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SIMULATED LAST GLACIAL MAXIMUM D14Catm AND THE DEEP GLACIAL OCEAN 
CARBON RESERVOIR

V Mariotti1,2 • D Paillard1 • D M Roche1,3 • N Bouttes4 • L Bopp1

ABSTRACT. 14Catm has been estimated as 420 ± 80‰ (IntCal09) during the Last Glacial Maximum (LGM) compared to
preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. 14Catm is a function of both cos-
mogenic production in the high atmosphere and of carbon cycling and partitioning in the Earth system. 10Be-based recon-
structions show a contribution of the cosmogenic production term of only 200 ± 200‰ in the LGM. The remaining 220‰
have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010, 2011) proposed to explain most of
the difference in pCO2atm and 13C between glacial and interglacial times as a result of brine-induced ocean stratification in
the Southern Ocean. This mechanism involves the formation of very saline water masses that contribute to high carbon stor-
age in the deep ocean. During glacial times, the sinking of brines is enhanced and more carbon is stored in the deep ocean,
lowering pCO2atm. Moreover, the sinking of brines induces increased stratification in the Southern Ocean, which keeps the
deep ocean well isolated from the surface. Such an isolated ocean reservoir would be characterized by a low 14C signature.
Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al.
2010). The degassing of this carbon with low 14C would then reduce 14Catm throughout the deglaciation. We have further
developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C res-
ervoir. We investigate the role of both the sinking of brine and cosmogenic production, alongside iron fertilization mecha-
nisms, to explain changes in 14Catm during the last deglaciation. In our simulations, not only is the sinking of brine
mechanism consistent with past 14C data, but it also explains most of the differences in pCO2atm and 14Catm between the
LGM and preindustrial times. Finally, this study represents the first time to our knowledge that a model experiment explains
glacial-interglacial differences in pCO2atm, 13C, and 14C together with a coherent LGM climate.

INTRODUCTION

Records of the last deglaciation present a very well documented time series of 14Catm, from around
420 ± 80‰ at the Last Glacial Maximum (LGM, defined here as 18–24 ka BP, following Mix et al.
2001) to 0‰ during the preindustrial period (Reimer et al. 2009). Variations in 14Catm depend both
on the cosmogenic production rate of 14C in the upper atmosphere and on the exchange of 14C
between the atmosphere, the terrestrial biosphere, and the ocean. Both model and data studies have
investigated the causes of these changes in 14C during the last deglaciation. Broecker and Barker
(2007) do not exclude the possibility that 14C production rate reconstructions could be underesti-
mated during the glacial period, and thus that 14C production only could explain LGM 14C. In their
studies based on geomagnetic field and 10Be estimates, Muscheler et al. (2004, 2005) suggest that
the production rate cannot explain the entire magnitude of the 14Catm change during last deglacia-
tion, but that changes in the global carbon cycle are also needed. Different mechanisms have been
proposed to study the role of the carbon cycle in the decreased 14Catm during this period: a sudden
interruption of deep water formation (Meissner et al. 2003); a resumption of ocean circulation
(Köhler et al. 2005, 2006); a reduction in the biological pump caused by reduced iron fertilization
(Köhler et al. 2005, 2006); an increase in Southern Ocean vertical mixing rates (Köhler et al. 2005;
Tschumi et al. 2011); or a breakdown in Southern Ocean stratification (Köhler et al. 2005). The latter
2 mechanisms imply changes in the Southern Ocean ventilation but do not give any precise physical
mechanism to explain such changes.
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Bouttes et al. (2010, 2011) recently suggested to explain the differences in both pCO2atm and 13C
between glacial and interglacial times as resulting from brine-induced ocean stratification in the
Southern Ocean. Indeed, sea-ice formation around Antarctica releases salt, which induces the for-
mation of very saline waters underneath. During interglacial times, most of this water mass would
be mixed with freshwater from ice shelf melting; only a fraction would sink down the continental
slope. During glacial times, the expansion of the Antarctic ice sheet, alongside lowering of the sea
level, changes this configuration: most of the saline water mass would flow along the continental
slope to reach the deep ocean (Bouttes et al. 2010). In addition to these changes, sea-ice formation
is also enhanced during glacial times due to (1) enhanced katabatic winds along the ice sheet and (2)
cooling of sea surface temperatures (SST). This enhanced sinking of brines may be responsible for
transferring carbon in the deep ocean. Moreover, during the LGM, we know from salinity recon-
structions thanks to pore fluid measurements (Adkins et al. 2002) and from 13C data (Curry and
Oppo 2005) that the deep and bottom water masses were saltier and that the ocean was more strati-
fied than today. The sinking of brine mechanism, with enhanced top-to-bottom transport of dense
waters, can partly explain both the high salinity and increased stratification. The deep glacial ocean
reservoir would then be carbon-enriched but also 14C-depleted because this water mass would be
well isolated from the upper ocean caused by intensified stratification.

Numerous studies measure evidence of such an isolated deep reservoir in the ocean (Sikes et al.
2000; Skinner et al. 2010; Thornalley et al. 2011; Burke and Robinson 2012). Other studies, how-
ever, question the existence of such a 14C-depleted deep ocean carbon reservoir mainly because of
the lack of low 14C concentrations in their measurements (Broecker and Clark 2010; De Pol-Holz et
al. 2010; Cléroux et al. 2011) or because of the potential dissipation of such a signal induced in the
ocean (Hain et al. 2011). Some others at least question its Southern Ocean origin: the deep reservoir
alimentation could come from the North Pacific water masses (Rose et al. 2010) or from the North
Atlantic-ventilated water masses (Kwon et al. 2012).

We show here that (1) a deep 14C-depleted and CO2-enriched ocean reservoir mainly due to brine-
induced ocean stratification in the Southern Ocean is plausible to explain LGM values of 14C,
13C, and pCO2atm and that (2) this is the main mechanism responsible for changes in 12C, 13C, and
14C over the last deglaciation in our modeling experiment.

MODEL AND EXPERIMENTAL DESIGN

Model Developments

CLIMBER-2 (Petoukhov et al. 2000) is a climate model of intermediate complexity that includes
full carbon cycling (both in land and ocean), and computes explicitly carbon isotopes 13C and 14C
(Brovkin et al. 2002, 2007). It has already been successfully tested under glacial conditions (Ganop-
olski and Rahmstorf 2001). For the specific needs of our study, we have further developed this
model. Previously, 14Catm was set to a constant level. It is now interactively computed by the model
with explicit fluxes from the ocean and the terrestrial biosphere. Following Tschumi et al. (2011),
we do not apply any isotopic fractionation on 14C (neither biological nor air-sea exchanges), and
thus can compare directly to the 14C from the data.

Forcings and Varying Parameters

In order to obtain 14Catm = 0‰ in preindustrial times (PI), we have adjusted the cosmogenic pro-
duction rate from Masarik and Beer (1999) (2.02 atom cm–2 s–1 (±10%)) to the carbon budget of
CLIMBER-2. All our glacial simulations are under LGM boundary conditions, with glacial solar
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insolation from Berger (1978) and ice sheets from Peltier (2004). The salinity and nutrient mean
concentrations are increased by 3.3% to account for the ~120-m sea-level fall. pCO2atm is explicitly
simulated in our model, thus responding to changes in land and ocean reservoirs to climate change.
However, the radiative effect of pCO2atm is computed with a constant pCO2atm value of 190 ppm
(Monnin et al. 2001), and not varying in time for our LGM simulations. In the following, we only
show the varying pCO2atm.

Following the study of Bouttes et al. (2011), which successfully reconciled LGM pCO2 and 13C,
we have studied different model settings by changing the values of key parameters for the mecha-
nisms considered here. In addition to varying the sinking of brines, we also consider the following
potential mechanisms: iron fertilization that can increase the uptake of carbon by biology; and the
sensitivity of vertical diffusion to brine-induced stratification that isolates deep waters from surface
waters. The values of these parameters are listed in Table 1.

Towards a Best-Guess Simulation

We performed 2 sets of experiments (see Table 1). For the first set, we kept the 14C production rate
at its preindustrial value, and looked for simulations where pCO2atm, 13Catm and Atlantic 13Cocn

were in the LGM data range (185 to 195 ppm for pCO2, –6.55 to –6.35‰ for 13Catm, and 1.3–1.5‰
for Atlantic 13Cocn (13C gradient in the Atlantic between the surface [0–2000 m] and the bottom
[3000–5000 m]). In the second set of experiments, we kept the parameters corresponding to the 7
simulations that were in the LGM pCO2atm and 13C data range, and we changed the 14C production
rate within the range of LGM production data (1.15 to 1.4, Laj et al. 2002). The objective was to
simulate the LGM 14Catm in the range of the data (between 330 and 500‰). At that point, we
selected a “best guess” simulation, which is the simulation that minimizes the distance between
LGM data and simulated 14Cocn. The pCO2atm, 13C, and 14C values of the best guess are therefore
all in the range of data. Note that the 14C production rate is set to a constant value in our simulations.
We have indeed assumed that the time variation of the production prior to the LGM was negligible
in explaining LGM 14Catm, which seems reasonable, because according to Laj et al. (2002), the 14C
production rate varied only between 1.05 and 1.40 in the 10 kyr preceding the LGM (compared to
the 0.75–2.20 range during the last 75 kyr). The effect of time variations of 14C production will be
tested in future studies. 

In the following, we discuss this best-guess simulation, along with its decomposition in the different
mechanisms involved, to evaluate the relative part of each of these mechanisms in explaining
changes in 14Catm and pCO2atm.

Table 1 Parameter values in the different simulations: frac is the fraction of salt released by sea-ice formation
that sinks to the bottom of the ocean; alpha measures the sensitivity of vertical diffusion to stratification

through the formula Kz = K0  where N = ; iron measures the proportion of nutrients con-

sumed for photosynthesis and can vary between 0 (no nutrient consumed) and 1 (all nutrients consumed, equiv-
alent to a maximum iron fertilization); prodC14 is normalized by the preindustrial production rate, which
means that preindustrial prodC14 would be equal to 1. The range of the parameter values is chosen after the
study of Bouttes et al. (2011).

Parameters frac alpha iron prodC14

PI simulation 0 0 0 1
LGM runs - 1st set 0.6; 0.7; 0.8 0.5; 0.6; 0.7; 0.8 0.0; 0.1; 0.2; 0.3 1
LGM runs - 2nd set 0.6; 0.7; 0.8 0.5; 0.6; 0.7; 0.8 0.0; 0.1 1.15; 1.20; 1.25; 1.30
LGM best guess 0.8 0.5 0.1 1.25

N
N0
------ 
  – g

0
-----

z
----- 

 
1 2
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RESULTS AND DISCUSSION

Before conducting the LGM simulations, we address the performance of the simulated 14C data in
the new version of CLIMBER-2 compared to the prebomb GLODAP (Key et al. 2004) data
(Figure 1). We performed a simulation under preindustrial and prebomb conditions, with atmo-
spheric 14C set at 0‰. For the Atlantic section, our simulation results are very close to both the
mean value and the distribution of 14C concentrations, even if the model tends to be slightly more
stratified as shown by the too-negative values of 14C (–150‰ vs. –110‰ in GLODAP) in the deep
South Atlantic. For the Pacific section, the Southern Ocean part is well represented, but the deep
North Pacific Ocean has too-low 14C concentrations (–300‰ vs. –220‰ in GLODAP), which are
due to the misrepresentation of deep Pacific water masses characteristics, an outcome of the longi-
tudinally averaged basins configuration of the CLIMBER-2 ocean model. Nonetheless, even in more
complex 3D ocean general circulation models, very negative values of 14C are often simulated in
the deep North Pacific ocean (Orr 2004; Franke et al. 2008; Tschumi et al. 2011). Overall, the sim-
ulated 14C values agree with the data in most of the ocean, especially in the Atlantic Ocean and the
Southern Ocean, which are crucial basins for the sinking of brine mechanism we are testing here.

The best guess for LGM simulations is obtained for high values of frac and alpha (0.8 and 0.5
respectively, see Table 1) and for a rather small value of iron (0.1). Thus, the brine mechanism (sink-
ing of brines and brine-induced stratification effect on vertical mixing) seems to be more important
than the biological pump in explaining changes in the carbon cycle for the last deglaciation. The

Figure 1 Comparison of GLODAP prebomb 14C concentrations (Key et al. 2004) averaged for each basin (a)
Atlantic and c) Pacific), and CLIMBER-2 preindustrial simulation sections (b) Atlantic and d) Pacific).
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change in production rate is also significant (prodC14 = 1.25, i.e. 25% more than under preindustrial
conditions), but this is still within the average of LGM estimates (Laj et al. 2002). It is thus not nec-
essary to increase the cosmogenic production beyond 1.4 to have 14C results in agreement with
LGM data. The values obtained for the different carbon constraints are within the LGM data error
bars: 14Catm = 447‰; pCO2atm = 191.5 ppm; 13Catm = –6.36‰; and 13Cocn = 1.3‰.

If we consider the 14Cocn results of the best guess, we can see in Figure 2 that the model fits all the
reconstructions that are located within the model ocean boundaries, except for 3. Those reconstruc-
tions are all located below 3500 m in the North Atlantic Ocean, in the western part (Keigwin 2004),
and might thus capture the young water masses coming from the lower branch of the thermohaline
circulation. We only have a longitudinally averaged ocean in CLIMBER-2, which cannot capture
such circulation pathways. Moreover, we have seen that in the modern simulation, the deep North
Atlantic (below 3500 m) is already too old compared to GLODAP data. The same problem arises for
the reconstruction located in the deep North Pacific: by extrapolation we see that the model is too
old compared to this data, and this area is already too old in the modern simulation. These results
highlight the limits of the CLIMBER-2 model as we clearly need a 3D ocean model to correctly rep-
resent circulation in the deep North Atlantic and Pacific. Nonetheless, despite the longitudinally

Figure 2 Best-guess results (defined in Figure 3): a) Atmospheric pCO2 as a function of model time (yr); b) Atmospheric
14C (‰); Sections of 14C (‰) in c) the Atlantic Ocean and d) the Pacific Ocean. In the last 2 plots, the fields represent
the simulated year 40,000 and data points incorporate the error bar inherent to the data: the upper (respectively lower) part
of the circle represents the maximum (respectively minimum) value of 14C in the core at the dated LGM section. Data ref-
erences are Burke and Robinson (2012); De Pol-Holz et al. (2010); Galbraith et al. (2007); Keigwin (2004); Marchitto et
al. (2007); Robinson et al. (2005); and Skinner et al. (2010).
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averaged ocean basins, the CLIMBER-2 model simulates results that are within the LGM 14Cocn

error bar for 64% of the data points (7 out of 11), which demonstrates some general agreement with
the data.

We have decomposed the best guess in each of the mechanisms involved in the glacial-interglacial
differences to have an estimate of their relative importance (Figure 3). This decomposition is only a
first-order estimate, as the different mechanisms presented are non-linear (e.g. enhanced 14C produc-
tion more strongly affects the atmosphere when the ocean takes up less carbon). As expected from
the parameter values, the iron fertilization does not have a significant impact on pCO2atm (–3 ppm)
nor on 14Catm (+1‰). Carbonate compensation only impacts the pCO2atm (34% or –30 ppm), not
14Catm (2% or +7‰). The brine mechanism (sinking of brines and stratification effect on vertical
mixing) has an important impact on both pCO2atm (66% or –72 ppm) and 14Catm (30% or +133‰
and 85% of the part of 14Catm not related to the cosmogenic production, prodC14). It is worth noting
that in our simulations, the brine mechanism, which implies the existence of an old deep ocean car-
bon reservoir, is necessary to simulate the pCO2atm and 14Catm values within the range of the data,
so our study supports the existence of such a reservoir.

More importantly, the addition of LGM boundary conditions, carbonate compensation, iron fertili-
zation, sinking of brines, increased stratification, and increased prodC14 allow us to reach the LGM

Figure 3 Summary of all the simulations performed and decomposition of the best-guess simulation in the
different mechanisms involved. pCO2atm is represented as a function of 14Catm. The different circle colors are
explained in the legend box.
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data range for pCO2, 13Catm, Atlantic 13Cocn, and 14Catm, which are the main carbon data con-
straints existing for that period.

In conclusion, when we take into account carbonate compensation, the sinking of brines mechanism,
iron fertilization and stratification-dependent diffusion, not only are the LGM CO2 and 13C recon-
ciled, but also the 14C. This study also highlights the major role of the brine mechanism in setting
the last deglaciation CO2 level (66%) and 14Catm changes (85%, part of 14Catm not related to the
cosmogenic production). Further simulations need to be done with an ocean general circulation
model in order to test the processes involved in a more mechanistic way. Finally, this study is the
first attempt to our knowledge of a model experiment to explain the glacial-interglacial differences
in pCO2atm, 13C, and 14C with a coherent LGM climate.
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