since the285

model is hydrostatic). The description of the basic physical parameterisations can be found in the286

appendix of Molteni (2003).287

For time stepping, SPEEDY uses a Robert–Asselin-filtered leapfrog scheme. The gravity waves288

are treated implicitly, making this model an ideal setting to test the methods analyzed in this289

paper. Some other schemes (e.g. 3rd-order Adams–Bashforth, Durran 1991) become unstable290

under the semi-implicit method and hence are not suited for this model. The Robert–Asselin291

parameter is selected as ν = 0.1, which has been found to be optimal with this model (Miyoshi,292

2005). Moreover, this value lies within the range commonly used in atmospheric models (Durran,293

1991; Williamson, 1983; Déqué and Cariolle, 1986).294
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We will compare three numerical integration settings. The first uses the classical Robert–Asselin295

filter, the second uses the original RAW filter (α = 0.53), and the third uses the composite-tendency296

RAW filter (α = 0.53, γ = 0.73). This value of α is the one suggested in Williams (2009) and used297

in Amezcua et al (2011). For γ, in the absence of a well-defined value of r, we use γ = (3−ν)/(4−ν).298

Introducing the composite-tendency computation required only a slight modification to the299

code; only one line needed to be changed in the integration routine. It is necessary, however, to300

write to disc an extra gridded file (of size 666 Kb) with the unfiltered value xn. This has to be301

read again in the next integration, and it is then overwritten.302

Again, it is useful to assess the change in computer time when integrating the model with the303

new method. SPEEDY is coded in Fortran 95 and, in our system, the average time for a 6 hour304

integration of the SPEEDY model using the RAW filter is 0.28 seconds. When using the composite305

tendency, this time changes to 0.46 seconds. This is an increase of 65%, and includes writing and306

reading an extra gridded file every time step, and computing the tendency twice.307

To assess any possible accuracy improvement in the integration, we use the Anomaly Correlation308

Coefficient (ACC) for h-hour forecasts. The ACC measures the agreement between the spatial309

variations in the forecast and the analysis, each with respect to the climatology. It is calculated310

as:311

ACC =

∑N
n=1 [(fn − csn)(an − crn) cosφn]√∑N

n=1 [((fn − csn)cosφn)2]
∑N

n=1 [((an − crn)cosφn)2]
(28)

where fn is the forecast, an is the analysis, crn is the climatology of the reanalysis, csn is the312

climatology of the SPEEDY model, φn is the latitude and N is the total number of grid points for313

the variable. The subscript labels the points on the grid. The forecasts are initialized from the314

corresponding reanalysis values.315

The ACC is computed for the month of January 1982 every six hours, and then a time average316

is taken, denoted as ACC. For the analysis data, we use the NCEP Reanalysis dataset interpolated317

onto the SPEEDY grid. The climatology of SPEEDY is computed from the eight-year runs for the318
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RAW filter. This follows from the fact that Amezcua et al (2011) concluded there was no significant319

difference between the climatologies of the two filters. We select three of the seven vertical levels320

of the model, representing roughly the upper atmosphere (200 hPa), the middle atmosphere (510321

hPa), and the lower atmosphere (835 hPa). The ACC analysis is performed for the model variables322

(u, v, T , q, z) in each of the aforementioned levels, and it is also computed for the surface variable323

ps.324

First, the ACC analysis is performed globally. The results for the five variables (excluding ps)325

are presented in figure 7. The ACC of the Robert–Asselin-filtered run is used as benchmark for326

comparison. Therefore, this figure displays the differences ACCRAW − ACCRA (blue lines) and327

ACCCRAW −ACCRA (red lines). Amezcua et al (2011) concluded that the use of the RAW filter328

showed a significant improvement in medium-term forecasts (72 to 144 hours) for all variables329

(except q), and particularly for T and v. The conclusions for the composite RAW-filtered solutions330

are a little different. First of all, we notice that there is considerably more variability for the331

medium-term lead times. This can be noticed from the length of the error bars for 96- to 144-hour332

forecasts. Nonetheless, for short lead times (24- to 72-hour forecasts) we observe improvement with333

respect to the Robert–Asselin-filtered solution for u, T and z. This last variable is particularly334

benefited at all vertical levels. Moreover, the improvements with respect to Robert–Asselin filter335

are quite more substantial than the largest improvements got by using the RAW filter.336

Now we examine regional differences. For this purpose, we perform the ACC analysis for three337

latitudinal bands: the tropics (25◦S to 25◦N), the northern hemisphere mid-latitudes (25◦N to338

75◦N), and the southern hemisphere mid-latitudes (75◦S to 25◦S). We have selected two variables:339

geopotential height z (figure 8) and zonal wind u (figure 9). For z, we notice significant improve-340

ments globally for all lead times from 24 to 96 hours. The largest improvement comes from the341

tropics at all vertical levels, although the difference with respect to RAW is particularly noticeable342

at 200 hPa. Also, notice that the vertical scale for this region is different than for the others.343
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For the extratropics (both northern and southern hemisphere), significant improvements are344

obtained at 24, 48 and 72 hours. In the northern hemisphere it is particularly noticeable at 200hPa,345

and in the southern hemisphere at 850 hPa. For longer lead times, the performance of RAW is346

better than that of composite RAW, although the long error bars of composite RAW suggest large347

variability in the performance of the scheme. In the case of u, the largest improvements come from348

the extratropics. The northern hemisphere seems to be benefited at 24 and 48 hours, while the349

southern hemisphere shows improvement in 24-, 48- and 72-hour forecasts at all vertical levels.350

There is a slight improvement in the 24- and 48- hour forecast in the tropics in the two lower351

vertical levels.352

5 Summary and conclusions353

This paper has applied the composite-tendency RAW-filtered leapfrog scheme to semi-implicit354

integrations. First, a theoretical analysis showed that the stability and accuracy are unaffected355

by the introduction of the implicitly treated mode. Then, the scheme was tested in semi-implicit356

numerical integrations in a simple nonlinear stiff system and a medium-complexity atmospheric357

general circulation model, and was found to yield substantial improvements in both cases. We358

conclude that the composite-tendency RAW-filtered leapfrog scheme is suitable for use in semi-359

implicit integrations.360

There is a time burden associated with modifying any time integration scheme. The burden361

is two-fold, consisting of the human effort required to edit the source code, as well as a possible362

increase in the computational expense of running the model. Based on our experience in this paper,363

upgrading an existing semi-implicit code to include the use of a composite-tendency for the explicit364

term is not difficult. In our experiments with SPEEDY, the update required a minor modification365

in one line of code in the numerical integration file. It is worth noting that our implementation of366

SPEEDY had already been upgraded from RA to RAW filter in the past (Amezcua et al, 2011),367
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and that this modification was also short and straightforward.368

Regarding the computational expense, the method discussed in this paper requires the storage369

of an extra field. For simple models like the elastic pendulum, in-core memory can be used for this370

purpose. For larger models, however, holding the extra field in memory is not feasible, and the field371

has to be written to out-of-core memory (disc) and read in again during the next time step. There372

is therefore an additional input/output expense. Moreover, the method requires computing the373

tendency term twice, and this implies an increase in the computer time employed in the integration374

routine. In the case of the elastic pendulum, the computational expense increased by 18%, but it375

translated into a less dissipative scheme (figure 4), and a more accurate solution (figures 5 and 6).376

In the case of SPEEDY, there was an increase in computational expense of 65%, associated377

with computing the tendency twice as well as writing and reading from disc. Nonetheless, consid-378

erable improvements were found in the 24- to 72-hour forecasts. For some variables, particularly379

geopotential height, we founds that these improvements were larger than any of the improvements380

brought by the use of the RAW filter alone. An interesting option would be to implement the381

even more accurate (1,−4, 6,−4, 1) (Williams, 2013) in SPEEDY; we leave this possibility for fu-382

ture work. Although SPEEDY is of course only a medium-complexity general circulation model,383

the authors believe there are no fundamental barriers to applying the same scheme considered384

herein to more complicated models, both for operational numerical weather prediction and climate385

simulation.386
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Figures463

Figure 1: Behavior of |AP| as a function of ωlow∆t for different values of α (colored lines), γ (columns),

and r (rows). The top row corresponds to r = 0, i.e. no fast oscillations and hence no semi-implicit

integration. The second row correspond to r = −5 (dashed lines) and r = 5 (solid lines), i.e. the fast

variable being 5 times faster than the slow one. The sign of r indicates if the waves travel in opposite

(−) or same (+) directions. The third row corresponds to r = ±10, and the bottom row corresponds to

r = ±100. The left column corresponds to γ = (3−ν)/(4−ν), i.e. the optimal value found in Williams

(2013) for r = 0; the middle column corresponds to γ = 1, i.e. the regular RAW filter; and the right

column corresponds to γ = (3 + r−ν)/(4−ν), i.e. the value we found to minimize the amplitude error.

All panels use ν = 0.1. Note that panels (a) and (c) are identical (since r = 0).
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Figure 2: Behavior of |AC1| (top row) and |AC2| (bottom row) as functions of ωlow∆t for different values

of α (colored curves) and for γ = (3−ν)/(4−ν) (left column) and γ = (3+r−ν)/(4−ν) (left column).

For these plots we have fixed ν = 0.1 and we show the cases r = −10 (dashed lines) and r = 10 (solid

lines).
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Figure 3: Behavior of |AP| (left column), |AC1| (center column), and |AC2| (right column) as a function

of ωlow∆t (horizontal axes) and r (vertical axes). For all panels, ν = 0.1 and α = 1
2
. Two cases are

compared: γ = (3 − ν)/(4 − ν) (top row) and γ = 1 (center row). The differences for |AP| and |AC1|

between the two cases are plotted in the bottom row.

24



Figure 4: Numerical integration of the nonlinear elastic pendulum equations with initial conditions

θ = 1 rad, η = 0.01 and E0 ≈ 0.299 J. The top row corresponds to the slow variable θ, the middle

row corresponds to the fast variable η, and the bottom row corresponds to the energy E. A reference

solution using the RK4 scheme with ∆t = 0.001 is shown in black. The other solutions are computed

using ∆t = 0.1, ν = 0.2 and different combinations of α and γ.
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Figure 5: Root-mean-square error in the energy of the solution from t = 0 to t = 10 s. For the

integration, ν = 0.2, α = 1/2 and γ is varied (horizontal axis).
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Figure 6: Root-mean-square error in the energy of the solution from t = 0 to t = T s. For the integration,

ν = 0.2, α = 1/2 and γ is varied (horizontal axis). Different values of T are used, represented with

different colors.
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Figure 7: Anomaly correlation coefficient difference with respect to the Robert–Asselin filter for the

original RAW filter (blue line) and the composite-tendency RAW filter (red line) for all variables. ACCs

are computed at six different forecast times (hours), globally, at three different pressure levels (rows).

The bars indicate one standard deviation.
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Figure 8: Anomaly correlation coefficient difference with respect to the Robert–Asselin filter for the

original RAW filter (blue line) and the composite-tendency RAW filter (red line) for geopotential height

z. ACCs are computed at six different forecast times (hours) at three pressure levels (rows). Four

different latitudinal bands are considered (columns). The bars indicate one standard deviation.
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Figure 9: Anomaly correlation coefficient difference with respect to the Robert–Asselin filter for the

original RAW filter (blue line) and the composite-tendency RAW filter (red line) for zonal wind u.

ACCs are computed for six different forecast times (hours) at three pressure levels (rows). Four different

latitudinal bands are considered (columns). The bars indicate one standard deviation.
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