The stability of ecosystems: a brief overview of the paradox of enrichment

Article

Published Version

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

Published version at: http://www.ias.ac.in/biosci/mar2007/421.pdf
To link to this article DOI: http://dx.doi.org/10.1007/s12038-007-0040-1

Publisher: Indian Academy of Sciences

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
The stability of ecosystems: A brief overview of the paradox of enrichment

SHOVONLAL ROY and J CHATTOPADHYAY*
Agricultural and Ecological Research Unit, Indian Statistical Institute 203, B T Road, Kolkata 700 108, India
*Corresponding author (Fax, 91-33-25753049; Email, joydev@isical.ac.in)

In theory, enrichment of resource in a predator–prey model leads to destabilization of the system, thereby collapsing the trophic interaction, a phenomenon referred to as “the paradox of enrichment”. After it was first proposed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review these theoretical and experimental works and give a brief overview of the proposed solutions to the paradox. The mechanisms that have been discussed are modifications of simple predator–prey models in the presence of prey that is inedible, invulnerable, unpalatable and toxic. Another class of mechanisms includes an incorporation of a ratio-dependent functional form, inducible defence of prey and density-dependent mortality of the predator. Moreover, we find a third set of explanations based on complex population dynamics including chaos in space and time. We conclude that, although any one of the various mechanisms proposed so far might potentially prevent destabilization of the predator–prey dynamics following enrichment, in nature different mechanisms may combine to cause stability, even when a system is enriched. The exact mechanisms, which may differ among systems, need to be disentangled through extensive field studies and laboratory experiments coupled with realistic theoretical models.

1. Introduction

Emergence of the classical predator–prey models dates back to the pioneering work of Lotka (1925). Substantial developments have been made in the field of predator–prey evolution by numerous theoreticians and ecologists over the past decades (May 1972; Abrams 2000). However, some controversies related to classical predator–prey interactions still await consensus among investigators. One of these enigmas is popularly known as Rosenzweig’s paradox of enrichment. Rosenzweig (1971) showed that, if the carrying capacity of the prey population of a simple predator–prey model is increased sufficiently, the time evolution of the model system deviates from the steady state and exhibits cycles (i.e. limit cycles). For further increase of the carrying capacity, these cycles grow gradually, bringing the abundance of either the prey or the predator or both populations closer and closer to zero; in other words, leading to the extinction of one or more trophic level. On the basis of these observations, Rosenzweig made the following conclusions:

“...increasing the supply of limiting nutrients or energy tends to destroy the steady state. Thus man must be very careful in attempting to enrich an ecosystem in order to increase its food yield. There is a real chance that such activity may result in decimation of the food species that are wanted in greater abundance.”

This exciting and innovative result predicted theoretically by Rosenzweig, has attracted the attention of numerous empiricists and theoreticians for the past four decades. A number of theoretical and empirical studies have been done to explain the paradox of enrichment. In this article, our objective is to review, within the boundary of our knowledge, these theoretical and experimental works and give a brief overview of the solutions proposed. Although Rosenzweig’s paradox has been well accepted as a classic example of an ecological paradox, the word “paradox” in the phrase “paradox of enrichment” is not yet universally accepted and is interpreted in different ways (Jensen

Keywords. Food value; paradox of enrichment; oscillation; stability; toxic food

http://www.ias.ac.in/jbiosci J. Biosci. 32(2), March 2007, 421–428, © Indian Academy of Sciences 421
and Ginzburg 2005). Rosenzweig used “paradox” to express an apparently contradictory role of enrichment in ecosystems: enrichment that is perceived as beneficial for the growth of populations might have the potential to cause destabilization of the ecosystem and eventually extinction of the predator–prey populations. However, in subsequent articles “paradox” has been used to express the discrepancy between the dynamic behaviour of the real predator–prey systems and that predicted by simple predator–prey models (see Jensen and Ginzburg 2005). Without dwelling on this dilemma, we intend to give an overall view of the empirical and theoretical works that are directly related to the phrase “paradox of enrichment”.

2. Experiments and field observations on the paradox

A number of experiments were carried out to observe the effect of enrichment on the dynamics of simple predator–prey systems. However, most of these experiments rejected the hypothesis that enrichment would essentially destabilize community dynamics.

The handful of experiments cited by many authors which claim destabilization of ecosystems following enrichment include those by Huffaker et al (1963), Luckinbill (1973), Veilleux (1979) and Fussmann et al (2000). Huffaker et al (1963) showed that an increase in the supply of food to herbivorous mites destabilized their interaction with predatory mites, which eventually led to the extinction of both species.

Luckinbill (1973) and Veilleux (1979) conducted their experiments with Didinium nasutum as the predator and Paramecium aurelia as its prey. In Luckinbill’s experiment, when Paramecium and Didinium were allowed to grow in 6 ml of standard cerophyl medium, the Didinium consumed all the prey in a few hours. However, when the medium was thickened with methyl cellulose, the Didinium–Paramecium pair went through two or three diverging oscillations over a period of 10–18 days before the Didinium became extinct. Harrison (1995) used these data to test the applicability of predator–prey models with different functional responses, and produced an important result: “...reduction of the food supply for the Paramecium and/or thickening of the medium could produce a nonoscillating stable steady state for the population densities”. In other words, the system was shown to shift from instability to stability when the pressure of the input prey was reduced (Harrison 1995).

In Veilleux’s experiment, the outcome of the predator–prey interaction (again with methyl cellulose in the medium) depended upon the concentration of the bacterial nutrient cerophyl present in the medium. Veilleux observed the following: at low cerophyl concentrations the predator and prey coexisted at a numerically stable equilibrium; at intermediate cerophyl concentrations, although the species coexisted over time, the population densities oscillated with an amplitude related to the cerophyl level. However, at high cerophyl concentrations, the species were unable to coexist (Veilleux 1979). Hence, similar to Luckinbill’s experiment, Veilleux’s experiment also demonstrated that for a stable coexistence of the predator and prey populations, a reduction in the supply of available prey is needed.

Fussmann et al (2000) reported the dynamic behaviour of a two-species aquatic community in a laboratory containing a rotifer–algae system. This experiment also showed that reduction of high nutrient input shifted the system from a region of consistent predator extinction to a region of coexistence.

McCauley and Murdoch (1990) tested the dynamic behaviour of the freshwater zooplankton Daphnia and its algal prey. They reported that the biomass data of these populations collected from lakes and ponds depicted stable and cyclical dynamics caused by interactions between the populations. The cycles in the field data were not of the paradox-of-enrichment type due to the following reasons: the amplitude of the cycles was small, the period equal to a Daphnia generation was short, and the cycles were generated by the developmental delay of Daphnia (McCauley and Murdoch 1990). Further, they grew the field-collected Daphnia and algae populations in nutrient-rich and nutrient-poor tanks. They demonstrated that the addition of nutrients to the experimental tanks had no effect on the amplitude of population cycles of the cladoceran Daphnia, and that Daphnia–algae populations exhibited similar dynamics in both nutrient-rich and -poor tanks. Moreover, “Daphnia populations displayed time-lag cycles in both treatments with amplitudes, periods, and demographic details similar to those observed in field and other tank populations”. They concluded that in natural lakes and ponds the biomass of phytoplankton (prey) has no correlation with the amplitude of Daphnia (predator) cycles.

However, in 1999, a paper published in Nature by McCauley et al reported that they found large amplitude cycles in enriched algae–Daphnia systems. Their experiment demonstrated that the dynamics of the Daphnia–algal system essentially flipped between two coexisting attractors—a stable equilibrium and large amplitude cycles. Only the presence of inedible algae and the production of ephippia
Enrichment and stability of ecosystems: A brief overview of the paradox

423

3. Theories proposed to resolve the paradox

The serious discrepancy between theoretical expectations and observations in natural predator–prey systems promoted investigators to propose a number of theoretical mechanisms for resolving the paradox of enrichment. Some of these mechanisms followed directly from the experiments conducted previously, others were drawn from theoretical analysis of plausible mathematical models of predator–prey interactions.

3.1 Presence of inedible prey

To explain the mismatch between theory and observation, a general class of mechanisms has been developed by expanding the original model of Rosenzweig and MacArthur (1963). A common division of prey was made on the assumption that the prey consists of two types of species, only one of which is edible by the predator; the other is inedible (Phillips 1974, Leibold 1989, Kretzschmar et al 1993). Grover (1995) studied detailed theoretical analyses on the effects of neutral inedible prey, interfering inedible prey and nutritionally valueless prey. A neutrally inedible prey is generally not consumed by the predator and thus does not directly influence the interaction between the predator and the edible prey. However, these inedible prey can exert control over the nutrient content of edible producers, and it has been shown that the presence of such inedible prey may overturn destabilization following nutrient enrichment (Grover 1995). The experimental work by McCauley and Murdoch (1990) also demonstrated that the presence of inedible prey that acts as a nutrient sponge (Kretzschmar et al 1998; Murdoch et al 1999) may provide a plausible mechanism to resolve the paradoxical outcome of ecosystem enrichment (McCauley et al 1999).

3.2 Presence of invulnerable prey

Due to several reasons some individuals among the prey population may appear to the predator in a transitional state between the vulnerable and invulnerable classes. Invulnerability of an individual prey may be either due to its physiological/behavioural state, or its spatial location (Abrams and Walter 1996). Sometimes immobile prey occupy a spatial location where predators cannot gain access and, in such conditions, the predatory risks are greatly reduced thereby making the individual prey invulnerable (Werner and Anholt 1993). Incorporating in the predator–prey models such a dynamic class of prey population that is invulnerable due to spatial location, or has a greatly reduced vulnerability to predators due some potential survival activity associated with its physiology, Abrams and Walter (1996) showed that enrichment cannot destabilize the predator–prey system. When predator–prey systems consisting of an invulnerable class of prey are enriched, the invulnerable class increases in number resulting in an increase in the biomass of the entire prey population. However, increased numbers of invulnerable prey result in an increase in the input of individuals into the vulnerable class making the predator–prey interaction a “donor-controlled” system, and the dynamics of such systems have been shown to be strongly stabilizing (Pimm 1982). The experimental work by Persson et al (2001) (discussed in Section 2) supported these theoretical analyses, showing that invulnerable prey may stabilize trophic-level dynamics by replacing more vulnerable prey.

3.3 Presence of unpalatable prey

Apart from the class of profitable (edible) and inedible prey, in the context of enrichment of predator–prey systems, some

J. Biosci. 32(2), March 2007
investigators have emphasized the presence of another class of prey that is less profitable but edible. Because the profitability of such prey is lower than a critical value, even if these prey are consumed at high biomass, the nutritional requirement of the predator population is unfulfilled. These prey are referred to as “unpalatable” (Genkai-Kato and Yamamura 1999, 2000). Analysis of one-predator, two-prey systems (Genkai-Kato and Yamamura 1999) demonstrated that if the predator exhibits optimally selective feeding (e.g. calanoid copepods), the presence of an unpalatable prey efficiently reduces the amplitude of dynamic oscillation following enrichment. Moreover, in an enriched ecosystem the presence of an unpalatable prey prevents the minimum abundance of species from falling below certain values (Genkai-Kato and Yamamura 1999), and thus increases the robustness of stability of the predator–prey systems against enrichment. Following these results they concluded that the profitability of unpalatable prey has the potential to act as a key predictor for the dynamic behaviour of predator–prey systems in nature. Experiments have shown that due to some physical and biological constraints, the quality of food both in planktonic and terrestrial ecosystems sometimes decreases at high biomass. For example, Urabe and Sterner (1996) demonstrated that, though the biomass of algae increases in response to light availability, the P:C ratio of algae, which might be considered as a potential measure of its food quality for the grazer zooplankton, remains fixed up to a certain critical light intensity, and decreases beyond it. There are also examples among plant herbivores which demonstrate that the quality of prey decreases at high abundance due to certain moisture conditions (e.g. Olff et al. 2002). Recently, Roy and Chattopadhyay (2006a) have proposed a simple phenomenological relationship to describe the degradation of energy value at increased levels of carrying capacity. Theoretical analysis has demonstrated that incorporation of the proposed relationship in simple predator–prey models overturns the possibility of destabilization of community dynamics following enrichment (Roy and Chattopadhyay 2006a).

3.4 Ratio-dependent functional response

Dynamic instability due to enrichment of resource supply is generally an outcome of those simple predator–prey models that incorporate functional responses which are fully dependent on prey density. These functional responses are based on the assumptions that predators encounter prey species at random, and that the probability of this encounter depends on prey abundance only. Arditi and Ginzburg (1989) argued that these assumptions may not always be appropriate. They proposed that, if the time scale of population dynamics, at which the models operate differs from the behavioural time scale, it would be reasonable to assume that trophic function depends on the ratio of prey to predator abundance. Arditi and Ginzburg (1989) termed these uptake functions “ratio-dependent functional response”. A number of empirical observations conducted earlier (e.g. Bernstein 1981; Katz 1985) supported the argument of ratio-dependent trophic function. If “ratio-dependent” uptake functions are incorporated, oscillatory instability of the dynamics following an enrichment in carrying capacity does not arise in simple predator–prey models (Arditi and Ginzburg 1989; Arditi and Berryman 1991). However, the acceptance of ratio-dependent functional forms is debated by some ecologists (Okasen et al. 1992; Diehl et al. 1993; Abrams 1994; Gleson 1994), and a detail of this debate, which is out of the scope of this review, may be found in Abrams and Ginzburg (2000), and Jensen and Ginzburg (2005).

3.5 Spatial interaction or spatiotemporal chaos

To study the effects of space and time on interacting species Jansen (1995) extended the scope of the simple Lotka–Volterra system and the Rosenzweig-MacArthur model to a patchy environment. Analysis has demonstrated that spatial interaction can bound the fluctuations of a predator–prey system and regulate the abundance of the populations (Jansen 1995). Moreover, the laboratory experiment of Holyoak (2000) and theoretical works by Jansen and Lloyd (2000) and Jansen (2001) also showed that spatial patches protect predator–prey systems from collapsing due to population extinction following enrichment. Using a standard diffusion-reaction system and a diffusion-reaction system with a cut-off at low population densities, Petrovskii et al. (2004) demonstrated theoretically that transition to spatiotemporal chaos can prevent species extinction in an enriched ecosystem. Thus, consideration of time and space may efficiently alter the paradoxical outcome of the regular dynamics predicted by simple predator–prey models.

3.6 Inducible defense

To study the effects of inducible defences on community stability and persistence, Vos et al. (2004a, 2004b) analysed models of bitrophic and tritrophic food chains that incorporate consumer-induced polymorphism. They showed that intra-specific heterogeneity in defence levels can overturn the instability following enrichment. Essentially, inducible defenses represent a predator-dependent effect (i.e. indirect interference). These effects are caused by differences in handling times and/or conversion efficiencies between defended and undefended prey. Vos et al. (2004a) found that the stabilizing effect remains unchanged even if the inducible defences affect the attack rates of consumers.
By bounding the minimum abundance of populations from falling below a minimum value, inducible defences may promote the persistence of predator–prey species in tritrophic food chains (Vos et al. 2004). Induced defences have also been shown to decelerate the rapid population decline of Daphnia under peak predation by fish. Induced defences can thus contribute to the persistence of prey populations in the face of high predation risk by efficient predators (Vos et al. 2002).

3.7 Density-dependent predator mortality

The experiment conducted by Kirk (1998) (discussed in §2) demonstrated that, at high population density rotifers produced some unidentified autotoxin that acted as a source of density-dependent mortality, where the death rate of the predator increases in direct response to an increase in the biomass of the predator (Bazykin 1974). This density-dependent mortality has been shown to stabilize predator–prey dynamics. In general, introduction of a density-dependent mortality term in a simple predator–prey model also theoretically provides a stabilizing effect on enrichment. Gatto (1991) discussed such stability using a predator–prey model with a Holling type II functional response. Apart from autotoxins produced by the predator, density-dependent mortality in the predator can, for other reasons also stabilize predator–prey dynamics (Gatto 1991). A likely situation, as Gatto argued is as follows. For a Daphnia algal system, when Daphnia are more abundant, either some other predators that are specialized on other prey might switch to Daphnia, or Daphnia account for a higher proportion of all their predators’ diets. In such situations, consideration of density-dependent predator mortality might be reasonable in simple predator–prey models.

3.8 Effect of toxic food

It is established that, in the context of ecosystem stability, the energy value or food value of the resource (i.e. prey) is very important (van Baalen et al. 2001). The caloric content of prey regulates the dynamics of one-predator – two-prey interaction (Roy et al. 2005). The food value or dietary value is generally determined by the stoichiometry or chemical composition of the resource (i.e. prey) (Jones and Flynn 2005). Thus, a minor change in the stoichiometry of prey may cause a significant change in its quality as a food (Sterner and Elser 2002; Mitra and Flynn 2005). A common reason for this stoichiometric modulation might be the production of toxin (e.g. Flynn et al. 1996; Calbet et al. 2002). Toxin-producing phytoplankton in marine ecosystems have a significant role in determining the zooplankton population density (Chattopadhyay et al. 2002) and regulating the phytoplankton–zooplankton dynamics (Roy et al. 2006). Generally, the presence of (common) secondary metabolites in a resource is a major cause for food toxicity (Bartosz 2005). The mixed diets of a predator often contain a measurable amount of toxic chemicals (Bartosz 2005) that act as inhibitory agent for growth. For example, the dietary composition of human food contains some 1.5 g of plant-originated toxic xenobiotics (Dietrich et al. 2003). Following these observations, Roy and Chattopadhyay (2006b) recently showed that, theoretically, in the context of stability of simple predator–prey systems, the presence of toxic prey is highly significant. Toxic food in a mixed resource may efficiently counteract oscillation (destabilization) arising from enrichment of resource availability. Moreover, at increased resource availability, toxic food that acts as a source of extra mortality may increase the abundance of the predator as well as that of the palatable prey (Roy and Chattopadhyay 2006b).

4. Concluding remarks

A theoretical study predicted that enrichment of an ecosystem may cause dynamic instability leading to extinction of species in a finite time period (Rosenzweig 1971). However, in real ecosystems, destabilization due to enrichment has rarely been observed (Vos et al. 2004). Also, a number of experiments including those by McCauley and Murdoch (1990), Kirk (1998), Persson et al. (2001), which directly tested the effect of enrichment, could not support the paradox. Several studies have been conducted over the decades on this popular paradox. The question that has dominated the literature is: “Why is the paradox of enrichment so rarely (if ever) detected in natural systems?” The predominant approach to this question has been to posit novel complexity. We have summarized the explanations related to the paradox. The mechanisms that have been discussed range from simple extension of the predator–prey model to complex population dynamics, including chaos in space and time. Although the enrichment paradox has been treated as an ecological axiom, a general consensus on the different explanations of the paradox has not been reached. Some theories either directly or indirectly indicate the importance of predator-induced effects. We note that inducible defences are an indirect interference by the predator, density-dependent mortality again is effectively a predator-dependent effect. The proposition of ratio-dependent functional response is a direct incorporation of the predator-dependent effect. It is reasonable to ask whether the phenomenon that was initially proposed by Rosenzweig (1971) is due only to the failure of theoretical understanding of the ecological consequences of simple predator–prey interactions. While most explanations...
involves increased and conditional complexity, the suggested shift away from prey-dependent functional responses asks simply for a reconsideration of the basic assumptions of the paradox of enrichment. On the other hand, each of the theories that take into account the presence of an alternative prey (inedible, invulnerable, unpalatable, toxic) are effectively applicable to some specific ecosystems considered.

Despite the fact that a large number of experiments have rejected the hypothesis of the paradox of enrichment, it is interesting to note that certain microsome experiments, as we have already mentioned, do seem to support the paradox of enrichment. The reason is that such systems are suitably simple: they do not have the complexities described by the various “complexity” theories discussed. Moreover, the short generation times of those systems prevent significant interference between predators from emerging. These systems seem to obey the assumptions of Rosenzweig: seemingly all others (including all natural systems) do not.

However, nature is much more complex than models and laboratories. In nature different mechanisms may combine to cause stability, even when a system is enriched, and the exact mechanisms may differ among systems. What we would want is to have a multicausal understanding of important ecological processes (Vos et al 2004b). This understanding needs to be achieved through extensive field work and laboratory experiments, coupled with realistic theoretical models. Formulation of a concrete bridge between the response of ecosystems under enrichment and a universally accepted valid model for predator–prey interaction is still an unachieved goal.

Acknowledgement

This research was supported by the Indian Statistical Institute Project fund, New Delhi. We are grateful to three reviewers for giving valuable comments and suggestions on an earlier version of the manuscript.

References

Abrams P A 1994 The fallacies of “ratio-dependent” predation; Ecology 75 1842–1850
Abrams P A and Walter C J 1996 Invulnerable prey and the paradox of enrichment; Ecology 77 1125–1133
Abrams P A 2002 Will declining population sizes warn us of impending extinctions?; Am. Nat. 160 293–305

Arditi R and Berryman A A 1991 The biological-control paradox; Trends Ecol. Evol. 6 32
Bartosz G 2005 Food toxicity contributes to the beneficial effects of calorie restriction; J. Theor. Biol. 233 451–452
Bazykin A D 1974 Volterra’s system and the Michaelis–Menten equation. Problems in mathematical genetics. (Novosibirsk, Russia: USSR Academy of Sciences, pp 103–142)
Chattopadhyay J, Sarkar R R and Mandal S 2002 Toxin-producing plankton may act as a biological control for planktonic blooms—field study and mathematical modelling; J. Theor. Biol. 215 333–344
Dietrich C G, Geier A and Oude Elferink R P 2003 ABC of oral bioavailability: transporters as gatekeepers in the gut; GUT 52 1788–1795
Gatto M 1991 Some remarks on models of plankton densities in lakes; Am. Nat. 137 264–267
Genkai-Kato M and Yamamura N 1999 Unpalatable prey resolves the paradox of enrichment; Proc. R. Soc. London B 266 1215–1219
Gleeson S K 1994 Density dependence is better than ratio dependence; Ecology 75 1834–1835
Harrison G W 1995 Comparing predator–prey models to Lusinbill’s experiment with Didinium and Paramecium; Ecology 76 357–374
Huffaker C B, Shea K P and Herman S G 1963 Experimental studies on predation: complex dispersion and levels of food in an acarine predator–prey interaction; *Hilgardia* 34 305–330

Jansen V A A 1995 Regulation of predator–prey systems through spatial interactions: a possible solution to the paradox of enrichment; *Oikos* 74 384–390

Jensen X J and Ginzburg L R 2005 Paradoxes or theoretical failures? The jury is still out; *Ecol. Modelling* 188 3–14

Jones R H and Flynn K J 2005 Nutritional status and diet composition affect the value of diatoms as copepod prey; *Science* 307 1457–1459

Katz C H 1985 A non-equilibrium marine predator–prey interaction; *Ecol.* 66 1426–1438

Kirk K L 1998 Enrichment can stabilize population dynamics: Auto-toxins and density dependence; *Ecology* 79 2456–2462

Lotka A J 1925 *Elements of physical biology* (Baltimore: Williams & Wilkins Co.)

Luckinbill L S 1973 Coexistence in laboratory populations of *Paramecium aurelia* and its predator *Didinium nasutum*; *Ecology* 54 1320–1327

May R M 1972 Limit cycles in predator–prey communities; *Science* 177 900–902

Mazumder A 1994 Patterns of algal biomass in dominant odd-link vs. even-link lake ecosystems; *Ecology* 75 1141–1149

McCauley E and Murdoch W W 1990 Predator prey dynamics in environments rich and poor in nutrients; *Nature* 402 653–656

Olff H, Ritchie M E and Prins H H 2002 Global environmental controls of diversity in large herbivores; *Nature* 415 901–904

Petkovskii S, Li B and Malchow H 2004 Transition to spatiotemporal chaos can resolve the paradox of enrichment; *Ecol. Complex.* 1 37–47

Rosenzweig M L 1971 Paradox of enrichment: destabilization of exploitative ecosystem in ecological time; *Science* 171 385–387

Urabe J and Sterner R W 1996 Regulation of herbivore growth by the balance of light and nutrients; *Proc. Nat. Acad. Sci. USA* 93 8465–8469

Vos M, Flik B J G, Vijverberg J, Ringelberg J and Mooij W M 2002 From inducible defence to population dynamics: modelling refuge use and life history changes in *Daphnia*; *Oikos* 99 386–396

Vos M, Koori B W, DeAngelis D L and Mooij W M 2004 Inducible defences and the paradox of enrichment; *Oikos* 105 471–480

J. Biosci. 32(2), March 2007

Werner E E and Anholt B R 1993 Ecological consequence of the trade-off between growth and mortality rates mediated by foraging activity; *Am. Nat.* **142** 242–272

MS received 14 July 2006; accepted 4 December 2006

ePublication: 4 January 2007

Corresponding editor: Vidyanand Nanjundiah